UCE MATHEMATICS PAPER 22017 guide

SECTION A (40 marks)

Answer all questions in this section

1. Factorize: $(x+4)^{2}-(x-3)^{2}$. (04marks)
2. Solve the simultaneous equation
$2 x-3 y=7$
$x+4 y=-2$ (04marks)
3. The table below shows marks obtained by 34 students in chemistry test

Marks	Number of students
$20-29$	3
$30-39$	5
$40-49$	8
$50-59$	8
$60-69$	10

Calculate the mean mark. (04marks)
4. Given that $s^{*} t=2 s^{2}-3 t$, evaluate $6^{*}\left(5^{*} 2\right)$. (04marks)
5. An interior angle of a rectangular polygon is 162°. Find the sum of its interior angles. (04marks)
6. Fins the value of x and y in $3\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)-2\left(\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right)=\left(\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right)$. (04marks)
7. Solve for x in the inequality: $\frac{1}{2}-\frac{2}{3} x<\frac{1}{6} x-\frac{1}{4}$. (04marks)
8. In the right angled triangle $A B C, A B=10$ and $A C=6$

Determine the;
(a) Length of BC . (02marks)
(b) Area of the triangle ABC. (02marks)
9. A number which s divisible by 3 is chosen at random from a set of even numbers between 1 and 20. What is the probability of choosing the number? (04marks)
10. A graph below shows the line $H K$ and its image $H^{\prime} K^{\prime}$ after rotation in the clock wise direction.

Use the graph to determine the;
(a) coordinates of the centre of rotation (02marks)
(b) angle of rotation (02marks)

SECTION B: (60MARKS)
Answer any five questions from this section. all questions carry equal marks.
11. (a) Copy and complete table of values for $y=x^{2}+2 x-15$ (03marks)

x	-6	-5	-4	-3	-2	-1	0	1	2	3	4
x^{2}	36										
$2 x$	-12										
-15	-15	-15	-15	-15	-15	-15	-15	-15	-15	-15	-15
y	9										

(b) Use your completed table to draw the graph $y=x^{2}+2 x-15$.

Use a scale of 1 cm to represent 1 unit on the x-axis, 1 cm to represent 2 units on the y axis. (04marks)
(c) Draw on the same graph the line $y=2 x-14$.

Hence solve the equation $x 2-1=0$ (05marks)
12. Four schools participated in a football tournament which was played in two rounds. The results were as given below
$1^{\text {st }}$ round

- Bakulu S.S won one, drew three and lost two matches.
- Dodo S.S won two, drew two and lost two matches
- Kawunga S.S won three, drew two and lost one match
- Oronga S.S won none, drew two and lost four matches.
$2^{\text {nd }}$ round
- Bakulu S.S won one, drew two and lost three matches.
- Dodo S.S won two, drew one and lost three matches
- Kawunga S.S won two, drew three and lost one match
- Oronga S.S won one, drew four and lost 1 match.
(a) Write down a 4×3 matrix which shows the performance of the schools in
(i) each of the two rounds (04marks)
(ii) both rounds (03marks)
(b) Three points are awarded for a win, one point for a draw and no point for a loss.
(i) Write down a 3×1 matrix to represent the award of points (01marks)
(ii) Using matrix multiplication, determine which school won the tournament. (04marks)

13. (a) Make d the subject of the expression
$\mathrm{L}=\sqrt{\frac{3 B}{T-D}}$
Hence, find the value of D when $B=540, L=18$ and $T=17$
(b) Auma bought 5 sachets of washing powder and a tube of toothpaste at shs. 1,700 in January

