

This document is sponsored by
Mastune youx dreamo The Science Foundation College Kiwanga- Namanve Uganda East Africa
Senior one to senior six
+256 778633 682, 753802709
Based on, best for sciences

UACE MATHEMATICS PAPER 22017 guide

SECTION A (40 marks)

Answer all questions in this section

1. A particle is projected from a point O with speed $20 \mathrm{~m} / \mathrm{s}$ at an angle 60° to the horizontal. Express in vector form its velocity v and its displacement, r, from O at any time t seconds. (05marks)
2. The probability that a patient suffering from a certain disease recovers is 0.4 . If 15 people contract the disease, find the probability that:
(a) More than 9 will recover. (02marks)
(b) Between five and eight will recover. (03marks)
3. The table below gives values of x and corresponding values of $f(x)$.

X	0.1	0.2	0.3	0.4	0.5	0.7
$f(x)$	4.21	3.83	3.25	2.85	2.25	1.43

Use linear interpolation/extrapolation to find
(a) $f(x)$ when $x=0.6$ (03marks)
(b) the value of x when $f(x)=0.75$ (02mars)
4. In a square $A B C D$, three forces of magnitudes $4 N, 10 N$ and $7 N$ and $C A$ respectively. Their directions are in the order of the letters. Find magnitude of the resultant force. (05marks)
5. A box A contains 1 white ball and I blue ball. Box B contains only 2 white balls. If a ball is pice at random, find the probability that it is
(a) White (02mark)
(b) From box A given that it is white(03marks)
6. Given that $\mathrm{y}=\frac{1}{x}+x$ and $\mathrm{x}=2.4$ correct to one decimal place, find the limits within which y lies. (05marks)
7. The table below shows the retail prices (shs) and amount of each item bought weekly by a restaurant in 2002 and 2003.

Item	Prices(shs)		
	2002	2003	
Milk (per litre)	400	500	200
Eggs (per tray)	2,500	3,000	18
Cooking oil (per litre)	2,400	2,100	2
Baking flour (per packet)	2,000	2,200	15

(a) Taking 2002 as the base year, calculate the weighed aggregate price index. (03 marks)
(b) In 2003, the restaurant spent shs. 450,000 on buying these items. Using the weighed aggregate price index obtained in (a), calculate what the restaurant could have spent in 2002. (02marks)
8. The engine of a lorry of mass $5,000 \mathrm{~kg}$ is working at a steady rate of 350 kW against a constant resistance force of $1,000 \mathrm{~N}$. The lorry ascends a slope of inclination θ to the horizontal. If the maximum speed of the lorry is $20 \mathrm{~ms}^{-1}$, find the value of θ (05 marks)

SECTON B (60 MARKS)

Answer any five questions from this section. All questions carry equal marks
9. A discrete random variable X has a probability distribution given by
$P(X=x)= \begin{cases}k x, & x=1,2,3,4.5 \\ 0 . & \text { Otherwise, }\end{cases}$
Where k is a constant
Determine;
(a) the value of k (03 marks)
(b) $\mathrm{P}(2<\mathrm{X}<5)$ (02marks)
(c) Expectation, E (X) (03marks)
(d) Variance, $\operatorname{Var}(X)$ (04mars)
10. A particle of mass $3 g$ is acted on by a force $F=6 i-36 t^{2} j+54 k$ Newton at time t. At time $t=0$ the particle is at the point with position vector $\mathrm{i}-5 \mathrm{j}-\mathrm{k}$ and its velocity is $3 \mathrm{i}+3 \mathrm{j} \mathrm{ms}^{-1}$.
Determine the
(a) position vector of the particle at time $t=1$ second (09marks)
(b) distance of the particle from the origin at time $t=1$ second
11. A student used the trapezium rule with five sub-intervals to estimate
$\int_{2}^{3} \frac{x}{\left(x^{2}-3\right)} d x$ correct to three decimal places
Determine;
(a) The value the student obtained (06marks)
(b) The actual value of the integral (03marks)
(c) (i) the error the student made in the estimate
(ii) how the student can reduce the error(03marks)
12. The times taken for 55 students to have their lunch to the nearest minute are given in the table below

