This document is sponsored by
CMaxtune your dreamo The Science Foundation College Kiwanga- Namanve
Uganda East Africa
Senior one to senior six
+256 778633 682, 753802709
Based on, best for sciences

UACE MATHEMATICS PAPER 12016 guide

SECTION A (40 marks)

Answer all questions in this section

1. Without using mathematical tables or calculators, find the value of

$$
\frac{(\sqrt{5}+2)^{2}-(\sqrt{5}-2)^{2}}{8 \sqrt{5}}
$$

2. Find the angle between the lines $2 x-y=3$ and $11 x+2 y=13$
3. Evaluate $\int_{\frac{1}{2}}^{1} 10 x \sqrt{\left(1-x^{2}\right)} d x$
4. Solve the equation $\frac{d y}{d x}=1+y^{2}$ given that when $\mathrm{y}=1$ when $\mathrm{x}=0$.
5. Given that $2 x^{2}+7 x-4, x^{2}+3 x-4$ and $7 x^{2}+a x-8$ have a common factor, find the
(a) Factors of $2 x^{2}+7 x-4$ and $x^{2}+3 x-4$
(b) Value of a in $7 x^{2}+a x-8$.
6. Solve the equation $\sin 2 \theta+\cos 2 \theta \cos 4 \theta=\cos 4 \theta \cos 6 \theta$ for $0 \leq \theta \leq \frac{\pi}{4}$.
7. Using small changes; show $(244)^{\frac{1}{5}}=3 \frac{1}{405}$.
8. Three points $A(2,-1,0), B(-2,5,-4)$ and C are on a straight line such that $3 A B=2 A C$. Find the coordinates of C.

SECTION B (60MARKS)

Answer any five questions from this section. All questions carry equal marks
9. (a) If $z_{1}=\frac{2 i}{1+3 i}$ and $z_{2}=\frac{3+2 i}{5}$, find $\left|z_{1}-z_{2}\right|$
(b) Given the complex number $z=x+i y$
(i) Find $\frac{z+i}{z+2}$
(ii) Show that the locus of $\frac{z+i}{z+2}$ is a straight line when its imaginary part is zero. State the gradient of the line.
10. (a) solve the equation $\cos 2 x=4 \cos ^{2} x-2 \sin ^{2} x$ for $0 \leq \theta \leq 180^{0}$
(b) Show that if $\sin (x+\alpha)=p \sin (x-\alpha)$ then $\tan x=\left(\frac{p+1}{p-1}\right) \tan \alpha$. Hence solve the equation $\sin (x+\alpha)=p \sin (x-\alpha)$ for $p=2$ and $\alpha=20^{\circ}$.
11. Given that $\mathrm{x}=\frac{t^{2}}{1+t^{3}}$ and $\mathrm{y}=\frac{t^{3}}{1+t^{3}}$, find $\frac{d^{2} y}{d x^{2}}$.
12. (a) Line A is the intersection of two planes whose equations are $3 x-y+z=2$ and $x+5 y+2 z=6$. Find the equation of the line.
(b) Given that line B is perpendicular to the plane $3 x-y+z=2$ and passes through the point $C(1,1,0)$, find the
(i) Cartesian equation of line B
(ii) angle between line B and line A in (a) above
13. (a) Find $\int \frac{1+\sqrt{x}}{2 \sqrt{x}} \mathrm{dx}$
(b) The gradient of the tangent at any point on a curve is $x-\frac{2 y}{x}$. The curve passes through the point $(2,4)$, find the equation of the curve.
14. (a) The point $\mathrm{P}\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\mathrm{Q}\left(a t_{2}^{2}, 2 a t_{2}\right)$ are on parabola $\mathrm{y}^{2}=4 a x . \mathrm{OP}$ is perpendicular to $O Q$, where O is the origin. Show that $t_{1} t_{2}+4=0$.
(b) The normal to the rectangular hyperbola $x y=8$ at point $(4,2)$ meets the asymptotes at M and N. find the length $M N$.
15. (a) Prove by induction
$1.3+2.4+\ldots+n(n+2)=\frac{1}{6} n(n+1)(2 n+7)$ for all values of n.
(b) A man deposits Shs. 150,000 at the beginning of every year in a micro finance bank with the understanding that at the end of the seven years he is paid back his money with 5% per annum compound interest. How much does he receive?
16. (a) If $x^{2}+3 y^{2}=k$, where k is constant, find $\frac{d y}{d x}$ at the point $(1,2)$.
(c) A rectangular field of area 7200 m 2 is to be fenced using a wire mesh. On one side of the field. Is a straight river. This side is not to be fenced. Find the dimension of the field hat will minimize the amount of wire mesh to be used.
End

Solution

SECTION A (40 marks)

Answer all questions in this section

1. Without using mathematical tables or calculators, find the value of $\frac{(\sqrt{5}+2)^{2}-(\sqrt{5}-2)^{2}}{8 \sqrt{5}}=\frac{[(\sqrt{5}+2)+(\sqrt{5}-2)][(\sqrt{5}+2)-(\sqrt{5}-2)]}{8 \sqrt{5}}=\frac{(2 \sqrt{5})(4)}{8 \sqrt{5}}=\frac{8 \sqrt{5}}{8 \sqrt{5}}=1$