In February she bought 15 sachets of washing power and 2 tubes of toothpaste at shs. 4,400 . What is the cost of each item during the two months? (06marks)
14. Using a ruler, a pencil and a pair of compasses only,
(a) Construct a triangle $A B C$, where $A B C=75^{\circ}, \overline{A B}=9.3 \mathrm{~cm}, \overline{B C}=8.7 \mathrm{~cm}$ (05marks)
(b) Measure the length Ac and angle ACB. (02 marks)
(c) (i) Draw an inscribed circle in the triangle ABC.
(ii) Find the radius of the circle. (05marks)
15. A cupboard has 5 white cups and 3 black cups. Two cups are picked from the cupboard one after the other without replacement.
(a) Draw a tree diagram to represent the given information (05marks)
(b) Calculate the probability of picking
(i) one white cup and one black cup
(ii) two cups of the same colour
(iii) at least one white cup. (07 marks)
16. A triangle whose vertices are P, Q and R is mapped on a triangle whose vertices are $P^{\prime}(0,1)$, $Q^{\prime}(5,7)$ and $R^{\prime}(0,2)$ by matrix of transformation $\left(\begin{array}{ll}3 & -1 \\ 4 & -1\end{array}\right)$. The triangle $P^{\prime} Q^{\prime} R^{\prime}$ is then mapped onto triangle $P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ by matrix transformation $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$.
Find the;
(a) Coordinates of $P^{\prime \prime}, Q^{\prime \prime}$ and $R^{\prime \prime}$. (03marks)
(b) Single matrix transformation which would map $P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ back onto PQR. (04marks)
(c) Coordinates of P, Q and R. (05marks)
17. An investor wants to buy 2 types of generators A and B. generator a needs 2 m 2 of space and B needs 3 m 2 . The available space is only 60 m 2 . The cost of a is $\$ 2,000$ and that of B is $\$ 10,000$. The investor has $\$ 880,000$ to spend. If x and y represent number of generators of type A and B respectively.
(a) Write down four inequalities from the information given (04marks)
(b) Represent the four inequalities on the same axes. (06marks)
(c) Find the greatest number of generators of both type A and B that the investor can by using the minimum amount of money. (02marks)

Solutions

SECTION A (40 marks)

Answer all questions in this section

1. Factorize: $(x+4)^{2}-(x-3)^{2}$. (04marks)

Using difference of square

$$
\begin{aligned}
(x+4)^{2}-(x-3)^{2} & =\{(x+4)+(x-3)\}\{(x+4)-(x-3)\} \\
& =\{x+4+x-3\}(x+4-x+3\} \\
& =(2 x+1)(7) \text { Or } 7(2 x+1)
\end{aligned}
$$

2. Solve the simultaneous equation
$2 x-3 y=7$
$x+4 y=-2$ (04marks)
Method I: elimination
$2 x-3 y=7$
$x+4 y=-2$
eqn. (i) -2 eqn. (ii)
$-11 y=-11$
$y=-1$
Substituting $y=-1$ in eqn. (i)
$2 x-3(-1)=7$
$2 x+3=7$
$\mathrm{x}=2$
Method II: Using substitution method
$2 x-3 y=7$
$x+4 y=-2$
Making x the subject in eqn. (i)
$2 x=7+3 y$
$x=\frac{7+3 y}{2}$
Substituting for x in equation (ii)
$\frac{7+3 y}{2}+4 y=-2$
$\frac{7+3 y+8 y}{2}=-2$
$7+11 y=-4$
$11 y=-11$
$y=-1$
substituting $y=-1$ in equation (iii)
$x=\frac{7+3(-1)}{2}=\frac{4}{2}=2$
Method III; using matrix method
$2 x-3 y=7$
$x+4 y=-2$
$\left(\begin{array}{cc}2 & -3 \\ 1 & 4\end{array}\right)\binom{x}{y}=\binom{7}{-2}$
Pre-multiplying both sides of the equation by inverse matrix
Determinant $=4 \times 2-1 \times(-3)=8+3=11$
Inverse matrix $=\frac{1}{11}\left(\begin{array}{cc}4 & 3 \\ -1 & 2\end{array}\right)$
$\frac{1}{11}\left(\begin{array}{cc}4 & 3 \\ -1 & 2\end{array}\right)\left(\begin{array}{cc}2 & -3 \\ 1 & 4\end{array}\right)\binom{x}{y}=\frac{1}{11}\left(\begin{array}{cc}4 & 3 \\ -1 & 2\end{array}\right)\binom{7}{-2}$
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{x}{y}=\frac{1}{11}\binom{28-6}{-7-4}$
$\binom{x}{y}=\frac{1}{11}\binom{22}{-11}=\binom{\frac{22}{11}}{\frac{-11}{11}}=\binom{2}{-1}$
Hence $x=2, y=-1$
3. The table below shows marks obtained by 34 students in chemistry test

Marks	Number of students
$20-29$	3
$30-39$	5
$40-49$	8
$50-59$	8
$60-69$	10

Calculate the mean mark. (04marks)

Marks	x	Number of students (f)	fx
$20-29$	24.5	3	73.5
$30-39$	34.5	5	172.5
$40-49$	44.5	8	356
$50-59$	54.5	8	436
$60-69$	645	10	645
		$\sum f=34$	$\sum f x=1683$