Time (minutes)	$3-4$	$5-9$	$10-19$	$20-29$	$30-44$
Number of students	2	7	16	21	9

(a) Calculate the mean time for the student to have lunch (04marks)
(b) (i) Draw a histogram for the given data
(ii) Use your histogram to estimate the modal time for the students to have lunch.
(08marks)
13. A non-uniform rod $A B$ of mass $10 k$ has its centre of gravity a distance $1 / 4 A B$. The rod is smoothly hinged at A. it is maintained in equilibrium at 60° above the horizontal by a light inextensible string tied at B and at a right angle to $A B$. Calculate the magnitude and direction of the reaction at A. (12marks)
14. By plotting graphs of $y=x$ and $y=4 \operatorname{siin} x$ on the same axes. Show that the root of the equation $x-4 \sin x=0$ lies between 2 and 3 .
Hence use Newton Raphson's method to find the root of the equation correct to 3 decimal places. (12marks)
15. The number of cows owned by residents in a village is assumed to be normally distributed. 15% of the residents have less than 60 cows, 5% of the residents have over 90 cows.
(a) Determine the values of the mean and standard deviation of the cows. (08marks)
(b) If there are 200 residents, find how many have more than 80 cows. (04marks)
16. At 12 noon a ship A is moving with constant velocity of $20.4 \mathrm{kmh}^{-1}$ in the direction $N \theta^{0} E$ where $\tan \theta=\frac{1}{5}$. A second ship B is 15 km due to north of A. Ship B is moving with constant velocity of $5 \mathrm{kmh}-1$ in the direction S $\alpha 0 \mathrm{~W}$, where $\tan \alpha=1 / 4$. If the shortest distance between the ships is 4.2 km , find the time to the nearest minute when the distance between the ships is shortest. (12mars)

Solutions

SECTION A (40 marks)

Answer all questions in this section

1. A particle is projected from a point O with speed $20 \mathrm{~m} / \mathrm{s}$ at an angle 60° to the horizontal. Express in vector form its velocity v and its displacement, r, from O at any time t seconds . (05marks)

At time $t=0$
$V=20 \cos 60^{\circ} i+20 \sin 60^{\circ} j=10 i+10 \sqrt{3} j$
But A $=-$ gj
At any time t,
$\mathrm{V}=\int a d t=-\mathrm{gj} \int d t$
$=-g t j+c$
At $t=0$
$10 i+10 \sqrt{3} j=0+c$
\Rightarrow At time t
$\mathrm{V}=10 \mathrm{i}+(10 \sqrt{3}-g t) \mathrm{j}=10 \mathrm{i}+(10 \sqrt{3}-9.8 t) \mathrm{j}$
Or
$V=\binom{10}{10 \sqrt{3}-9.8 t}$
$\mathrm{r}=\int v d t=\int\binom{10}{10 \sqrt{3}-9.8 t} d t=\binom{10 t}{10 \sqrt{3} t-4.9 t^{2}}+\mathrm{c}$
at $\mathrm{t}=0, \mathrm{r}=\binom{0}{0}$
$\Rightarrow\binom{0}{0}=\binom{0}{0}+c, \mathrm{c}=\binom{0}{0}$
Hence at time $t, r=\binom{10 t}{10 \sqrt{3} t-4.9 t^{2}}$
2. The probability that a patient suffering from a certain disease recovers is 0.4 . If 15 people contract the disease, find the probability that:
(a) More than 9 will recover. (02marks)

