Equilibrium of forces

several forces acting on a particle are said to be in equilibrium when the resultant force is equal to zero
i.e. $F_{R}=\binom{0}{0}$

Example 1
For the following set of forces in equilibrium find the values of a and b in each case
(i) $(6 i+4 j) N,(-2 i-5 j) N,(a i+b j) N$

$$
\begin{aligned}
& \binom{6}{4}+\binom{-2}{-5}+\binom{a}{b}=\binom{0}{0} \\
& 6-2+a=0=>a=-4 \\
& 4-5+b=0 \Rightarrow b=1
\end{aligned}
$$

(ii) $(5 i+a j+c k) N,(b i-6 j-k) N$, and $(-3 i+2 j+c k)$

$$
\left.\left(\begin{array}{l}
5 \\
a \\
c
\end{array}\right)+\left(\begin{array}{c}
b \\
-6 \\
-1
\end{array}\right)+\left(\begin{array}{c}
-3 \\
2 \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \right\rvert\, \begin{aligned}
& 5+b-3=0 \Rightarrow b=-2 \\
& a-6+2=0 \Rightarrow>a=4 \\
& 2 c-1=0 \Rightarrow>c=0.5
\end{aligned}
$$

Example 2
In the diagram below, the particle is in equilibrium, find the values of P and Q.

Solution
$\left.\binom{0}{Q}+\binom{P \cos 30}{Q \cos 30}+\binom{0}{-6}+\binom{-4 \sqrt{3}}{0}=\binom{0}{0} \right\rvert\, \begin{aligned} & 0+P \cos 30+0-4 \sqrt{3}=0 ;=>P=8 N \\ & Q+Q \cos 30-6+0=0 ;=>Q=2 N\end{aligned}$

Example 3

Diagram below shows three coplanar forces of magnitude $2 \mathrm{~N}, 3 \mathrm{~N}$ and PN all acting at point O in the direction shown. Given that the forces are in equilibrium, Find the value of P

Solution

$-P \cos \theta+2 \cos 60+3=0$
$\cos \theta=\frac{2 \cos 60+3}{P}$
$-P \sin \theta+2 \sin 60=0$
$\sin \theta=\frac{2 \sin 60}{P}$
Eqn. (i) and (ii)
$\theta=\tan ^{-1}\left(\frac{2 \sin 60}{2 \cos 60+3}\right)=23.413$
from (ii) $P=\frac{2 \sin 60}{\sin 23.413}=4.3589 \mathrm{~N}$

Revision Exercise

(i) The diagram above shows three coplanar forces in equilibrium. Find the value of P and Q .
(ii) If the direction of Q s now reversed, find the magnitude and direction of the resultant [(i) $24.5 \mathrm{~N}, 22.6 \mathrm{~N}$; (ii) 45.2N]
2. Forces $F_{1}=(-3 i+7 j) N, F_{2}=(i-j) N$ and $F_{3}=(p i+q j)$ act on a particle.
(i) If the particle is in equilibrium, find the vlues of p and q. $[p=2, q=-6]$
(ii) Find the magnitude and direction of the resultant of F1 and F2 . [6.3246N, $\left.71.57^{\circ}\right]$
3. Forces of $6 \mathrm{~N}, 5 \mathrm{~N}, 8 \mathrm{~N}, 5 \mathrm{~N}$ and 9 N act on a particles in the direction $\mathrm{N} 30^{\circ} \mathrm{E}, \mathrm{N} 30^{\circ} \mathrm{W}, \mathrm{S} 50^{\circ} \mathrm{E}, \mathrm{N} 60^{\circ} \mathrm{W}$, $\mathrm{N} 80^{\circ} \mathrm{E}$ and $540^{\circ} \mathrm{W}$ respectively. Find the additional force that will keep the system of force in equilibrium. [5.358 N at 68.920 above the positive axis]
4. Forces of $7 \mathrm{~N}, 2 \mathrm{~N}, 4 \mathrm{~N}$ and 5 N act on a particle in directions of 0600, 16002000 and 3150 respectively. Find the additional force that will keep the system of forces in equilibrium. [2.3125N at 37.18^{0} below the negative axis]
5. Forces of $2 \mathrm{~N}, 1 \mathrm{~N}, 3 \mathrm{~N}$ and 4 N act on a particle in the direction $0^{\circ}, 90^{\circ}, 270^{\circ}$ and 330° respectively. Find the additional force that will keep the system of forces in equilibrium. [6.8N at 36° above the negative axis]
6. Forces of $6 \mathrm{~N}, 5 \mathrm{~N}, 7 \mathrm{~N}, 4 \mathrm{~N}, 3 \sqrt{2} N$ and $7 \sqrt{2} \mathrm{~N}$ act in direction AB, CB, CD, DA, CA and DB respectively on a square $A B C D$. Find the additional force that will keep the system of forces in equilibrium.
[19.2 N at 81° above the negative axis]
7. Forces $8 \mathrm{~N}, 7 \mathrm{~N}, 6 \mathrm{~N}, 4 \mathrm{~N}, 7 \mathrm{~N}$ and 6 N act along the sides of a regular hexagon ABCDEF in direction AB , $C B, C D, D E, E F$ and $F A$ respectively. Find the additional force that will keep the system of forces in equilibrium. [12.49 N at 76° above AB]

Thank you
Dr. Bbosa Science