Or
$\frac{(\sqrt{5}+2)^{2}-(\sqrt{5}-2)^{2}}{8 \sqrt{5}}=\frac{(5+4 \sqrt{5}+4)-(5-4 \sqrt{5}+4)}{8 \sqrt{2}}=\frac{5+4 \sqrt{5}+4-5+4 \sqrt{5}-4}{8 \sqrt{5}}=\frac{8 \sqrt{5}}{8 \sqrt{5}}=1$
2. Find the angle between the lines $2 x-y=3$ and $11 x+2 y=13$
$\tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$
For $11 x+y=13 ; 2 y=-11 x+13 ; y=\frac{-11}{2} x+\frac{13}{2} \Rightarrow m_{1}=\frac{-11}{2}=-5.5$
For $2 x-y=3 ; y=2 x+3 ; \Rightarrow m_{2}=2$
$\tan \theta=\frac{-5.5-2}{1+(-5.5 \times 2)}=\frac{-7.5}{-10}$
$\theta=\tan ^{-1}\left(\frac{7.5}{10}\right)=36.87^{0}$
Alternatively
$n_{1}=\left(\frac{2}{-1}\right), n_{2}=\binom{11}{2}$

$$
\begin{aligned}
& n_{1} n_{2}=\cos \theta\left|n_{1}\right|\left|n_{2}\right| \\
& n_{1} n_{2}=\binom{2}{-1} \cdot\binom{11}{2}=20 \\
& n_{1}=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5} \\
& n_{2}=\sqrt{11^{2}+2^{2}}=\sqrt{125} \\
& 20=\cos \theta(\sqrt{5})(\sqrt{125}) \\
& \cos \theta=\frac{20}{\sqrt{125}} \\
& \theta=\cos ^{-1} 0.8=36.87^{\circ}
\end{aligned}
$$

3. Evaluate $\int_{\frac{1}{2}}^{1} 10 x \sqrt{\left(1-x^{2}\right)} d x$
$\int_{\frac{1}{2}}^{1} 10 x \sqrt{\left(1-x^{2}\right)} d x$
Let $\mathrm{u}=1-\mathrm{x}^{2} ; \mathrm{du}=-2 \mathrm{xdx}$
$-\frac{1}{2} d u=x d x$

x	u
$\frac{1}{2}$	$\frac{3}{4}$
1	0

$$
\begin{aligned}
\Rightarrow \int_{\frac{1}{2}}^{1} 10 x \sqrt{\left(1-x^{2}\right)} d x & =\int_{\frac{1}{2}}^{1} 10 \sqrt{\left(1-x^{2}\right)} \cdot x d x \\
& =\int_{\frac{3}{4}}^{0} 10 \cdot u^{\frac{1}{2}} \cdot-\frac{1}{2} d u \\
& =-5 \int_{\frac{3}{4}}^{0} u^{\frac{1}{2}} d u \\
& =-5\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{\frac{3}{4}}^{0} \\
& =-\frac{10}{3}\left[0-\left(\frac{3}{4}\right)^{\frac{3}{2}}\right] \\
& =2.165
\end{aligned}
$$

Or
By using limits of x, we drop out limits when integrating and bring them in after u has been substituted for x

$$
\begin{aligned}
\Rightarrow \int 10 x \sqrt{\left(1-x^{2}\right)} d x & =\int 10 \sqrt{\left(1-x^{2}\right)} \cdot x d x \\
& =\int 10 \cdot u^{\frac{1}{2}} \cdot-\frac{1}{2} d u \\
& =-5 \int u^{\frac{1}{2}} d u \\
& =-5\left(\frac{2}{3} u^{\frac{3}{2}}\right)+\mathrm{c} \\
& =-\frac{10}{3}\left(1-x^{2}\right)^{\frac{3}{2}}+c
\end{aligned}
$$

Now bringing in limits

$$
\int_{\frac{1}{2}}^{1} 10 x \sqrt{\left(1-x^{2}\right)} d x=-\frac{10}{3}\left[\left(1-x^{2}\right)^{\frac{3}{2}}\right]_{\frac{1}{2}}^{1}
$$

$$
\begin{aligned}
& =-\frac{10}{3}\left[0-\left(\frac{3}{4}\right)^{\frac{3}{2}}\right] \\
& =-\frac{10}{3} \cdot-\left(\frac{3}{4}\right)^{\frac{3}{2}} \\
& =2.165
\end{aligned}
$$

Alternatively

$$
\begin{aligned}
& \text { Let } u=\sqrt{1-x^{2}} \\
& \qquad u^{2}=1-x^{2} \\
& \text { 2udu }=-2 x d x \\
& \text {-udu }=x d x
\end{aligned}
$$

x	u
1	0
$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
\int_{\frac{1}{2}}^{1} 10 x \sqrt{\left(1-x^{2}\right)} d x & =\int_{\frac{\sqrt{3}}{2}}^{0}-10 u \cdot u d u=-10 \int_{\frac{\sqrt{3}}{2}}^{0} u^{2} d u \\
& =-10\left[\frac{u^{3}}{3}\right]_{\frac{\sqrt{3}}{2}}^{0} \\
& =\frac{-10}{3}\left[0-\left(\frac{\sqrt{3}}{2}\right)^{3}\right] \\
& =2.165
\end{aligned}
$$

4. Solve the equation $\frac{d y}{d x}=1+y^{2}$ given that when $\mathrm{y}=1$ when $\mathrm{x}=0$.

$$
\begin{aligned}
& \frac{d y}{d x}=1+y^{2} \\
& \frac{d y}{1+y^{2}}=d x \\
& \int \frac{d y}{1+y^{2}}=\int d x \\
& \tan ^{-1}(y)=x+C \\
& \text { Substituting } \mathrm{y}=1 \text { when } \mathrm{x}=0 \\
& \tan ^{-1}(1)=C \\
& \mathrm{C}=\frac{\pi}{4} \\
& \Rightarrow \tan ^{-1}(y)=x+\frac{\pi}{4} \\
& \quad \mathrm{y}=\tan \left(x+\frac{\pi}{4}\right)
\end{aligned}
$$