Given $n=15, p=0.4$
Let $x=$ number of people who will recover
$P(X \geq 10)=B(X \geq 10,15,0.4)$
(cumulative probabilities)
$P(X \geq 10)=0.0338$
(b) Between five and eight will recover. (03marks)
$P(5<X<8)=P(X=6,7)$
$=P(X=6)+P(X=7)$

$$
\begin{aligned}
& =B(6,15,0.4)+B(7,15,0.4) \\
& =0.2066+0.1771 \\
& =0.3837 \\
& \text { Or } \\
& P(5<X<8)=P(X=6,7) \\
& =P(X \geq 6)-P(X \geq 8) \\
& =0.5968-0.2131 \\
& =0.3837
\end{aligned}
$$

3. The table below gives values of x and corresponding values of $f(x)$.

X	0.1	0.2	0.3	0.4	0.5	0.7
$f(x)$	4.21	3.83	3.25	2.85	2.25	1.43

Use linear interpolation/extrapolation to find
(a) $f(x)$ when $x=0.6$ (03marks)

Using linear interpolation
Extract

0.5	0.6	0.7
2.25	y	1.43
$\frac{1.43-2.25}{0.7-0.5}=\frac{y-2.25}{0.6-0.5}$		

$y=1.84$
(b) the value of x when $f(x)=0.75$ (02mars)

Using linear extrapolation
Extract

0.5	0.7	X
2.25	1.43	0.75
$\frac{x-0.5}{0.75-2.25}=\frac{0.7-0.5}{1.43-2.25} ; \mathrm{x}=0.9$		

4. In a square $A B C D$, three forces of magnitudes $4 N, 10 N$ and $7 N$ and $C A$ respectively. Their directions are in the order of the letters. Find magnitude of the resultant force. (05marks)

$\binom{X}{Y}=\binom{4}{0}+\binom{-7 \cos 45^{0}}{-7 \sin 45^{0}}+\binom{0}{10}=\binom{-0.9497}{5.0503}$
$|R|=\sqrt{(-0.9497)^{2}+(5.0503)^{2}}=5.1388 \mathrm{~N}$
5. A box A contains 1 white ball and I blue ball. Box B contains only 2 white balls. If a ball is pice at random, find the probability that it is
(a) White (02mark)

$$
\mathrm{P}(\mathrm{~W})=\frac{1}{2} \times \frac{1}{2}+\frac{1}{2} \times 1=\frac{3}{4}
$$

(b) From box A given that it is white(03marks)

$$
\mathrm{P}(\mathrm{~A} / \mathrm{W})=\frac{P(A \cap W)}{P(W)}=\frac{P(W / A) \cdot P(A)}{P(W)}=\frac{\frac{1}{2} x \frac{1}{2}}{\frac{3}{4}}=\frac{1}{3}
$$

6. Given that $\mathrm{y}=\frac{1}{x}+x$ and $\mathrm{x}=2.4$ correct to one decimal place, find the limits within which y lies. (05marks)
Error in $2.4=\frac{1}{2} \times \frac{1}{10}=0.05$
$y_{\text {max }}=2.45+\frac{1}{2.35}=2.8755$
$y_{\text {min }}=2.35+\frac{1}{2.45}=2.7582$
\therefore the limits are [2.7582, 2.8755]
7. The table below shows the retail prices (shs) and amount of each item bought weekly by a restaurant in 2002 and 2003.

Item	Prices(shs)		
	2002	2003	
Milk (per litre)	400	500	200
Eggs (per tray)	2,500	3,000	18
Cooking oil (per litre)	2,400	2,100	2
Baking flour (per packet)	2,000	2,200	15

(a) Taking 2002 as the base year, calculate the weighed aggregate price index. (03 marks)

P_{0}	W	$P_{0} W$	P_{1}	$P_{1} W$
400	200	80,000	500	100,000
2500	18	45,000	3,000	54,000
2400	2	4800	2100	4200
200	15	30,000	2200	33,000
		$\sum P_{0} W=159800$		$\sum P_{1} W=191200$

