

+256 778 633 682, 753 802709

UACE MATHEMATICS PAPER 2 2017 guide

SECTION A (40 marks)

Answer all questions in this section

- 1. A particle is projected from a point O with speed20m/s at an angle 60° to the horizontal. Express in vector form its velocity v and its displacement, r, from O at any time t seconds. (05marks)
- 2. The probability that a patient suffering from a certain disease recovers is 0.4. If 15 people contract the disease, find the probability that:
 - (a) More than 9 will recover. (02marks)
 - (b) Between five and eight will recover. (03marks)
- 3. The table below gives values of x and corresponding values of f(x).

X	0.1	0.2	0.3	0.4	0.5	0.7
f(x)	4.21	3.83	3.25	2.85	2.25	1.43

Use linear interpolation/extrapolation to find

- (a) f(x) when x = 0.6 (03marks)
- (b) the value of x when f(x) = 0.75 (02mars)
- 4. In a square ABCD, three forces of magnitudes 4N, 10N and 7N and CA respectively. Their directions are in the order of the letters. Find magnitude of the resultant force. (05marks)
- 5. A box A contains 1 white ball and I blue ball. Box B contains only 2 white balls. If a ball is pice at random, find the probability that it is
 - (a) White (02mark)
 - (b) From box A given that it is white(03marks)
- 6. Given that $y = \frac{1}{x} + x$ and x = 2.4 correct to one decimal place, find the limits within which y lies. (05marks)
- 7. The table below shows the retail prices (shs) and amount of each item bought weekly by a restaurant in 2002 and 2003.

Item	Prices(shs)		Amount bought
	2002 2003		
Milk (per litre)	400	500	200
Eggs (per tray)	2,500	3,000	18
Cooking oil (per litre)	2,400	2,100	2
Baking flour (per packet)	2,000	2,200	15

(a) Taking 2002 as the base year, calculate the weighed aggregate price index. (03 marks)

- (b) In 2003, the restaurant spent shs. 450,000 on buying these items. Using the weighed aggregate price index obtained in (a), calculate what the restaurant could have spent in 2002. (02marks)
- 8. The engine of a lorry of mass 5,000kg is working at a steady rate of 350 kW against a constant resistance force of 1,000N. The lorry ascends a slope of inclination θ to the horizontal. If the maximum speed of the lorry is 20ms^{-1} , find the value of θ (05marks)

SECTON B (60 MARKS)

Answer any five questions from this section. All questions carry equal marks

9. A discrete random variable X has a probability distribution given by

$$P(X = x) = \begin{cases} kx, x = 1, 2, 3, 4.5 \\ 0. Otherwise, \end{cases}$$

Where k is a constant

Determine;

- (a) the value of k (03 marks)
- (b) P(2 < X < 5) (02marks)
- (c) Expectation, E (X) (03marks)
- (d) Variance, Var(X) (04mars)
- 10. A particle of mass 3g is acted on by a force $F = 6i 36t^2j + 54k$ Newton at time t. At time t = 0 the particle is at the point with position vector i 5j k and its velocity is 3i + 3j ms⁻¹. Determine the
 - (a) position vector of the particle at time t= 1second (09marks)
 - (b) distance of the particle from the origin at time t = 1 second
- 11. A student used the trapezium rule with five sub-intervals to estimate

$$\int_2^3 \frac{x}{(x^2-3)} dx$$
 correct to **three** decimal places

Determine;

- (a) The value the student obtained (06marks)
- (b) The actual value of the integral (03marks)
- (c) (i) the error the student made in the estimate
 - (ii) how the student can reduce the error(03marks)
- 12. The times taken for 55 students to have their lunch to the nearest minute are given in the table below

Time (minutes)	3 -4	5-9	10-19	20 – 29	30 – 44
Number of students	2	7	16	21	9

- (a) Calculate the mean time for the student to have lunch (04marks)
- (b) (i) Draw a histogram for the given data
 - (ii) Use your histogram to estimate the modal time for the students to have lunch. (08marks)

