Full entry |
PDF
(2.5 MB)
Feedback

knowledge extraction from data; artificial neural networks; fuzzy logic; Lukasiewicz logic; disjunctive normal form

References:

[1] Adamo J. M.: **Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms**. Springer–Verlag, Berlin 2001 Zbl 0998.68228

[2] Aguzzoli S., Mundici D.: **Weierstrass approximations by Lukasiewicz formulas with one quantified variable**. In: 31st IEEE Internat. Symposium on Multiple-Valued Logic, 2001

[3] Alexander J. A., Mozer M. C.: **Template-based procedures for neural network interpretation**. Neural Networks 12 (1999), 479–498 DOI 10.1016/S0893-6080(99)00009-X

[4] Amato P., Nola, A. Di, Gerla B.: **Neural networks and rational Lukasiewicz logic**. J. Multiple-Valued Logic and Soft Computing (accepted for publication)

[5] Amato P., Porto M.: **An algorithm for the automatic generation of logical formula representing a control law**. Neural Network World 10 (2000), 777–786

[6] Andrews R., Diederich, J., Tickle A. B.: **Survey and critique of techniques for extracting rules from trained artificical neural networks**. Knowledge-based Systems 8 (1995), 378–389 DOI 10.1016/0950-7051(96)81920-4

[7] Bern M., Chew L. P., Eppstein, D., Ruppert J.: **Dihedral bounds for mesh generation in high dimensions**. In: Proc. Sixth ACM-SIAM Symposium on Discrete Algorithms, ACM, San Francisco 1995, pp. 189–196 MR 1321850 | Zbl 0849.68116

[8] Berthold M., Hand D., editors: **Intelligent Data Analysis**. An Introduction. Springer–Verlag, Berlin 1999 DOI 10.1007/978-3-662-03969-4 | MR 1723394

[9] Chen J., Liu J.: **Using mixture principal component analysis networks to extract fuzzy rules from data**. Indust. Engrg. Chemistry Research 39 (2000), 2355–2367 DOI 10.1021/ie9905613

[10] Cignoli L. O., D’Ottaviano I. M. L., Mundici D.: **Algebraic Foundations of Many-valued Reasoning**. Kluwer Academic Publishers, Dordrecht 2000 MR 1786097 | Zbl 0937.06009

[11] Garcez A. S. d’Avila, Broda, K., Gabbay D. M.: **Symbolic knowledge extraction from artificial neural networks: A sound approach**. Artificial Intelligence 125 (2001), 155–207 DOI 10.1016/S0004-3702(00)00077-1 | MR 1805645

[12] Daňková M., Perfilieva I.: **Logical approximation II**. Soft Computing 7 (2003), 228–233 DOI 10.1007/s00500-002-0209-3 | Zbl 1029.03503

[13] Raedt L. De: **Interactive Theory Revision: An Inductive Logic Programming Approach**. Academic Press, London 1992

[14] Duch W., Adamczak, R., Grabczewski K.: **Extraction of logical rules from neural networks**. Neural Processing Lett. 7 (1998), 211–219 DOI 10.1023/A:1009670302979

[15] Duch W., Adamczak, R., Grabczewski K.: **A new methodology of extraction, optimization and application of crisp and fuzzy logical rules**. IEEE Trans. Neural Networks 11 (2000), 277–306

[16] Dzeroski S., Lavrac N.: **Relational Data Mining**. Springer–Verlag, Berlin 2001 Zbl 1003.68039

[17] Edelsbrunner H.: **Algorithms in Combinatorial Geometry**. Springer–Verlag, Heidelberg 1987 MR 0904271 | Zbl 0634.52001

[18] Esteva F., Godo, L., Montagna F.: **The L$\Pi $ and L$\Pi \frac{1}{2}$ logics: Two complete fuzzy systems joining Lukasiewicz and product logic**. Arch. Math. Logic 40 (2001), 39–67 DOI 10.1007/s001530050173 | MR 1816606