Mean $=\frac{\sum f x}{\sum f}=\frac{1683}{34}=49.5$
4. Given that $s^{*} t=2 s^{2}-3 t$, evaluate 6*(5*2). (04marks)
$5^{*} 2=2(5)^{2}-3 \times 2=50-6=44$
$6 *(5 * 2)=6 * 44$

$$
\begin{aligned}
& =2(6)^{2}-3 \times 44 \\
& =72-132 \\
& =-60
\end{aligned}
$$

5. An interior angle of a rectangular polygon is 162°. Find the sum of its interior angles.
(04marks)
Exterior angle $=180-162=18^{0}$
Number of sides $=\frac{360^{0}}{18^{0}}=20$
Sum of interior angles $=180(n-2)$

$$
=180(20-2)=180 \times 18=3240^{\circ}
$$

6. Fins the value of x and y in $3\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)-2\left(\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right)=\left(\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right)$. (04marks)

$$
\begin{aligned}
& 3\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right)-2\left(\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right) \\
& 3\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right)+2\left(\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right)=3\left(\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right) \\
& \left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right)
\end{aligned}
$$

By equating corresponding elements
$x=3$ and $y=4$
7. Solve for x in the inequality: $\frac{1}{2}-\frac{2}{3} x<\frac{1}{6} x-\frac{1}{4}$. (04marks)
$\frac{1}{2}-\frac{2}{3} x<\frac{1}{6} x-\frac{1}{4}$.
Multiplying through by 12
$6-8 x<2 x-3$
$9<10 x$
$\frac{9}{10}<x$ or $x>\frac{9}{10}$
8. In the right angled triangle $A B C, A B=10$ and $A C=6$

Determine the;
(a) Length of BC . (02marks)

$$
\begin{aligned}
& 10^{2}=6^{2}+\overline{B C}^{2} \\
& \overline{B C}^{2}=100-36=64 \\
& \overline{B C}=\sqrt{64}=8 \mathrm{~cm}
\end{aligned}
$$

(b) Area of the triangle $A B C$. (02marks)

Area $=\frac{1}{2} b h=\frac{1}{2} \times 8 \times 6=24 \mathrm{~cm}^{2}$
9. A number which s divisible by 3 is chosen at random from a set of even numbers between 1 and 20. What is the probability of choosing the number? (04marks)
Sample space $=\{2,4,6,8,10,12,14,16,18\}$
$\mathrm{n}(\mathrm{S})=9$
Let $\mathrm{A}=$ number divisible by 3

$$
\begin{gathered}
\mathrm{A}=\{6,12,18\} \\
\mathrm{n}(\mathrm{~A})=3 \\
\mathrm{P}(\mathrm{~A})=\frac{n(A)}{n(S)}=\frac{3}{9}=\frac{1}{3}
\end{gathered}
$$

10. A graph below shows the line $H K$ and its image $H^{\prime} K^{\prime}$ after rotation in the clock wise direction.

Use the graph to determine the;

The graph below shows the line HK and its image $\mathrm{H}^{\prime} \mathrm{K}^{\prime}$ after a rotation in the clockwise direction

(a) coordinates of the centre of rotation; ($-0.4,0.2$) (02marks)
(b) angle of rotation; 90° (02marks)

SECTION B: (60MARKS)
Answer any five questions from this section. all questions carry equal marks.
11. (a) Copy and complete table of values for $y=x^{2}+2 x-15$ (03marks)

x	-6	-5	-4	-3	-2	-1	0	1	2	3	4
x^{2}	36	25	16	9	4	1	0	1	4	9	16
$2 x$	-12	-10	-8	-6	-4	-2	0	2	4	6	8
-15	-15	-15	-15	-15	-15	-15	-15	-15	-15	-15	-15
y	9	0	-7	-12	-15	-16	-15	-12	-7	0	9

(b) Use your completed table to draw the graph $y=x^{2}+2 x-15$.

Use a scale of 1 cm to represent 1 unit on the x-axis, 1 cm to represent 2 units on the y axis. (04marks)

(c) Draw on the same graph the line $y=2 x-14$.