5. Given that $2 x^{2}+7 x-4, x^{2}+3 x-4$ and $7 x^{2}+a x-8$ have a common factor, find the
(a) Factors of $2 x^{2}+7 x-4$ and $x^{2}+3 x-4$

$$
\begin{aligned}
2 x^{2}+7 x-4 & =2 x^{2}+8 x-x-4 \\
& =2 x(x+4)-1(x+4) \\
& =(2 x-1)(x+4)
\end{aligned}
$$

Hence the factors of $2 x^{2}+7 x-4$ are ($2 x-1$) and $(x+4)$

$$
\begin{aligned}
x^{2}+3 x-4 & =x(x+4)-1(x+4) \\
& =(x-1)(x+4)
\end{aligned}
$$

Hence the factors $x^{2}+3 x-4$ are $(x-1)$ and $(x+4)$
\therefore the common factor of $2 x^{2}+7 x-4$ and $x^{2}+3 x-4$ is $(x+4)$
(b) Value of a in $7 x^{2}+a x-8$.

Since $(x+4)$ is the common factor of $2 x^{2}+7 x-4$ and $x^{2}+3 x-4$; it implies that it a factor of $7 x^{2}+a x-8$
Substituting for $x=-4$ in the equation $7 x^{2}+a x-8$

$$
\begin{aligned}
& 7(-4)^{2}-4 a-8=0 \\
& 7 \times 16-4 a-8 \\
& 112-8-4 a=0 \\
& a=26
\end{aligned}
$$

6. Solve the equation $\sin 2 \theta+\cos 2 \theta \cos 4 \theta=\cos 4 \theta \cos 6 \theta$ for $0 \leq \theta \leq \frac{\pi}{4}$.

$$
\begin{aligned}
& \sin 2 \theta+\cos 2 \theta \cos 4 \theta=\cos 4 \theta \cos 6 \theta \\
& \sin 2 \theta=\cos 4 \theta \cos 6 \theta-\cos 2 \theta \cos 4 \theta \\
& =\cos 4 \theta(\cos 6 \theta-\cos 2 \theta) \\
& \text { But } \cos P-\cos Q=-2 \sin \frac{(P+Q)}{2} \sin \frac{(P-Q)}{2} \\
& \Rightarrow \sin 2 \theta=-2 \cos 4 \theta\left[\sin \frac{(6 \theta+2 \theta)}{2} \sin \frac{(6 \theta-2 \theta)}{2}\right] \\
& \sin 2 \theta=-2 \cos 4 \theta \sin 4 \theta \sin 2 \theta \\
& \sin 2 \theta+2 \cos 4 \theta \sin 4 \theta \sin 2 \theta=0 \\
& \sin 2 \theta(1+2 \cos 4 \theta \sin 4 \theta)=0 \\
& \sin 2 \theta(1+\sin 8 \theta)=0 \\
& \text { either } \\
& \sin 2 \theta=0 \\
& 2 \theta=\sin ^{-1}(0)=0, \pi, 2 \pi \\
& \theta=0, \frac{\pi}{2}, \pi \\
& \text { or } \\
& (1+\sin 8 \theta)=0 \\
& \operatorname{Sin} 8 \theta=-1 \\
& 8 \theta=\sin ^{-1}(-1)=270^{\circ} \text { or } \frac{3 \pi}{2} \\
& \theta=\frac{3 \pi}{16} \\
& \text { Hence } \theta=0, \frac{3 \pi}{16}
\end{aligned}
$$

7. Using small changes; show $(244)^{\frac{1}{5}}=3 \frac{1}{405}$.

$$
\begin{aligned}
& \text { Let } y=x^{\frac{1}{5}} \\
& \begin{aligned}
\frac{d y}{d x} & =\frac{1}{5} x^{-\frac{4}{5}} \\
& =\frac{1}{5 x^{\frac{4}{5}}} \\
= & \frac{1}{5\left(x^{\frac{1}{5}}\right)^{4}}
\end{aligned} \\
& \delta y=\frac{1}{5\left(x^{\frac{1}{5}}\right)^{4}} \delta x
\end{aligned}
$$

Taking $\mathrm{x}=243$ and $\delta x=1$

$$
\begin{aligned}
& \delta y=\frac{1}{5\left(243^{\frac{1}{5}}\right)^{4}} \cdot 1=\frac{1}{405} \\
& \begin{aligned}
(x+\delta x) & =y+\delta y b \\
& =\sqrt[5]{243}+\frac{1}{405} \\
& =3+\frac{1}{405} \\
= & 3 \frac{1}{405}
\end{aligned}
\end{aligned}
$$

8. Three points $A(2,-1,0), B(-2,5,-4)$ and C are on a straight line such that $3 A B=2 A C$. Find the coordinates of C.
$3(A B)=2 A C$
$\frac{3}{2} A B=A C$
$\frac{3}{2}(O B-O A)=O C-O A$
$\frac{3}{2}\left[\left(\begin{array}{c}-2 \\ 5 \\ -4\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)\right]=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$
$\frac{3}{2}\left(\begin{array}{c}-4 \\ 6 \\ -4\end{array}\right)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$
$\left(\begin{array}{c}-6 \\ 9 \\ -6\end{array}\right)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-6 \\ 9 \\ -6\end{array}\right)+\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-4 \\ 8 \\ -6\end{array}\right)$
Hence coordinates of C are $(-4,8,-6)$