W.A.P.I $=\frac{191200}{159800} \times 100=119.65$
(b) In 2003, the restaurant spent shs. 450,000 on buying these items. Using the weighed aggregate price index obtained in (a), calculate what the restaurant could have spent in 2002. (02marks)

$$
\begin{aligned}
& \frac{450,000}{P_{0}} \times 100=119.65 \\
& P_{0}=376,097
\end{aligned}
$$

8. The engine of a lorry of mass $5,000 \mathrm{~kg}$ is working at a steady rate of 350 kW against a constant resistance force of $1,000 \mathrm{~N}$. The lorry ascends a slope of inclination θ to the horizontal. If the maximum speed of the lorry is $20 \mathrm{~ms}^{-1}$, find the value of θ (05 marks)

Resultant force $=17500-(1000+5000 \sin \theta)$
$5000 \mathrm{a}=17500-(1000+5000 \sin \theta)$
At maximum speed $\mathrm{a}=0$

$$
\begin{aligned}
\Rightarrow & 0=17500-(1000+5000 \sin \theta) \\
& 16500=5000 \sin \theta \\
& \theta=19.7^{\circ}
\end{aligned}
$$

SECTON B (60 MARKS)

Answer any five questions from this section. All questions carry equal marks
9. A discrete random variable X has a probability distribution given by
$P(X=x)= \begin{cases}k x, & x=1,2,3,4.5 \\ 1 . & \text { Otherwise, }\end{cases}$
Where k is a constant
Determine;
(a) the value of k (03 marks)

x	1	2	3	4	5	sum
$P(X=x)$	k	$2 k$	$3 k$	$4 k$	$5 k$	$15 k$

15k = 1
$\mathrm{k}=\frac{1}{15}$

| x | 1 | 2 | 3 | 4 | 5 | sum |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{P}(\mathrm{X}=\mathrm{x})$ | $\frac{1}{15}$ | $\frac{2}{15}$ | $\frac{3}{15}$ | $\frac{4}{15}$ | $\frac{1}{15}$ | 1 |
| $\mathrm{xP}(\mathrm{X}=\mathrm{x})$ | $\frac{1}{15}$ | $\frac{4}{15}$ | $\frac{9}{15}$ | $\frac{16}{15}$ | $\frac{25}{15}$ | $\frac{55}{15}$ |
| $\mathrm{X}^{2} \mathrm{P}(\mathrm{X}=\mathrm{x})$ | $\frac{1}{15}$ | $\frac{8}{15}$ | $\frac{27}{15}$ | $\frac{64}{15}$ | $\frac{125}{15}$ | $\frac{225}{15}$ |

(b) $\mathrm{P}(2<\mathrm{X}<5)$ (02marks)

$$
\begin{aligned}
P(2<X<5) & =P(X=3,4) \\
& =\frac{3}{15}+\frac{4}{15} \\
& =\frac{7}{15}
\end{aligned}
$$

(c) Expectation, E (X) (03marks)

$$
\mathrm{E}(\mathrm{X})=\sum x P(X=x)=\frac{55}{15}=\frac{11}{3}
$$

(d) Variance, $\operatorname{Var}(X)$ (04mars)

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-E(X)^{2} \\
& =\frac{225}{15}-\left(\frac{55}{15}\right)^{2} \\
& =\frac{14}{9}
\end{aligned}
$$

10. A particle of mass 3 kg is acted on by a force $F=6 i-36 t^{2} j+54 k$ Newton at time t. At time $t=$ 0 the particle is at the point with position vector $i-5 j-k$ and its velocity is $3 i+3 j \mathrm{~ms}^{-1}$.

