TIME: 3 HOURS

INSTRUCTION TO CANDIDATES:

Attempt all the eight questions in section \mathbf{A} and not more than five from section \mathbf{B}.
Show all the necessary working up to the last step of the solution.
Mathematical tables and squared papers are provided.
Silent Simple non-programmable calculators may be used.
State the degree of accuracy of questions attempted using calculator or tables. Indicate Cal for calculator or Tab for Mathematical tables.

SECTION A: (40 marks)

1. A polynomial $\mathrm{P}(\mathrm{x})$, when divided by $(\mathrm{x}+1)$ leaves a remainder 3 and when divided by ($\mathrm{x}-2$) leaves a remainder 1 .
Find the remainder when it is divided by $(x+1)(x-2)$
2. Find $\int \frac{x \sin ^{-1} x d x}{\sqrt{\left(1-x^{2}\right)}}$
3. A circle, centre C, cuts the circle $x^{2}+y^{2}-4 x+6 y-7=0$ at right angles and passes through the point $(1,3)$. Find the locus of C.
4. Solve $6 \tan ^{2} \theta-4 \operatorname{Sin}^{2} \theta=1$; for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(5 marks)
5. Air is being pumped in a spherical balloon at a constant rate. If, when the radius is 21 m , it is increasing at the rate of $0.01 \mathrm{~ms}^{-1}$, find the rates at which the surface area and volume are increasing at the same time.
6. Given the line $\mathbf{r}=\left(\begin{array}{r}-2 \\ 0 \\ 6\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 12 \\ 4\end{array}\right)$ and the plane $\mathbf{r} \cdot\left(\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right)=66$

Find ;
(i) the coordinates of their point of intersection,
(ii) the acute angle between them.
7. By putting $\mathrm{Z}=\mathrm{x}+\frac{2}{\mathrm{x}}$, solve the equation

$$
\begin{equation*}
x^{4}-5 x^{3}+10 x^{2}-10 x+4=0 \tag{5marks}
\end{equation*}
$$

8. Using the substitution $\mathrm{u}^{2}=\mathrm{x}^{3}+1$, show that

$$
\begin{equation*}
\text { (iii) } \int_{1}^{2} \frac{3 \mathrm{dx}}{\mathrm{x} \sqrt{\left(\mathrm{x}^{3}+1\right)}}=\log _{\mathrm{e}} 1 / 2(3+2 \sqrt{ } 2) \tag{5marks}
\end{equation*}
$$

SECTION B: (60 MARKS)

9. (a) Expand $(1-3 x)^{1 / 3}$ in ascending powers of x as far as the term in x^{4}. By taking $\mathrm{x}={ }^{1 / 8}$ evaluate $5^{1 / 3}$ to three significant figures.
(b) Solve the inequality

$$
\begin{equation*}
\frac{x^{2}-3 x+1}{x-2}>1 \tag{6marks}
\end{equation*}
$$

10. Prove that the equation of the tangent to the parabola $y^{2}=4 a x$ at the point $T\left(a t^{2}, 2 a t\right)$ is $\mathrm{ty}=\mathrm{x}+\mathrm{at}^{2}$. The tangents to the above parabola at points $\mathrm{P}\left(\mathrm{ap}^{2}, 2 \mathrm{ap}\right)$ and $\mathrm{Q}\left(\mathrm{aq}^{2}, 2 \mathrm{aq}\right)$ intersect at R , find the coordinates of R . If the tangent at P and Q are inclined to one another at an angle of 45°, Show that the locus of R is the curve $y^{2}=x^{2}+6 a x+a^{2}$
(12 marks)
11. (a) The position vectors of the points A and B are $2 \mathbf{i}-\mathbf{j}$ and $-\mathbf{i}+3 \mathbf{j}$ respectively with respect to the origin O . Find the position vector of point H in the plane OAB such that $\mathbf{O H}$ is perpendicular to $\mathbf{A B}$ and $\mathbf{A H}$ is perpendicular to $\mathbf{O B}$
(b) Given two sets of collinear points OAA^{1} and OBB^{1} with $\mathbf{O A}=\mathbf{a}, \mathbf{O A}^{1}=\mathbf{a}$, $\mathbf{O A}^{1}=\lambda \mathbf{a}, \mathbf{O B}=\mathbf{b}, \mathbf{O B}^{1}=\mu \mathbf{b}$ where the vectors \mathbf{a} and \mathbf{b} are not parallel, show that the vector $\mathbf{O X}$ where X is the point of intersection of $\mathbf{A B} \mathbf{B}^{1}$ and $\mathbf{A}^{1} \mathbf{B}$ is given by

$$
\mathrm{OX}=\frac{\lambda(1-\mu)}{1-\lambda \mu} \mathbf{a}+=\frac{\mu(1-\lambda)}{1-\lambda \mu}
$$

Provided $1-\lambda \mu \neq 0$
(6 marks)
12. Express $\frac{2 x^{2}+14 x+10}{2 x^{2}+9 x+4}$ in partial fractions.

Hence determine

$$
\begin{equation*}
\int \frac{2 x^{2}+14 x+10}{2 x^{2}+9 x+4} d x \tag{12marks}
\end{equation*}
$$

13. (a) Given that $\mathrm{y}=2$ when $\mathrm{x}=0$, solve the differential equation.

$$
\begin{equation*}
\frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\operatorname{Cos} x \tag{6marks}
\end{equation*}
$$

(b) A body of unit mass falls under gravity in a medium in which the resistance is proportional to the velocity of the body. If the body was initial at rest, show that the velocity V after time t is $\mathrm{g} / \mathrm{k}\left(1-\mathrm{e}^{-\mathrm{kt}}\right)$, where k is a constant of proportionality.
(6 marks)
14. The top of a tower is observed simultaneously from two points A and B, at the same level, A being at a distance C due north of B . From A the bearing of the tower is θ east of south at an elevation α and from B the bearing of ϕ east of north. Show that the height of the tower is
$\mathrm{C} \tan \alpha \operatorname{Sin} \phi \quad$ and find the elevation of the top of the tower from B. (12 marks) $\operatorname{Sin}(\theta+\phi)$
15. (a) Given the complex number Z, find the roots of the equation $Z^{3}+64=0$ and show these roots on an Argand diagram.
(b) If $\mathrm{Z}_{1}=2+\mathrm{i}, \mathrm{Z}_{2}=4+3 \mathrm{i}$ and A and B are points representing Z_{1} and Z_{2} on an argand diagram, find the complex numbers C_{1} and C_{2} where $A B C_{1}$ and $A B C_{2}$ are equilateral triangles.
16. (a) If $y=e^{\tan ^{-1} x}$; show that $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}$
(b) The parametric equations of a curve are $x=\operatorname{Cos} 2 \theta, y=1+\operatorname{Sin} 2 \theta$. Find dy ad $d^{2} y$

$$
\frac{d x}{\mathrm{dx}^{2}}
$$ at $\Theta=\pi / 6$. Find also the equation of the curve as a relationship between x and y.