[19] Faber J., Novák M., Svoboda, P., Tatarinov V.: **Electrical brain wave analysis during hypnagogium**. Neural Network World 13 (2003), 41–54

[20] Finn G. D.: **Learning fuzzy rules from data**. Neural Computing Appl. 8 (1999), 9–24 DOI 10.1007/s005210050003

[21] Freitas A. A.: **Data Mining and Knowledge Discovery with Evolutionary Algorithms**. Springer–Verlag, Berlin 2002 Zbl 1013.68075

[22] Gehrke M., Walker C. L., Walker E. A.: **Normal forms and truth tables for fuzzy logics**. Fuzzy Sets and Systems 138 (2003), 25–51 MR 2012239 | Zbl 1027.03023

[23] Hájek P.: **Metamathematics of Fuzzy Logic**. Kluwer Academic Publishers, Dordrecht 1998 MR 1900263 | Zbl 1007.03022

[24] Hájek P., Havránek T.: **Mechanizing Hypothesis Formation**. Springer–Verlag, Berlin 1978 MR 0501342 | Zbl 0371.02002

[25] Healy M. J., Caudell T. P.: **Acquiring rule sets as a product of learning in a logical neural architecture**. IEEE Trans. Neural Networks 8 (1997), 461–474 DOI 10.1109/72.572088

[26] Holeňa M.: **Extraction of logical rules from data by means of piecewise-linear neural networks**. In: Proc. 5th Internat. Conference on Discovery Science, Springer–Verlag, Berlin 2002, pp. 192–205 Zbl 1024.68560

[27] Holeňa M., Baerns M.: **Artificial neural networks in catalyst development**. In: Experimental Design for Combinatorial and High Throughput Materials Development (J. N. Cawse, ed.), Wiley, Hoboken 2003, pp. 163–202

[28] Holeňa M., Baerns M.: **Feedforward neural networks in catalysis**. A tool for the approximation of the dependency of yield on catalyst composition, and for knowledge extraction. Catalysis Today 81 (2003), 485–494

[29] Horčík R., Cintula P.: **Product Lukasiewicz logic**. Arch. Math. Logic 43 (2004), 477–503 DOI 10.1007/s00153-004-0214-6 | MR 2060396 | Zbl 1059.03011

[30] Ishikawa M.: **Rule extraction by successive regularization**. Neural Networks 13 (2000), 1171–1183 DOI 10.1016/S0893-6080(00)00072-1

[31] Lu H., Setiono, R., Liu H.: **Effective data mining using neural networks**. IEEE Trans. Knowledge and Data Engrg. 8 (1996), 957–961 DOI 10.1109/69.553163

[32] Maire F.: **Rule-extraction by backpropagation of polyhedra**. Neural Networks 12 (1999), 717–725 DOI 10.1016/S0893-6080(99)00013-1

[33] McNaughton R.: **A theorem about infinite-valued sentential logic**. J. Symbolic Logic 16 (1951), 1–13 DOI 10.2307/2268660 | MR 0041799 | Zbl 0043.00901

[34] Mitra S., De R. K., Pal S. K.: **Knowledge-based fuzzy MLP for classification and rule generation**. IEEE Trans. Neural Networks 8 (1997), 1338–1350 DOI 10.1109/72.641457

[35] Mitra S., Hayashi Y.: **Neuro-fuzzy rule generation: Survey in soft computing framework**. IEEE Trans. Neural Networks 11 (2000), 748–768 DOI 10.1109/72.846746

[36] Muggleton S.: **Inductive Logic Programming**. Academic Press, London 1992 Zbl 1132.68007

[37] Mundici D.: **A constructive proof of McNaughton’s theorem in infinite-valued logic**. J. Symbolic Logic 59 (1994), 596–602 DOI 10.2307/2275410 | MR 1276635 | Zbl 0807.03012