Determine the
(a) position vector of the particle at time $t=1$ second (09marks)

$$
\mathrm{F}=\mathrm{ma}
$$

$$
6 i-36 t^{2} j+54 k=3 a
$$

$$
a=2 i+12 t 2 j+18 k
$$

$$
\mathrm{V}=\int a d t=\int 2 \mathrm{i}-12 \mathrm{t}^{2} \mathrm{j}+18 \mathrm{k} d \mathrm{t}
$$

$$
=2 t i-4 t^{3} j+9 t^{2} k+c
$$

$$
\text { At } t=0, V=3 i+3 j
$$

$\Rightarrow 3 i+3 j=0+c$
$c=3 i+3 j$
By substitution
$V=\left(2 t i-4 t^{3} j+9 t^{2} k\right)+(3 i+3 j)=(2 t+3) I+\left(4 t^{3}+3\right) j+9 t^{2} k$
$\mathrm{r}=\int v d t=\int(2 \mathrm{t}+3) \mathrm{i}+\left(-4 \mathrm{t}^{3}+3\right) \mathrm{j}+9 \mathrm{t}^{2} \mathrm{k} \mathrm{dt}$ $=\left(t^{2}+3 t\right) i+\left(-t^{4}+3 t\right) j+3 t^{3} k+c$

$$
\text { At } t=0, r=i-5 j-k
$$

$\Rightarrow i-5 j-k=0+c$
$\mathrm{c}=\mathrm{i}-5 \mathrm{j}-\mathrm{k}$
substituting for c

$$
\begin{aligned}
r & =\left[\left(t^{2}+3 t\right) i+\left(-t^{4}+3 t\right) j+3 t^{3} k\right]+[i-5 j-k] \\
& =\left[\left(t^{2}+3 t+1\right) i+\left(-t^{4}+3 t-5\right) j+\left(3 t^{3}-1\right) k\right]+[i-5 j-k]
\end{aligned}
$$

At $t=1$

$r=(1+3+1) i+(-1+3-5) j+(3-1) k$

$$
=5 i-3 j+2 k
$$

(b) distance of the particle from the origin at time $t=1$ second

$$
|r|=\sqrt{5^{2}+(-3)^{2}+2^{2}}=\sqrt{38}=6.164
$$

11. A student used the trapezium rule with five sub-intervals to estimate $\int_{2}^{3} \frac{x}{\left(x^{2}-3\right)} d x$ correct to three decimal places

Determine;
(a) The value the student obtained (06marks)
$h=\frac{3-2}{5}=0.2$

X	$\mathrm{y}_{1}, \mathrm{y}_{6}$	$\mathrm{y}_{2} \ldots \ldots \mathrm{y}_{5}$
2.0	2.0	
2.2		1.1956
2.4		0.8696
2.6		0.6915
2.8		0.5785
3	0.5	
Sum	2.5	3.3352
$\int_{2}^{3} \frac{x}{\left(x^{2}-3\right)} d x=\frac{1}{2} x 0.2[2.5+2(3.3352)]$		

(b) The actual value of the integral (03marks)

$$
\int_{2}^{3} \frac{x}{\left(x^{2}-3\right)} d x=\left[\frac{1}{2} \operatorname{In} x^{2}-3\right]_{2}^{3}
$$

$$
\begin{aligned}
& =\frac{1}{2}(\ln 6-\operatorname{In} 1) \\
& =0.896
\end{aligned}
$$

(c) (i) the error the student made in the estimate

Error $=|0.896-0.917|=0.021$
(ii) how the student can reduce the error(03marks)

Increasing on the number of sub-intervals or ordinates or reducing the width of h
12. The times taken for 55 students to have their lunch to the nearest minute are given in the table below

Time (minutes)	$3-4$	$5-9$	$10-19$	$20-29$	$30-44$
Number of students	2	7	16	21	9

Class boundaries	f	x	fx	c	fd
$2.5-4.5$	2	3.5	7	2	1.0
$4.5-9.4$	7	7	49	5	1.4
$9.5-19.5$	16	14.5	232	10	1.6
$19.5-29.5$	21	24.5	514.5	10	2.1
$29.5-44.5$	9	37	333	15	0.6
	$\sum f=55$		$\sum f x=1135.5$		

(a) Calculate the mean time for the student to have lunch (04marks)