- 13. A non-uniform rod AB of mass 10k has its centre of gravity a distance ¼ AB. The rod is smoothly hinged at A. it is maintained in equilibrium at 60° above the horizontal by a light inextensible string tied at B and at a right angle to AB. Calculate the magnitude and direction of the reaction at A. (12marks)
- 14. By plotting graphs of y = x and y = 4siin x on the same axes. Show that the root of the equation x 4sinx = 0 lies between 2 and 3.
 Hence use Newton Raphson's method to find the root of the equation correct to 3 decimal places. (12marks)
- 15. The number of cows owned by residents in a village is assumed to be normally distributed. 15% of the residents have less than 60 cows, 5% of the residents have over90 cows.
 - (a) Determine the values of the mean and standard deviation of the cows. (08marks)
 - (b) If there are 200 residents, find how many have more than 80 cows. (04marks)
- 16. At 12 noon a ship A is moving with constant velocity of 20.4kmh⁻¹ in the direction N0⁰E where $\tan \theta = \frac{1}{5}$. A second ship B is 15km due to north of A. Ship B is moving with constant velocity of 5kmh-1 in the direction S α 0W, where $\tan \alpha = \frac{1}{4}$. If the shortest distance between the ships is 4.2km, find the time to the nearest minute when the distance between the ships is shortest. (12mars)

Solutions

SECTION A (40 marks)

Answer all questions in this section

1. A particle is projected from a point O with speed20m/s at an angle 60° to the horizontal. Express in vector form its velocity v and its displacement, r, from O at any time t seconds . (05marks)

At time t = 0

$$V = 20\cos 60^{\circ}i + 20\sin 60^{\circ}j = 10i + 10\sqrt{3}j$$

But
$$A = -gj$$

At any time t,

$$V = \int adt = -gj \int dt$$

$$= -gtj + c$$

At t = 0

$$10i + 10\sqrt{3}j = 0 + c$$

⇒ At time t

V= 10i +
$$(10\sqrt{3} - gt)$$
j = 10i + $(10\sqrt{3} - 9.8t)$ j

Or
$$V = \begin{pmatrix} 10 \\ 10\sqrt{3} - 9.8t \end{pmatrix}$$

$$r = \int v dt = \int \begin{pmatrix} 10 \\ 10\sqrt{3} - 9.8t \end{pmatrix} dt = \begin{pmatrix} 10t \\ 10\sqrt{3}t - 4.9t^2 \end{pmatrix} + c$$
 at $t = 0$, $r = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
$$\Rightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + c$$
, $c = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Hence at time t, r =
$$\begin{pmatrix} 10t \\ 10\sqrt{3}t - 4.9t^2 \end{pmatrix}$$

- 2. The probability that a patient suffering from a certain disease recovers is 0.4. If 15 people contract the disease, find the probability that:
 - (a) More than 9 will recover. (02marks)

Given
$$n = 15$$
, $p = 0.4$

Let x = number of people who will recover

$$P(X \ge 10) = B(X \ge 10, 15, 0.4)$$

(cumulative probabilities)

$$P(X \ge 10) = 0.0338$$

(b) Between five and eight will recover. (03marks)

$$P(5 < X < 8) = P(X = 6,7)$$

$$= P(X = 6) + P(X = 7)$$

$$= B(6, 15, 0.4) + B(7, 15, 0.4)$$

= 0.3837

Or

$$P(5 < X < 8) = P(X = 6,7)$$

$$= P(X \ge 6) - P(X \ge 8)$$

$$= 0.5968 - 0.2131$$

= 0.3837

3. The table below gives values of x and corresponding values of f(x).

Χ	0.1	0.2	0.3	0.4	0.5	0.7
f(x)	4.21	3.83	3.25	2.85	2.25	1.43

Use linear interpolation/extrapolation to find

(a) f(x) when x = 0.6 (03marks)

Using linear interpolation

Extract

0.5	0.6	0.7
2.25	У	1.43
1.43-2.25	<u>y-2.25</u>	
0.7-0.5	0.6-0.5	

$$y = 1.84$$

(b) the value of x when f(x) = 0.75 (02mars)