For $y=2 x-14$

x	0	2
y	-14	-10

Hence solve the equation $x 2-1=0$ (05marks)
Solution are got from points of intersection.
Hence $x=-14$ and $x=1$
12. Four schools participated in a football tournament which was played in two rounds. The results were as given below
$1^{\text {st }}$ round

- Bakulu S.S won one, drew three and lost two matches.
- Dodo S.S won two, drew two and lost two matches
- Kawunga S.S won three, drew two and lost one match
- Oronga S.S won none, drew two and lost four matches.
$2^{\text {nd }}$ round
- Bakulu S.S won one, drew two and lost three matches.
- Dodo S.S won two, drew one and lost three matches
- Kawunga S.S won two, drew three and lost one match
- Oronga S.S won one, drew four and lost 1 match.
(a) Write down a 4×3 matrix which shows the performance of the schools in
(iii) each of the two rounds (04marks)
$1^{\text {st }}$ round
$W D L$
Bakulu (13 2
Dodo (2222
Kawunga $\left.\begin{array}{lll}3 & 2 & 1 \\ 0 & 2 & 4\end{array}\right)$
Orongo (lll $\left.\begin{array}{ll}0 & 2\end{array}\right)$
$2^{\text {nd }}$ round
W D L
Bakulu
Dodo
Kawunga
Orongo $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 2 & 3 & 1 \\ 1 & 4 & 1\end{array}\right)$
(iv) both rounds (03marks)

$$
\left(\begin{array}{lll}
1 & 3 & 2 \\
2 & 2 & 2 \\
3 & 2 & 1 \\
0 & 2 & 4
\end{array}\right)+\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3 \\
2 & 3 & 1 \\
1 & 4 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 5 & 5 \\
4 & 3 & 5 \\
5 & 5 & 2 \\
1 & 6 & 5
\end{array}\right)
$$

$$
W D L
$$

Bakulu
Dodo
Hawunga
Orongo $\left(\begin{array}{lll}2 & 5 & 5 \\ 4 & 3 & 5 \\ 5 & 5 & 2 \\ 1 & 6 & 5\end{array}\right)$
(b) Three points are awarded for a win, one point for a draw and no point for a loss.
(iii) Write down a 3×1 matrix to represent the award of points (01marks)
$\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right)$
(iv) Using matrix multiplication, determine which school won the tournament.
(04marks)

Kawunga won the tournament
13. (a) Make d the subject of the expression
$\mathrm{L}=\sqrt{\frac{3 B}{T-D}}$
Squaring both sides
$\mathrm{L}^{2}=\left(\sqrt{\frac{3 B}{T-D}}\right)^{2}$
$\frac{L^{2}}{1}=\frac{3 B}{T-D}$
By cross multiplication
$T-D=\frac{3 B}{L^{2}}$
$D=T-\frac{3 B}{L^{2}}=\frac{L^{2} T-3 B}{L^{2}}$

Hence, find the value of D when $B=540, L=18$ and $T=17$
By substitution
$D=\frac{L^{2} T-3 B}{L^{2}}=\frac{18^{2}(17)-3(540)}{18^{2}}=\frac{5508-1620}{324}=12$
(b) Auma bought 5 sachets of washing powder and a tube of toothpaste at shs. 1,700 in January

In February she bought 15 sachets of washing power and 2 tubes of toothpaste at shs. 4,400 . What is the cost of each item during the two months? (06marks)

Let $x=$ price of a sachet of washing powder
$y=$ price of a tube of toothpaste
$5 x+y=1700$ \qquad
$15 x+2 y=4400$
Using elimination method
Subtracting 2eqn. (i) from eqn. (ii)
$5 x=1000 ; x=200$
Substituting $x=200$ in equation (i)
$5 \times 200+y=1700$
$y=1700-1000=700$
Hence the price of 1 sachet of washing powder $=$ shs. 200 while that of a tube of toothpaste $=$ shs 700

Using matrix method
Let $x=$ price of a sachet of washing powder
$y=$ price of a tube of toothpaste
$5 x+y=1700$
$15 x+2 y=4400$

$$
\left(\begin{array}{cc}
5 & 1 \\
15 & 2
\end{array}\right)\binom{x}{y}=\binom{1700}{4400}
$$

Determinant of matrix $=5 \times 2-15 \times 1=-5$
Adjunct matrix $=\left(\begin{array}{cc}2 & -1 \\ -15 & 5\end{array}\right)$
Inverse matrix $=\frac{1}{-5}\left(\begin{array}{cc}2 & -1 \\ -15 & 5\end{array}\right)$
Pre-multiplication both sides with inverse matrix

$$
\frac{1}{-5}\left(\begin{array}{cc}
2 & -1 \\
-15 & 5
\end{array}\right)\left(\begin{array}{cc}
5 & 1 \\
15 & 2
\end{array}\right)\binom{x}{y}=\frac{1}{-5}\left(\begin{array}{cc}
2 & -1 \\
-15 & 5
\end{array}\right)\binom{1700}{4400}
$$