Mean $=\frac{\sum f x}{\sum f}=\frac{1135.5}{55}=20.65$
(b) (i) Draw a histogram for the given data

Histogram

(ii) Use your histogram to estimate the modal time for the students to have lunch.
(08marks)
Mode = 22 minutes
13. A non-uniform rod $A B$ of mass $10 k$ has its centre of gravity a distance $1 / 4 A B$. The rod is smoothly hinged at A. it is maintained in equilibrium at 60° above the horizontal by a light inextensible string tied at B and at a right angle to $A B$. Calculate the magnitude and direction of the reaction at A. (12marks)

Taking moments about point A
$\mathrm{T} \times(\mathrm{AB})=10 \mathrm{~g}\left(\frac{3}{4} A B \cos 60^{\circ}\right)$
$\mathrm{T}=\frac{15 g}{4}=\frac{15 \times 9.8}{4}=36.75 \mathrm{~N}$
Resolving forces horizontally
$X=T \cos 30^{\circ}=36.75 \cos 30^{\circ}=31.8264 \mathrm{~N}$
$Y=10 \mathrm{~g}-36.75 \sin 30^{\circ}=79.625 \mathrm{~N}$
$|R|=\sqrt{(31.8264)^{2}+(79.625)^{2}}=85.75 \mathrm{~N}$
79.625

$\theta=\tan ^{-1}\left(\frac{79.625}{31.8264}\right)=68.2^{0}$
The direction of resultant force is 68.2° or $\mathrm{E} 68.2^{\circ} \mathrm{N}$ or $\mathrm{N} 21.8^{0} \mathrm{E}$
14. By plotting graphs of $y=x$ and $y=4 \operatorname{siin} x$ on the same axes. Show that the root of the equation $x-4 \sin x=0$ lies between 2 and 3 .
Hence use Newton Raphson's method to find the root of the equation correct to 3 decimal places. (12marks)
Table of results

x	2.0	2.2	2.4	2.6	2.8	3.0
$\mathrm{y}=\mathrm{x}$	2.0	2.2	2.4	2.6	2.8	3.0
$\mathrm{Y}=4 \sin \mathrm{x}$	3.6	3.2	2.7	2.1	1.3	0.6

Graph

From the graph the root lies between 2.4 and 2.6
Using N.R.M
$f(x)=x-4 \sin x$
$f^{\prime}(x)=1-4 \cos x$
$x_{n+1}=x_{n}-\frac{x_{n}-4 \sin x_{n}}{1-4 \cos x_{n}}$
Taking $x_{0}=2.47$
$x_{1}=2.47-\frac{2.47-4 \sin 2.45}{1-4 \cos 2.47}=2.4746$
Error $=|2.4746-2.47|=0.0046>0.0005$
$x_{2}=2.4746-\frac{2.4746-4 \sin 2.4546}{1-4 \cos 2.4746}=2.4746$
Error $=|2.4746-2.4746|=0.000<0.0005$
$\therefore 2.475$ (3D)
15. The number of cows owned by residents in a village is assumed to be normally distributed. 15% of the residents have less than 60 cows, 5% of the residents have over 90 cows.
(a) Determine the values of the mean and standard deviation of the cows. (08marks)

$P\left(0<Z<Z_{1}\right)=0.35 ; Z_{1}=-1.036$
$\frac{60-\mu}{\sigma}=-1.036$
$60-\mu=-1.036 \sigma$
$\mathrm{P}\left(0<\mathrm{Z}<\mathrm{Z}_{2}\right)=0.35 ; \mathrm{Z}_{2}=1.645$
$\frac{90-\mu}{\sigma}=1.645$
$90-\mu=1.645 \sigma$ \qquad
Eqn. (ii) - Eqn. (i)
$30=2.681 \sigma ; \sigma=11.1899$
From eqn. (i)

$$
\begin{aligned}
& 60-\mu=-1.036 \times 11.1899 \\
& \mu=71.5926
\end{aligned}
$$