Alternatively

Using ratio theorem

C divides externally in the ratio 3:-1

$$
\begin{aligned}
O C & =\frac{3(O B)-1(O A)}{3+(-1)} \\
O C & =\frac{1}{2}\left\{3\left(\begin{array}{c}
-2 \\
5 \\
-4
\end{array}\right)-\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right)\right\} \\
& =\frac{1}{2}\left(\begin{array}{c}
-8 \\
16 \\
12
\end{array}\right)=\left(\begin{array}{c}
-4 \\
8 \\
-6
\end{array}\right)
\end{aligned}
$$

Hence C(-4, 8, -6)

Alternatively

B divides AC internally in ration of 2:1
$\left(\begin{array}{c}-2 \\ 5 \\ -4\end{array}\right)=\frac{1}{3}\left\{2\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)\right\}$
$3\left(\begin{array}{c}-2 \\ 5 \\ -4\end{array}\right)=2\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\frac{1}{2}\left\{\left(\begin{array}{c}-6 \\ 15 \\ 12\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)\right\}$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}-8 \\ 16 \\ -12\end{array}\right)=\left(\begin{array}{c}-4 \\ 8 \\ -6\end{array}\right)$
Hence $C(-4,8,-6)$

SECTION B (60MARKS)

Answer any five questions from this section. All questions carry equal marks
9. (a) If $z_{1}=\frac{2 i}{1+3 i}$ and $z_{2}=\frac{3+2 i}{5}$, find $\left|z_{1}-z_{2}\right|$

$$
\begin{aligned}
z_{1}-z_{2} & =\frac{2 i}{1+3 i}-\frac{3+2 i}{5} \\
& =\frac{10 i-(1+3 i)(3+2 i)}{5(1+3 i)}=\frac{10 i-[3+2 i+9 i-6]}{5(1+3 i)} \\
& =\frac{10 i-11 i+3}{5(1+3 i)}=\frac{3-i}{5(1+3 i)} \\
& =\frac{(3-i)(3-i)}{5(1+3 i)(3-i)}=\frac{3-9 i-i-3}{5(1+9)}=\frac{-i}{5} \\
\left|z_{1}-z_{2}\right| & =\sqrt{0^{2}-\left(-\frac{1}{5}\right)^{2}}=\frac{1}{5}
\end{aligned}
$$

Alterative 2

$$
\begin{aligned}
& z_{1}=\frac{2 i}{1+3 i}=\frac{2 i(1-3 i)}{(1+3 i)(1-3 i)}=\frac{2 i+6}{1+9}=\frac{2 i+6}{10}=\frac{3+2 i}{5} \\
& z_{1}-z_{2}=\frac{3+2 i}{5}-\frac{3+2 i}{5}=\frac{-i}{5} \\
& \left|z_{1}-z_{2}\right|=\sqrt{0^{2}-\left(-\frac{1}{5}\right)^{2}}=\frac{1}{5}
\end{aligned}
$$

(c) Given the complex number $z=x+i y$
(i) Find $\frac{z+i}{z+2}$

$$
\begin{aligned}
\frac{z+i}{z+2} & =\frac{x+i(1+y)}{(x+2)+i y} \\
& =\frac{[x+i(1+y)][(x+2)-i y]}{[(x+2)+i y][(x+2)-i y]} \\
& =\frac{x[(x+2)-i y]-i(1+y)[(x+2)-i y]}{(x+2)^{2}+y^{2}} \\
& =\frac{x^{2}+2 x-i x y+i(x+2+x y+2 y)+y+y^{2}}{(x+2)^{2}+y^{2}} \\
& =\frac{x^{2}+2 x+y^{2}+y+i(2+x+2 y)}{(x+2)^{2}+y^{2}}
\end{aligned}
$$

(ii) Show that the locus of $\frac{z+i}{z+2}$ is a straight line when its imaginary part is zero. State the gradient of the line.
If imaginary part is zero
$(2+x+2 y)=0$
$2 y=-x-2$
$y=-\frac{1}{2} x+1$
comparing with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
the gradient $=-\frac{1}{2}$
10. (a) solve the equation $\cos 2 x=4 \cos ^{2} x-2 \sin ^{2} x$ for $0 \leq \theta \leq 180^{\circ}$
$\cos 2 x=4 \cos ^{2} x-2 \sin ^{2} x$
$\cos ^{2} x-\sin ^{2} x=4 \cos ^{2} x-2 \sin ^{2} x$
$3 \cos ^{2} x-\sin ^{2} x=0$
$4 \cos ^{2} x-1=0$
$(2 \cos x+1)(2 \cos x-1)=0$
Either
$2 \cos \mathrm{x}+1=0$
$\cos x=-\frac{1}{2}$
$x=\cos ^{-1}\left(-\frac{1}{2}\right)=120^{\circ}$
Or
$2 \cos x-1=0$
$\cos x=\frac{1}{2}$
$x=\cos ^{-1}\left(\frac{1}{2}\right)=60^{\circ}$
$\therefore \mathrm{x}\left(60^{\circ}, 120^{\circ}\right)$