Using linear extrapolation

Extract

0.5	0.7	Х				
2.25	1.43	0.75				
$\frac{x-0.5}{0.75-3.25} = \frac{0.7-0.5}{1.43-3.25}$; x = 0.9						

4. In a square ABCD, three forces of magnitudes 4N, 10N and 7N and CA respectively. Their directions are in the order of the letters. Find magnitude of the resultant force. (05marks)

$${X \choose Y} = {4 \choose 0} + {-7\cos 45^0 \choose -7\sin 45^0} + {0 \choose 10} = {-0.9497 \choose 5.0503}$$
$$|R| = \sqrt{(-0.9497)^2 + (5.0503)^2} = 5.1388N$$

- 5. A box A contains 1 white ball and I blue ball. Box B contains only 2 white balls. If a ball is pice at random, find the probability that it is
 - (a) White (02mark)

$$P(W) = \frac{1}{2} x \frac{1}{2} + \frac{1}{2} x 1 = \frac{3}{4}$$

(b) From box A given that it is white(03marks)

$$P(A/W) = \frac{P(A \cap W)}{P(W)} = \frac{P(W/A).P(A)}{P(W)} = \frac{\frac{1}{2}x\frac{1}{2}}{\frac{3}{4}} = \frac{1}{3}$$

6. Given that $y = \frac{1}{x} + x$ and x = 2.4 correct to one decimal place, find the limits within which y lies. (05marks)

Error in 2.4 =
$$\frac{1}{2} x \frac{1}{10} = 0.05$$

 $y_{\text{max}} = 2.45 + \frac{1}{2.35} = 2.8755$

$$y_{min} = 2.35 + \frac{1}{2.45} = 2.7582$$

∴ the limits are [2.7582, 2.8755]

7. The table below shows the retail prices (shs) and amount of each item bought weekly by a restaurant in 2002 and 2003.

Item	Prices(shs)	Amount bought	
	2002	2003	
Milk (per litre)	400	500	200
Eggs (per tray)	2,500	3,000	18
Cooking oil (per litre)	2,400	2,100	2
Baking flour (per packet)	2,000	2,200	15

(a) Taking 2002 as the base year, calculate the weighed aggregate price index. (03 marks)

P_0	W	P_0W	P ₁	P ₁ W
400	200	80,000	500	100,000
2500	18	45,000	3,000	54,000
2400	2	4800	2100	4200
200	15	30,000	2200	33,000
		$\sum P_0 W = 159800$		$\sum P_1 W = 191200$

W.A.P.I =
$$\frac{191200}{159800}$$
 x 100 = 119.65

(b) In 2003, the restaurant spent shs. 450,000 on buying these items. Using the weighed aggregate price index obtained in (a), calculate what the restaurant could have spent in 2002. (02marks)

$$\frac{450,000}{P_0} \times 100 = 119.65$$

$$P_0 = 376,097$$

8. The engine of a lorry of mass 5,000kg is working at a steady rate of 350 kW against a constant resistance force of 1,000N. The lorry ascends a slope of inclination θ to the horizontal. If the maximum speed of the lorry is 20ms⁻¹, find the value of θ (05marks)

Resultant force =
$$17500 - (1000 + 5000 \sin \theta)$$

$$5000a = 17500 - (1000 + 5000\sin\theta)$$

At maximum speed a = 0

⇒
$$0 = 17500 - (1000 + 5000\sin\theta)$$

 $16500 = 5000\sin\theta$
 $\theta = 19.7^{\circ}$

SECTON B (60 MARKS)

Answer any five questions from this section. All questions carry equal marks

9. A discrete random variable X has a probability distribution given by

$$P(X = x) = \begin{cases} kx, x = 1, 2, 3, 4.5 \\ 1. Otherwise, \end{cases}$$

Where k is a constant

Determine;

(a) the value of k (03 marks)