If there are 200 residents, find how many have more than 80 cows. (04marks)
$\mathrm{P}(\mathrm{X}>80)=\mathrm{P}\left(Z>\frac{80-71.5926}{11.1899}\right)$

$$
=P(Z>0.751)
$$

$$
\begin{aligned}
P(Z>0.751) & =0.5-(0<Z<0.751) \\
& =0.5-0.2737 \\
& =0.2263
\end{aligned}
$$

Number of residents $=200 \times 0.2263=45$
16. At 12 noon a ship A is moving with constant velocity of $20.4 \mathrm{kmh}^{-1}$ in the direction $N \theta^{0} E$ where $\tan \theta=\frac{1}{5}$. A second ship B is 15 km due to north of A. Ship B is moving with constant velocity of $5 \mathrm{kmh}-1$ in the direction $\mathrm{S} \alpha 0 \mathrm{~W}$, where $\tan \alpha=1 / 4$. If the shortest distance between the ships is 4.2 km , find the time to the nearest minute when the distance between the ships is shortest. (12mars)

Table of results

Vector	Magnitude	Direction
V_{A}	$20.4 \mathrm{kmh}^{-1}$	$\mathrm{~N} \theta \mathrm{E}$
V_{B}	$5 \mathrm{kmh}^{-1}$	S $\alpha \mathrm{W}$

V_{A} 三

$\tan \theta=\frac{1}{5} ; \theta=11.3^{0}$
$V_{A}=\binom{20.4 \sin 11.3^{0}}{20.4 \cos 11.3^{0}}=\binom{4}{20}$
V_{B} 三

$\tan \alpha=\frac{1}{5} ; \alpha=36.87^{\circ}$
$V_{-B}=\binom{-5 \sin 36.87^{0}}{-5 \cos 36.87^{\circ}}=\binom{-3}{-4}$
$\left[\begin{array}{l}B(0,15) \\ 15 \mathrm{~km} \\ A(0,0)\end{array}\right.$
$r_{\mathrm{A}}=\int V_{A} d t=\int\binom{4}{20} d t=\binom{4 t}{20 t}+c$
At $\mathrm{t}=0, r_{A}=\binom{0}{0} \Rightarrow \mathrm{c}=\binom{0}{0}$
Hence $r_{A}=\binom{4 t}{20 t}$
$\mathrm{R}_{\mathrm{B}}=\int V_{B} d t=\int\binom{-3}{-4} d t=\binom{-3 t}{-4 t}+c$
At $\mathrm{t}=0, r_{B}=\binom{0}{15}=>\mathrm{c}=\binom{0}{15}$
Hence $r_{B}=\binom{-3 t}{15-4 t}$
${ }_{A} r_{B}=r_{A}-r_{B}=\binom{4 t}{20 t}-\binom{-3 t}{15-4 t}=\binom{7 t}{24 t-15}$
$d_{S}=\left|{ }_{A B}\right|=\sqrt{(7 t)^{2}+(24 t-15)^{5}}$
but ds $=4.2$

$$
\begin{aligned}
& \Rightarrow \sqrt{(7 t)^{2}+(24 t-15)^{5}}=4.2 \\
&\left(\sqrt{(7 t)^{2}+(24 t-15)^{5}}\right)^{2}=4.2^{2} \\
&(7 t)^{2}+(24 t-15)^{5}=4.2^{2} \\
& 47 t^{2}+576 t^{2}-720 t+225=17.64 \\
& 625 t^{2}-720 t+207.36=0 \\
& \mathrm{t}=\frac{720 \pm \sqrt{(-720)^{2}-4(625)(207.36)}}{2(625)}=0.576 \text { hours } \\
&=0.576 \times 60=35 \text { minutes }
\end{aligned}
$$

Hence the time at which the distance is shortest is $12: 35 \mathrm{pm}$

Thank you
Yours Dr. Bbosa Science