Alternatively
$\cos 2 x=4 \cos ^{2} x-2 \sin ^{2} x$

$$
\begin{aligned}
& =\frac{4}{2}(1+\cos 2 x)-\frac{2}{2}(1-\cos 2 x) \\
& =2+2 \cos 2 x-1+\cos 2 x
\end{aligned}
$$

$2 \cos 2 x+1=0$
$\cos 2 x=-\frac{1}{2}$
$2 x=\cos -1\left(-\frac{1}{2}\right)=120^{\circ}, 240^{\circ}$
$x=60^{\circ}, 120^{\circ}$

Alternatively
$\cos 2 x=4 \cos ^{2} x-2 \sin ^{2} x$
$\cos ^{2} x-\sin ^{2} x=4 \cos ^{2} x-2 \sin ^{2} x$
$3 \cos ^{2} x-\sin ^{2} x=0$
$\sin ^{2} x=3 \cos ^{2} x$
$\tan ^{2} x=3$
$\tan x= \pm \sqrt{3}$
Either
$\tan \mathrm{x}=\sqrt{3}$
$x=\tan ^{-1} \sqrt{3}=60^{\circ}$

Or
$\tan x=-\sqrt{3}$
$x=\tan ^{-1}-\sqrt{3}=120^{0}$
Hence $x=60^{\circ}, 120^{\circ}$

Alternatively
$\cos 2 x=4 \cos ^{2} x-2 \sin ^{2} x$
$1-2 \sin ^{2} x=4\left(1-\sin ^{2} x\right)-2 \sin ^{2} x$
$1=4-4 \sin ^{2} x$
$4 \sin ^{2} x=3$
$\sin ^{2} x=\frac{3}{4}$
$\sin x= \pm \sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}$
$x=60^{\circ}, 120^{\circ}$

Alternatively
$\cos 2 x=4 \cos ^{2} x-2 \sin ^{2} x$
$1-2 \sin ^{2} x=4 \cos ^{2} x-2 \sin ^{2} x$
$4 \cos ^{2} x=1$
$\cos x= \pm \sqrt{\frac{1}{4}}= \pm \frac{1}{2}$
$x=60^{\circ}, 120^{\circ}$
(b) Show that if $\sin (x+\alpha)=p \sin (x-\alpha)$ then $\tan x=\left(\frac{p+1}{p-1}\right) \tan \alpha$. Hence solve the equation $\sin (x+\alpha)=p \sin (x-\alpha)$ for $p=2$ and $\alpha=20^{\circ}$.

$$
\begin{aligned}
& \sin x \cos \alpha+\operatorname{cox} \sin \alpha=p(\sin x \cos \alpha-\operatorname{cox} \sin \alpha) \\
& \cos x \sin \alpha(p+1)=\sin x \cos \alpha(p-1) \\
& \cos x \sin \alpha\left(\frac{p+1}{P-1}\right)=\sin x \cos \alpha \\
& \frac{\cos x \sin \alpha}{\sin x \cos \alpha}\left(\frac{p+1}{p-1}\right)=\frac{\sin x \cos \alpha}{\sin x \cos \alpha} \\
& \tan x=\left(\frac{p+1}{P-1}\right) \tan \alpha \\
& \text { For } \sin \left(x+20^{\circ}\right)=2 \sin \left(x-20^{\circ}\right) \\
& \tan x=\frac{2+1}{2-1} \tan 20^{\circ}=3 \tan 20^{\circ} \\
& x=\tan ^{-1}\left(3 \tan 20^{\circ}\right)=47.52^{\circ}
\end{aligned}
$$

11. Given that $\mathrm{x}=\frac{t^{2}}{1+t^{3}}$ and $\mathrm{y}=\frac{t^{3}}{1+t^{3}}$, find $\frac{d^{2} y}{d x^{2}}$.
$\mathrm{x}=\frac{t^{2}}{1+t^{3}}$
$\frac{d x}{d t}=\frac{2 t\left(1+t^{3}\right)-3 t^{4}}{\left(1+t^{3}\right)^{2}}=\frac{2 t+2 t^{4}-3 t^{4}}{\left(1+t^{3}\right)^{2}}=\frac{2 t-t^{4}}{\left(1+t^{3}\right)^{2}}=\frac{t\left(2-t^{3}\right)}{\left(1+t^{3}\right)^{2}}$
$\mathrm{y}=\frac{t^{3}}{1+t^{3}}$
$\frac{d y}{d t}=\frac{3 t^{2}\left(1+t^{3}\right)-t^{3}\left(3 t^{2}\right)}{\left(1+t^{3}\right)^{2}}=\frac{3 t^{2}+3 t^{5}-3 t^{5}}{\left(1+t^{3}\right)^{2}}=\frac{3 t^{2}}{\left(1+t^{3}\right)^{2}}$
$\frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}$
$=\frac{3 t^{2}}{\left(1+t^{3}\right)^{2}} \cdot \frac{\left(1+t^{3}\right)^{2}}{t\left(2-t^{3}\right)}=\frac{3 t^{2}}{t\left(2-t^{3}\right)}=\frac{3 t}{2-t^{3}}$