[38] Narazaki H., Watanabe, T., Yamamoto M.: **Reorganizing knowledge in neural networks: An exploratory mechanism for neural networks in data classification problems**. IEEE Trans. Systems Man Cybernet. 26 (1996), 107–117 DOI 10.1109/3477.484442

[39] Nauck D., Nauck, U., Kruse R.: **Generating classification rules with the neuro-fuzzy system NEFCLASS**. In: Proc. Biennial Conference of the North American Fuzzy Information Processing Society NAFIPS’96, 1996, pp. 466–470

[40] Novák V., Perfilieva I.: **Some consequences of herbrand and McNaughton theorems in fuzzy logic**. In: Discovering World with Fuzzy Logic: Perspectives and Approaches to Formalization of Human-Consistent Logical Systems (V. Novák and I. Perfilieva, eds.), Springer–Verlag, Heidelberg 1999, pp. 271–295 MR 1858104

[41] Novák V., Perfilieva, I., Močkoř J.: **Mathematical Principles of Fuzzy Logic**. Kluwer Academic Publishers, Dordrecht 1999 MR 1733839 | Zbl 0940.03028

[42] Perfilieva I.: **Neural nets and normal forms from fuzzy logic point of view**. Technical Report, Institute for Research and Applications of Fuzzy Modelling, 2001

[43] Perfilieva I.: **Normal forms for fuzzy logic functions and their approximation ability**. Fuzzy Sets and Systems 124 (2001), 371–384 MR 1860857 | Zbl 0994.03019

[44] Perfilieva I.: **Logical approximaion**. Soft Computing 7 (2003), 73–78 DOI 10.1007/s00500-002-0173-y

[45] Perfilieva I.: **Normal forms in BL-algerbra and their contribution fo universal approximation of functions**. Fuzzy Sets and Systems 143 (2004), 111–127 DOI 10.1016/j.fss.2003.06.009 | MR 2060276

[46] Perfilieva I.: **Normal forms in BL and L$\Pi $ algebras of functions**. Soft Computing 8 (2004), 291–298 DOI 10.1007/s00500-003-0274-2 | Zbl 1077.03047

[47] Perfilieva I., Kreinovich V.: **A new universal approximation result for fuzzy systems, which reflects CNF-DNF duality**. Internat. J. Intelligent Systems 17 (2002), 1121–1130 DOI 10.1002/int.10063 | Zbl 1028.68169

[48] Polkowski L.: **Rough Sets**. Mathematical Foundations. Physica–Verlag, Heidelberg 2002 MR 1967129 | Zbl 1166.68307

[49] Quinlan J.: **C4**. 5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco 1992 Zbl 0900.68112

[50] Setiono R.: **Extracting rules from neural networks by pruning and hidden unit splitting**. Neural Computation 9 (1997), 05–225 DOI 10.1162/neco.1997.9.1.205 | Zbl 0872.68155

[51] Tickle A. B., Andrews R., Golea, M., Diederich J.: **The truth will come to light: Directions and challenges in extracting rules from trained artificial neural networks**. IEEE Trans. Neural Networks 9 (1998), 1057–1068 DOI 10.1109/72.728352

[52] Towell G. G., Shavlik J. W.: **Extracting refined rules from knowledge-based neural networks**. Mach. Learning 13 (1993), 71–101 DOI 10.1007/BF00993103

[53] Triantaphyllou E., (eds.) G. Felici: **Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques**. Kluwer Academic Publishers, Dordrecht 2003 Zbl 1117.68028

[54] Tsukimoto H.: **Extracting rules from trained neural networks**. IEEE Trans. Neural Networks 11 (2000), 333–389 DOI 10.1109/72.839008

[55] Wong M. L., Leung K. S.: **Data Mining Using Grammar Based Genetic Programming and Applications**. Kluwer Academic Publishers, Dordrecht 2000 Zbl 0944.68172

[56] Zhang C., Zhang, S., Heymer B. E.: **Association Rule Mining: Models and Algoritms**. Springer–Verlag, Berlin 2002