х	1	2	3	4	5	sum
P(X = x)	k	2k	3k	4k	5k	15k

$$15k = 1$$
$$k = \frac{1}{15}$$

х	1	2	3	4	5	sum
P(X =x)	1	2	3	4	1	1
	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	
xP(X=x)	1	4	9	16	25	55
	$\overline{15}$	$\overline{15}$	15	$\overline{15}$	$\overline{15}$	$\overline{15}$
$X^2P(X=x)$	1	8	27	64	125	225
	$\overline{15}$	$\overline{15}$	$\overline{15}$	$\overline{15}$	<u>15</u>	15

(b)
$$P(2 < X < 5)$$
 (02marks)

$$P(2

$$= \frac{3}{15} + \frac{4}{15}$$

$$= \frac{7}{15}$$$$

(c) Expectation, E (X) (03marks)

$$E(X) = \sum xP(X = x) = \frac{55}{15} = \frac{11}{3}$$

(d) Variance, Var(X) (04mars)

$$Var(X) = E(X^{2}) - E(X)^{2}$$
$$= \frac{225}{15} - \left(\frac{55}{15}\right)^{2}$$
$$= \frac{14}{9}$$

10. A particle of mass 3kg is acted on by a force $F = 6i - 36t^2j + 54k$ Newton at time t. At time t = 0 the particle is at the point with position vector i - 5j - k and its velocity is 3i + 3j ms⁻¹.

Determine the

(a) position vector of the particle at time t= 1second (09marks)

F = ma

$$6i - 36t^2j + 54k = 3a$$

 $a = 2i + 12t2j + 18k$
 $V = \int adt = \int 2i - 12t^2j + 18k dt$
 $= 2ti - 4t^3j + 9t^2k + c$
At t = 0, V = 3i + 3j

$$\Rightarrow$$
 3i + 3j = 0 + c

$$c = 3i + 3j$$

By substitution

$$V = (2ti - 4t^{3}j + 9t^{2}k) + (3i + 3j) = (2t + 3)I + (4t^{3} + 3)j + 9t^{2}k$$

$$r = \int vdt = \int (2t + 3)i + (-4t^{3} + 3)j + 9t^{2}k dt$$

$$= (t^{2} + 3t)i + (-t^{4} + 3t)j + 3t^{3}k + c$$

At
$$t = 0$$
, $r = i - 5j - k$

$$\Rightarrow i-5j-k=0+c$$

$$c=i-5j-k$$

substituting for c

substituting for c

$$r = [(t^{2} + 3t)i + (-t^{4} + 3t)j + 3t^{3}k] + [i - 5j - k]$$

$$= [(t^{2} + 3t + 1)i + (-t^{4} + 3t - 5)j + (3t^{3} - 1)k] + [i - 5j - k]$$
At t = 1

$$r = (1 + 3 + 1)i + (-1 + 3 - 5)j + (3 - 1)k$$

$$= 5i - 3j + 2k$$

(b) distance of the particle from the origin at time t = 1 second

$$|r| = \sqrt{5^2 + (-3)^2 + 2^2} = \sqrt{38} = 6.164$$

11. A student used the trapezium rule with five sub-intervals to estimate

$$\int_2^3 \frac{x}{(x^2-3)} dx$$
 correct to **three** decimal places

Determine:

(a) The value the student obtained (06marks)

$$h = \frac{3-2}{5} = 0.2$$

Χ	y 1, y 6	y ₂ y ₅
2.0	2.0	
2.2		1.1956
2.4		0.8696
2.6		0.6915
2.8		0.5785
3	0.5	
Sum	2.5	3.3352
_	-	

$$\int_{2}^{3} \frac{x}{(x^{2}-3)} dx = \frac{1}{2} \times 0.2[2.5 + 2(3.3352)]$$

$$= 0.91704 = 0.917 (3D)$$

(b) The actual value of the integral (03marks)

$$\int_{2}^{3} \frac{x}{(x^{2}-3)} dx = \left[\frac{1}{2} Inx^{2} - 3 \right]_{2}^{3}$$

$$= \frac{1}{2}(In \ 6 - In \ 1)$$
$$= 0.896$$

(c) (i) the error the student made in the estimate

Error =
$$|0.896 - 0.917| = 0.021$$

(ii) how the student can reduce the error(03marks)

Increasing on the number of sub-intervals or ordinates or reducing the width of h