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{d}{d t}\left(\frac{d y}{d x}\right) \cdot \frac{d x}{d t} \\
& \begin{array}{l}
\frac{d}{d t}\left(\frac{d y}{d x}\right)=\frac{3\left(2-t^{3}\right)-3 t\left(-3 t^{3}\right)}{\left(2-t^{3}\right)^{2}}=\frac{6-3 t^{3}+9 t^{3}}{\left(2-t^{3}\right)^{2}}=\frac{6+6 t^{3}}{\left(2-t^{3}\right)^{2}}=\frac{6\left(1+t^{3}\right)}{\left(2-t^{3}\right)^{2}} \\
\frac{d^{2} y}{d x^{2}}=\frac{d}{d t}\left(\frac{d y}{d x}\right) \cdot \frac{d x}{d t} \\
\quad=\frac{6\left(1+t^{3}\right)}{\left(2-t^{3}\right)^{2}} \cdot \frac{\left(1+t^{3}\right)^{2}}{t\left(2-t^{3}\right)}=\frac{6\left(1+t^{3}\right)^{3}}{t\left(2-t^{3}\right)^{3}}=\frac{6}{t}\left(\frac{1+t^{3}}{2-t^{3}}\right)^{3}
\end{array}
\end{aligned}
$$

12. (a) Line A is the intersection of two planes whose equations are
$3 x-y+z=2$ and $x+5 y+2 z=6$. Find the equation of the line.
$3 x-y+z=2$
$x+5 y+2 z=6$
5eqn. (i) + eqn. (ii)

$$
\begin{aligned}
& 15 x-5 y+5 z=10 \\
& +\quad x+5 y+2 z=6 \\
& \hline 16 x+7 z=16 \\
& \text { Let } x=\lambda \\
& 16 \lambda+7 z=16 \\
& \quad z=\frac{1}{7}(16-16 \lambda)
\end{aligned}
$$

Substituting for x and z in equation (i)
$3 \lambda-y+\frac{1}{7}(16-16 \lambda)=2$
$21 \lambda-7 y+16-16 \lambda=14$
$y=\frac{1}{7}(2+5 \lambda)$
let $\lambda=1+7 \mu$
=> $x=1+7 \mu$
$y=\frac{1}{7}(2+5(1+7 \mu))=\frac{1}{7}(2+5+35 \mu)=1+5 \mu$
$\left.z=\frac{1}{7}(16-16(1+7 \mu))=\frac{1}{7}(16-16-16 x 7 \mu)\right)=-16 \mu$
$\underline{r}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+\mu\left(\begin{array}{c}7 \\ 5 \\ -16\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+\mu\left(\begin{array}{c}7 \\ 5 \\ -16\end{array}\right)$
$\frac{x-1}{7}=\frac{y-1}{5}=\frac{-z}{16}$
(b) Given that line B is perpendicular to the plane $3 x-y+z=2$ and passes through the point $C(1,1,0)$, find the
(i) Cartesian equation of line B

Normal to the plane $b=3 i-j+k$
$r=a+\lambda b$

$$
=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right)
$$

$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)$
$\frac{x-1}{3}=\frac{y-1}{-1}=\frac{z}{1}$
(ii) angle between line B and line A in (a) above

Let $b_{1}=7 i+5 j-16 k$ and $b_{2}=3 i-j+k$ and $\theta=$ angle between line A and line B
$\mathrm{b}_{1} \cdot \mathrm{~b}_{2}=\left|b_{1}\right|\left|b_{2}\right| \cos \theta$
$b_{1} \cdot b_{2}=(7 i+5 j-16 k) \cdot(3 i-j+k)$

$$
=21-5-16=0
$$

$$
\left|b_{1}\right|\left|b_{2}\right| \cos \theta=0
$$

$\cos \theta=0$

$$
\theta=\cos ^{-1} 0=90^{0}
$$

13. (a) Find $\int \frac{1+\sqrt{x}}{2 \sqrt{x}} \mathrm{dx}$

Let $\mathrm{u}=\sqrt{x}$

$$
u^{2}=x
$$

$2 u d u=d x$
$\Rightarrow \int \frac{1+\sqrt{x}}{2 \sqrt{x}} \mathrm{dx}=\int \frac{1+u}{2 u}, 2 u d u=\int(i+u) d u=\mathrm{u}+\frac{1}{2} u^{2}+c=\sqrt{x}+\frac{x}{2}+c$
Alternatively
Let $\sqrt{x}=\tan u$
$\frac{1}{2 \sqrt{x}}=\sec ^{2} u d u$
$d x=2 \sqrt{x} \sec ^{2} u d u$
$\int \frac{1+\sqrt{x}}{2 \sqrt{x}} \mathrm{~d} \mathrm{x}=\int\left(\frac{1+\tan u}{2 \sqrt{x}}\right) \cdot 2 \sqrt{x} \sec ^{2} u d u$

$$
=\int(1+\operatorname{tanu}) \sec ^{2} u d u
$$

$=\int \sec ^{2} u d u+\int \operatorname{tanusec}^{2} u d u$
$=\tan u+\frac{1}{2} \tan ^{2} u+c$

$$
=\sqrt{x}+\frac{x}{2}+c
$$

(b) The gradient of the tangent at any point on a curve is $x-\frac{2 y}{x}$. The curve passes through the point $(2,4)$, find the equation of the curve.
$\frac{d y}{d x}=\mathrm{x}-\frac{2 y}{x}$
$\frac{d y}{d x}+\frac{2 y}{x}=x$
the integrating factor $\lambda=e^{\int \frac{2}{x} d x}=e^{2 \operatorname{Inx}}=\mathrm{x}^{2}$
Multiplying through by λ

$$
\begin{aligned}
& x^{2} \frac{d y}{d x}+2 x y=x^{3} \\
& \text { main function }=x^{2} y \\
& \Rightarrow \frac{d}{d x}\left(x^{2} y\right)=x^{3} \\
& \quad \int \frac{d}{d x}\left(x^{2} y\right) d x=\int x^{3} d x \\
& \quad x^{2} y=\frac{1}{4} x^{4}+c \\
& \quad \text { At }(2,4) \\
& \quad 4 \times 4=4+\mathrm{c}=>\mathrm{c}=12 \\
& \quad x^{2} y=\frac{1}{4} x^{4}+12 \text { or } \mathrm{y}=\frac{1}{4} x^{2}+\frac{12}{x^{2}} \text { or } 4 x^{2} y=x^{4}+48
\end{aligned}
$$