$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{x}{y}=\frac{1}{-5}\binom{3,400-4,400}{-25,500+2200}=\frac{1}{-5}\binom{-1000}{-3500}$
$\binom{x}{y}=\binom{200}{700}$
Hence the price of 1 sachet of washing powder $=$ shs. 200 while that of a tube of toothpaste $=$ shs 700

Using substitution method
$5 x+y=1700$
$15 x+2 y=4400$
From eqn. (i)
$\mathrm{x}=\frac{1700-y}{5}$
Substituting x in eqn.(ii)
$15\left(\frac{1700-y}{5}\right)+2 y=4400$
$5100-3 y+2 y=4400$
$y=5100-4400=700$
substituting y in eqn. (i)
$5 x+700=1700$
$x=200$
Hence the price of 1 sachet of washing powder =shs. 200 while that of a tube of toothpaste $=$ shs 700
14. Using a ruler, a pencil and a pair of compasses only,
(a) Construct a triangle $A B C$, where $A B C=75^{\circ}, \overline{A B}=9.3 \mathrm{~cm}, \overline{B C}=8.7 \mathrm{~cm}$ (05marks)

(b) Measure the length Ac and angle ACB. (02 marks)
$\overline{A C}=11 \mathrm{~cm},<A C B=54^{0}$
(c) (i) Draw an inscribed circle in the triangle $A B C$.
(iii) Find the radius of the circle. (05marks)

Radius $=2.6 \mathrm{~cm}$
15. A cupboard has 5 white cups and 3 black cups. Two cups are picked from the cupboard one after the other without replacement.
(a) Draw a tree diagram to represent the given information (05marks)

Let $W=$ white cups and $B=$ black cups
$\mathrm{W}=3, \mathrm{~B}=3 ;$ total $=8$
$\mathrm{P}(\mathrm{W})=\frac{5}{8}$ and $\mathrm{P}(\mathrm{B})=\frac{3}{8}$

$$
1^{\text {st }} \text { picking } \quad 2^{\text {nd }} \text { picking }
$$

(b) Calculate the probability of picking
(iv) one white cup and one black cup

P (one white and one black)

$$
=P(W \cap B)+P(B \cap W)
$$

$$
=\frac{5}{8} x \frac{3}{7}+\frac{3}{8} x \frac{5}{7}=\frac{15}{56}+\frac{15}{56}=\frac{30}{56}=\frac{15}{28}
$$

(v) two cups of the same colour

P (two cups of same colour
$=P(W \cap W)+P(B \cap B)$
$=\frac{5}{8} \times \frac{4}{7}+\frac{3}{8} \times \frac{2}{7}=\frac{20}{56}+\frac{6}{56}=\frac{26}{56}=\frac{13}{28}$
(vi) at least one white cup. (07 marks)

P (at least one cup is white)
$=P(W \cap W)+P(W \cap B)+(B \cap W)$
$=\frac{5}{8} \times \frac{4}{7}+\frac{5}{8} \times \frac{3}{7}+\frac{3}{8} \times \frac{5}{7}=\frac{20}{56}+\frac{15}{56}+\frac{15}{56}=\frac{50}{56}=\frac{25}{28}$
Or
$1-(B \cap B)$
1- $\frac{3}{8} \times \frac{2}{7}$
$1-\frac{6}{50}=\frac{50}{56}=\frac{25}{28}$
16. A triangle whose vertices are P, Q and R is mapped on a triangle whose vertices are $P^{\prime}(0,1)$, $Q^{\prime}(5,7)$ and $R^{\prime}(0,2)$ by matrix of transformation $\left(\begin{array}{ll}3 & -1 \\ 4 & -1\end{array}\right)$. The triangle $P^{\prime} Q^{\prime} R^{\prime}$ is then mapped onto triangle $P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ by matrix transformation $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$.
Find the;
(a) Coordinates of $P^{\prime \prime}, Q^{\prime \prime}$ and $R^{\prime \prime}$. (03marks)