12. The times taken for 55 students to have their lunch to the nearest minute are given in the table below

Time (minutes)	3 -4	5-9	10-19	20 – 29	30 – 44
Number of students	2	7	16	21	9

Class	f	х	fx	С	fd
boundaries					
2.5 – 4.5	2	3.5	7	2	1.0
4.5 – 9.4	7	7	49	5	1.4
9.5 – 19.5	16	14.5	232	10	1.6
19.5 – 29.5	21	24.5	514.5	10	2.1
29.5 – 44.5	9	37	333	15	0.6
	$\sum f = 55$		$\sum fx = 1135.5$		

(a) Calculate the mean time for the student to have lunch (04marks)

Mean =
$$\frac{\sum fx}{\sum f} = \frac{1135.5}{55} = 20.65$$

(b) (i) Draw a histogram for the given data

Histogram

(ii) Use your histogram to estimate the modal time for the students to have lunch. (08marks)

Mode = 22 minutes

13. A non-uniform rod AB of mass 10k has its centre of gravity a distance ¼ AB. The rod is smoothly hinged at A. it is maintained in equilibrium at 60° above the horizontal by a light inextensible string tied at B and at a right angle to AB. Calculate the magnitude and direction of the reaction at A. (12marks)

Taking moments about point A

T x (AB) =
$$10g(\frac{3}{4}AB\cos 60^{0})$$

T = $\frac{15g}{4} = \frac{15 \times 9.8}{4} = 36.75$ N

$$T = \frac{15g}{4} = \frac{15 \times 9.8}{4} = 36.75N$$

Resolving forces horizontally

$$X = T\cos 30^{\circ} = 36.75\cos 30^{\circ} = 31.8264N$$

$$Y = 10g - 36.75sin 30^{\circ} = 79.625N$$

$$|R| = \sqrt{(31.8264)^2 + (79.625)^2} = 85.75N$$

79.625

$$\theta = \tan^{-1}\left(\frac{79.625}{31.8264}\right) = 68.2^{0}$$

The direction of resultant force is 68.2° or $E68.2^{\circ}N$ or $N21.8^{\circ}E$

14. By plotting graphs of y = x and $y = 4\sin x$ on the same axes. Show that the root of the equation $x - 4\sin x = 0$ lies between 2 and 3.

Hence use Newton Raphson's method to find the root of the equation correct to 3 decimal places. (12marks)

Table of results

х	2.0	2.2	2.4	2.6	2.8	3.0
y = x	2.0	2.2	2.4	2.6	2.8	3.0
Y = 4sinx	3.6	3.2	2.7	2.1	1.3	0.6

Graph

From the graph the root lies between 2.4 and 2.6

Using N.R.M

$$f(x) = x - 4\sin x$$

$$f'(x) = 1 - 4\cos x$$

$$x_{n+1} = x_n - \frac{x_n - 4\sin x_n}{1 - 4\cos x_n}$$

Taking
$$x_0 = 2.47$$

$$x_1 = 2.47 - \frac{2.47 - 4\sin 2.45}{1 - 4\cos 2.47} = 2.4746$$

$$Error = |2.4746 - 2.47| = 0.0046 > 0.0005$$

$$Error = |2.4746 - 2.47| = 0.0046 > 0.0005$$

$$x_2 = 2.4746 - \frac{2.4746 - 4\sin 2.4546}{1 - 4\cos 2.4746} = 2.4746$$

$$Error = |2.4746 - 2.4746| = 0.000 < 0.0005$$

$$Error = |2.4746 - 2.4746| = 0.000 < 0.0005$$

∴ 2.475 (3D)