14. (a) The point $P\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $Q\left(a t_{2}^{2}, 2 a t_{2}\right)$ are on parabola $y^{2}=4 a x$. $O P$ is perpendicular to $O Q$, where O is the origin. Show that $t_{1} t_{2}+4=0$.
OP.OQ = 0

Gradient of OP, $=\mathrm{m}_{1}=\frac{2 a t_{1}}{a t_{1}^{2}}=\frac{2}{t_{1}}$
Gradient of $\mathrm{OQ}=m_{2}=\frac{2 a t_{2}}{a t_{2}^{2}}=\frac{2}{t_{2}}$
But $m_{1} m_{2}=-1$
$\frac{2}{t_{1}} \cdot \frac{2}{t_{2}}=-1$
$t_{1} t_{2}+4=0$
Alternatively
$\mathrm{OP} . \mathrm{OQ}=0$
$\binom{a t_{1}^{2}}{a t_{1}}\binom{a t_{2}^{2}}{a t_{2}}=0$
$a t_{1}^{2} \cdot a t_{2}^{2}+2 a t_{1} \cdot 2 a t_{2}=0$
$\mathrm{a} a^{2} t_{1} t_{2}\left(t_{1} t_{2}+4\right)=0$
$\Rightarrow t_{1} t_{2}+4=0$
Alternatively
$\overline{P Q}^{2}=\overline{O P}^{2}+\overline{O Q}^{2}$
$a^{2}\left(t_{2}^{2}-t_{1}^{2}\right)+4 a^{2}\left(t_{2}-t_{1}\right)^{2}=a^{2} t_{1}^{4}+4 a^{2} t_{1}^{2}+a^{2} t_{2}^{4}+4 a^{2} t_{2}^{2}$
$a^{2} \not_{2}^{4}-2 a^{2} t_{1}^{2} t_{2}^{2}+a^{2} t_{1}^{4}+4 a t_{2}^{2}-8 a^{2} t_{1} t_{2}+4 d^{2} t_{1}^{2}=a^{2} t_{1}^{4}+4 \partial^{2} t_{1}^{2}+a^{2} t_{2}^{4}+4 a^{2} t_{2}^{2}$
$-2 a^{2} t_{1}^{2} t_{2}^{2}-8 a^{2} t_{1} t_{2}=0$
$t_{1} t_{2}+4=0$
(b) The normal to the rectangular hyperbola $x y=8$ at point $(4,2)$ meets the asymptotes at M and N. find the length $M N$.

The equation of the normal to a rectangular hyperbola $\mathrm{xy}=\mathrm{c}^{2}$ at a point $\left(\mathrm{ct}, \frac{c}{t}\right)$ is given by

$$
t^{3} x=\operatorname{ty}+c\left(t^{4}-1\right)
$$

Comparing $x y=c^{2}$ with $x y=8$
$\Rightarrow c^{2}=8 ; c=2 \sqrt{2}$
Also comparing point $(c t, c / t)$ with $(4,2)$
$\Rightarrow \quad \mathrm{ct}=4$

$$
\begin{aligned}
& (2 \sqrt{2}) t=4 \\
& t=\frac{4}{2 \sqrt{2}}=\sqrt{2}
\end{aligned}
$$

Find the equation of the normal by substituting for c and t .
$(\sqrt{2})^{3}=(\sqrt{2}) y+2 \sqrt{2}\left[(\sqrt{2})^{4}-1\right]$
$(\sqrt{2})^{2}=y+2\left[(\sqrt{2})^{4}-1\right]$
$2 x=y+6$
$\mathrm{y}=2 \mathrm{x}-6$
The normal drawn from the curve meets the asymptotes at the x-axis (M) and y-axis N as shown above
At point, $\mathrm{y}=0$
$\Rightarrow 2 x=6 ; x=3, M(3,0)$
At point, $x=0$
$\Rightarrow y=-6 ; N(0,-6)$

$\overline{N M}=\sqrt{(3-0)^{2}+(0-6)^{2}}=3 \sqrt{5}=6.708$ units
Alternatively
$\mathrm{y}+x \frac{d y}{d x}=0$
$\frac{d y}{d x}=-\frac{y}{x}$
At $(4,2)$
$\frac{d y}{d x}-\frac{2}{4}=-\frac{1}{2}$
Hence gradient of normal at $(4,2)$ is 2
Finding thee equation of the normal
$\frac{y-2}{x-2}=2$
$y=2 x-6$
Along y-axis at $N, x=0=>y=-6, N(0,-6)$
Along y -axis at $\mathrm{M}, \mathrm{y}=0 \Rightarrow \mathrm{x}=3, \mathrm{M}(3,0)$
$\overline{N M}=\sqrt{(3-0)^{2}+(0-6)^{2}}=3 \sqrt{5}=6.708$ units
15. (a) Prove by induction
$1.3+2.4+\ldots+n(n+2)=\frac{1}{6} n(n+1)(2 n+7)$ for all values of n.
Suppose $\mathrm{n}=1$
L.H.S $=1 \times 3=3$
R.H.S $=\frac{1}{6} x 1(1+1)(2+7)=3$
L.H.S $=$ R.H.S, hence the series holds for $\mathrm{n}=1$