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ccc}
0 & \mathrm{P}^{\prime} & \mathrm{Q}^{\prime} \mathrm{R}^{\prime} \\
1 & 7 & 2 \\
1 & 7 & 2
\end{array}\right)=\left(\begin{array}{ccc}
0+0 & 10+0 & 0+0 \\
0+8 & 0+14 & 0+4
\end{array}\right)=\left(\begin{array}{ccc}
\mathrm{P}^{\prime \prime} & \mathrm{Q}^{\prime \prime} & \mathrm{R}^{\prime \prime} \\
0 & 10 & 0 \\
2 & 14 & 4
\end{array}\right)
$$

Hence $P^{\prime \prime}(0,2), Q^{\prime \prime}(10,14)$ and $R^{\prime \prime}(0,4)$
(b) Single matrix transformation which would map $P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ back onto PQR. (04marks)

The matrix that maps $P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ back onto PQR is the inverse matrix of
$\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)\left(\begin{array}{ll}3 & -1 \\ 4 & -1\end{array}\right)=\left(\begin{array}{cc}6+0 & -2+0 \\ 0+8 & 0-2\end{array}\right)=\left(\begin{array}{ll}6 & -2 \\ 8 & -2\end{array}\right)$
Determinant of matrix $=-2 \times 6-8-2=-12+16=4$
Adjunct matrix $=\left(\begin{array}{ll}-2 & 2 \\ -8 & 6\end{array}\right)$
Inverse matrix $=\frac{1}{4}\left(\begin{array}{ll}-2 & 2 \\ -8 & 6\end{array}\right)=\left(\begin{array}{cc}-0.5 & 0.5 \\ -2 & 1.5\end{array}\right)$
Hence the single matrix of transformation that maps $P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ to $P Q R$ is $\left(\begin{array}{cc}-0.5 & 0.5 \\ -2 & 1.5\end{array}\right)$
(c) Coordinates of P, Q and R. (05marks)

The inverse matrix of matrix $\left(\begin{array}{ll}3 & -1 \\ 4 & -1\end{array}\right)$ maps $P^{\prime} Q^{\prime} R^{\prime}$ to $P Q R$
Determinant of matrix $=3 x-1-4 x-1=-3+4=1$
Adjunct matrix $=\left(\begin{array}{ll}-1 & 1 \\ -4 & 3\end{array}\right)$
Inverse matrix $=\frac{1}{1}\left(\begin{array}{ll}-1 & 1 \\ -4 & 3\end{array}\right)=\left(\begin{array}{ll}-1 & 1 \\ -4 & 3\end{array}\right)$
$\left(\begin{array}{cc}P^{\prime} & Q^{\prime} \\ -1 & 1 \\ -4 & 3\end{array}\right)\left(\begin{array}{lll}0 & 5 & 0 \\ 1 & 7 & 2\end{array}\right)=\left(\begin{array}{ccc}0+1 & -5+7 & 0+2 \\ 0+3 & -20+21 & 0+6\end{array}\right)=\left(\begin{array}{ccc}P & Q & R \\ 1 & 2 & 2 \\ 3 & 1 & 6\end{array}\right)$
Hence $P(1,3), Q(2,1)$ and $R(2,6)$
17. An investor wants to buy 2 types of generators A and B. generator a needs $2 m 2$ of space and B needs 3 m 2 . The available space is only 60 m 2 . The cost of a is $\$ 2,000$ and that of B is $\$ 10,000$. The investor has $\$ 880,000$ to spend. If x and y represent number of generators of type A and B respectively.
(a) Write down four inequalities from the information given (04marks) Space
$2 x+3 y \leq 60$
Cost
$2,000 x+10,000 y \leq 80,000$
For non-negativity
$x \geq 0$
$y \geq 0$ (iv)
(b) Represent the four inequalities on the same axes. (06marks)

For $2 x+3 y \leq 60$
The boundary line

x	0	30
y	20	0

For $2,000 x+10,000 y \leq 80,000$
Boundary line
$2,000 x+10,000 y=80,000$
$x+5 y=40$

X	0	40
y	8	0

(c) Find the greatest number of generators of both type A and B that the investor can by using the minimum amount of money. (02marks)
Possible points of maximization are $(0,8),(253),(27,2)$ and $(30,0)$

Combination	Cost function $=2000 \times+10,000 y$
$(0,8)$	$0+8 \times 10,10,000=80,000$
$(25,3)$	$25 \times 2000+3 \times 10,000=80,000$
$(27,2)$	$27 \times 2000+2 \times 10,000=74,000$
$(30,0)$	$30 \times 2,000+0=60,000$

Possible combination where both generators must be purchased o yield minimum cost is $(27,2)$.

Thank you
Dr. Bbosa Science