- 15. The number of cows owned by residents in a village is assumed to be normally distributed. 15% of the residents have less than 60 cows, 5% of the residents have over90 cows.
 - (a) Determine the values of the mean and standard deviation of the cows. (08marks)

$$P(0 < Z < Z_1) = 0.35; Z_1 = -1.036$$

$$\frac{60-\mu}{\sigma} = -1.036$$

$$60 - \mu = -1.036\sigma$$
(i)

$$P(0 < Z < Z_2) = 0.35; Z_2 = 1.645$$

$$\frac{90-\mu}{\sigma} = 1.645$$

$$90 - \mu = 1.645\sigma$$
(ii)

$$30 = 2.681\sigma$$
; $\sigma = 11.1899$

From eqn. (i)

$$60 - \mu = -1.036 \times 11.1899$$

 $\mu = 71.5926$

If there are 200 residents, find how many have more than 80 cows. (04marks)

$$P(X > 80) = P(Z > \frac{80 - 71.5926}{11.1899})$$

$$= P(Z > 0.751)$$

$$P(Z > 0.751) = 0.5 - (0 < Z < 0.751)$$
$$= 0.5 - 0.2737$$

Number of residents = $200 \times 0.2263 = 45$

16. At 12 noon a ship A is moving with constant velocity of 20.4kmh⁻¹ in the direction N θ^0 E where $\tan \theta = \frac{1}{5}$. A second ship B is 15km due to north of A. Ship B is moving with constant velocity of 5kmh-1 in the direction S α 0W, where $\tan \alpha = \frac{1}{4}$. If the shortest distance between the ships is 4.2km, find the time to the nearest minute when the distance between the ships is shortest. (12mars)

Table of results

Vector	Magnitude	Direction	
V _A	20.4kmh ⁻¹	ΝθΕ	
V _B	5kmh ⁻¹	SαW	

$$V_A \equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\tan \theta = \frac{1}{5}; \theta = 11.3^{\circ}$$

$$V_A = \begin{pmatrix} 20.4 \sin 11.3^{0} \\ 20.4 \cos 11.3^{0} \end{pmatrix} = \begin{pmatrix} 4 \\ 20 \end{pmatrix}$$

$$V_{B} \equiv \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array}$$

$$\tan \alpha = \frac{1}{5}$$
; $\alpha = 36.87^{\circ}$

$$V_{-B} = \begin{pmatrix} -5\sin 36.87^{0} \\ -5\cos 36.87^{0} \end{pmatrix} = \begin{pmatrix} -3 \\ -4 \end{pmatrix}$$

$$\begin{array}{c}
\bullet B(0, 15) \\
15km \\
\bullet A(0, 0)
\end{array}$$

$$r_{A} = \int V_{A} dt$$

$$r_A = \int V_A dt = \int {4 \choose 20} dt = {4t \choose 20t} + c$$

At t = 0,
$$r_A = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow c = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Hence
$$r_A = \binom{4t}{20t}$$

$$R_{B} = \int V_{B} dt = \int \begin{pmatrix} -3 \\ -4 \end{pmatrix} dt = \begin{pmatrix} -3t \\ -4t \end{pmatrix} + c$$

At t = 0,
$$r_B = \begin{pmatrix} 0 \\ 15 \end{pmatrix} \Rightarrow c = \begin{pmatrix} 0 \\ 15 \end{pmatrix}$$

Hence
$$r_B = \begin{pmatrix} -3t \\ 15 - 4t \end{pmatrix}$$

$$_{A}r_{B} = r_{A} - r_{B} = {4t \choose 20t} - {-3t \choose 15 - 4t} = {7t \choose 24t - 15}$$

$$d_s = |Ar_B| = \sqrt{(7t)^2 + (24t - 15)^5}$$

but
$$ds = 4.2$$

$$\Rightarrow \sqrt{(7t)^2 + (24t - 15)^5} = 4.2$$

$$\left(\sqrt{(7t)^2 + (24t - 15)^5}\right)^2 = 4.2^2$$

$$(7t)^2 + (24t - 15)^5 = 4.2^2$$

$$47t^2 + 576t^2 - 720t + 225 = 17.64$$

$$625t^2 - 720t + 207.36 = 0$$

$$t = \frac{720 \pm \sqrt{(-720)^2 - 4(625)(207.36)}}{2(625)} = 0.576 \text{hours}$$

 $= 0.576 \times 60 = 35 \text{minutes}$

Hence the time at which the distance is shortest is 12:35pm

Thank you

Yours Dr. Bbosa Science