Suppose $\mathrm{n}=2$
L.H.S $=1 \times 3+2 \times 4=11$
R.H.S $=\frac{1}{6} \times 2(2+1)(4+7)=11$
L.H.S $=$ R.H.S, hence the series holds for $n=2$

Suppose $\mathrm{n}=\mathrm{k}$
$1.3+2.4+\ldots+\mathrm{k}(\mathrm{k}+2)=\frac{1}{6} k(k+1)(2 k+7)$
For $n=k+1$
$1.3+2.4+\ldots+\mathrm{k}(\mathrm{k}+2),(\mathrm{k}+1)(\mathrm{k}+3)=\frac{1}{6} k(k+1)(2 k+7)+(\mathrm{k}+1)(\mathrm{k}+3)$

$$
\begin{aligned}
& =(\mathrm{k}+1)\left[\frac{1}{6} k(2 k+7)+(k+3]\right. \\
& =\frac{1}{6}(k+1)\left(2 k^{2}+13 k+18\right) \\
& =\frac{1}{6}(k+1)\left(2 k^{2}+4 k+9 k+18\right) \\
& =\frac{1}{6}(k+1(k+2)(2 k+9) \\
& =\frac{1}{6}(k+1)(k+2)[2(k+1)+7]
\end{aligned}
$$

Which is equal to R.H.S when $n=k+1$
It holds for $n=1,2,3 \ldots$, hence it holds for all integral values of n.
(b) A man deposits Shs. 150,000 at the beginning of every year in a micro finance bank with the understanding that at the end of the seven years he is paid back his money with 5% per annum compound interest. How much does he receive?
Using amount, $\mathrm{A}=\mathrm{P}\left(1+\frac{r}{100}\right)^{n}$

$$
=150000\left(1+\frac{5}{100}\right)^{7}=211,065.06
$$

Alternatively
$1^{\text {st }}$ year
$P=150,000$
He is paid back principal plus interest; $P\left(1+\frac{5}{100}\right)=150,000\left(1+\frac{5}{100}\right)=157,500$
$2^{\text {nd }}$ year
P=157, 500
He is paid back principal plus interest; $\mathrm{P}\left(1+\frac{5}{100}\right)=157500\left(1+\frac{5}{100}\right)=165375$
$3^{\text {rd }}$ year
$P=165375$
Interest $=\frac{5}{10} \times 165375=8268.75$
He is paid back principal plus interest; $\mathrm{P}\left(1+\frac{5}{100}\right)=165375\left(1+\frac{5}{100}\right)=173643.75$
$4^{\text {th }}$ year
$\mathrm{P}=173643.75$
He is paid back principal plus interest; $\mathrm{P}\left(1+\frac{5}{100}\right)=173643.75\left(1+\frac{5}{100}\right)=182325.94$
$5^{\text {th }}$ year
$P=182325.94$
His paid back principal plus interest; $P\left(1+\frac{5}{100}\right)=182325.94\left(1+\frac{5}{100}\right)=191442.23$
$6^{\text {th }}$ year
P=191442.23
He is paid back principal plus interest; $\mathrm{P}\left(1+\frac{5}{100}\right)=191442.23\left(1+\frac{5}{100}\right)=201014.35$
$7^{\text {th }}$ year
$\mathrm{P}=201014.35$
He is paid back principal plus interest; $\mathrm{P}\left(1+\frac{5}{100}\right)=201014.35\left(1+\frac{5}{100}\right)=211,065.06$
\therefore by the $7^{\text {th }}$ year he has accumulated shs. 211,065.06
16. (a) If $x^{2}+3 y^{2}=k$, where k is constant, find $\frac{d y}{d x}$ at the point $(1,2)$.
$x^{2}+3 y^{2}=k$
$2 x+6 y \frac{d y}{d x}=0$

$$
\frac{d y}{d x}=\frac{-2 x}{6 y}
$$

Substituting for $(\mathrm{x}, \mathrm{y})=(1,2)$
$\frac{d y}{d x}=\frac{-2}{6(2)}=\frac{-2}{12}=\frac{-1}{6}$
(b) A rectangular field of area 7200 m 2 is to be fenced using a wire mesh. On one side of the field. Is a straight river. This side is not to be fenced. Find the dimension of the field hat will minimize the amount of wire mesh to be used.

Area $=7200$
Lw $=7200$
$\mathrm{L}=\frac{7200}{w}$
Perimeter, $\mathrm{P}=2 \mathrm{w}+\mathrm{L}$
Substituting eqn. (i) into eqn. (ii)
$\mathrm{P}=2 \mathrm{w}+\frac{7200}{w}$
$\frac{d p}{d w}=2-\frac{7200}{w^{2}}$
Minimum perimeter occurs when $\frac{d p}{d w}=0$

$$
\begin{aligned}
& \Rightarrow 2-\frac{7200}{w^{2}}=0 \\
& 2 w^{2}=7200 \\
& w^{2}=3600 \\
& w= \pm 60 \text { or } w=60
\end{aligned}
$$

from eqn. (ii)
$\mathrm{L}=\frac{7200}{60}=120 \mathrm{~m}$
Hence the dimensions are $60 \mathrm{~m} \times 120 \mathrm{~m}$
Thank you
Dr. Bbosa Science

