Errors

An error, commonly known as absolute error is the absolute difference between exact value and approximate value.

Source of errors

(a) Rounding off

These errors that arise as a result of simply approximating the exact value of different numbers.

Example 1

Round off the following numbers to the given number of decimal places or significant figures.
(i) 3.896234 to 4 dp [3.8962]
(ii) $\frac{2}{3}$ to 3 dp [0.667]
(iii) 5.002570 to $3 \mathrm{~s} . \mathrm{f}[5.00]$
(iv) 0.00652673 bto4 s.f [0.006527]
(v) 7.00214 to 4 s.f. [7.002]
(vi) 5415678 to 3 s.f. [5420000]
(b) Truncation

These occur when an infinite number is terminated/cutoff (without rounding off] at some point.

Example 2

Truncate the following number to the given number of decimal places (d.p) or significant figures. s.f.
(i) 4.56172 to 2 dp
[4.56]
(ii) $\frac{2}{3}$ to $3 \mathrm{dp}[0.666$] (iii) 1.345618 to 4 s.f. [1.345]

Common terms used

(a) Error or absolute error

If x represent an approximate value of X and Δx is the error approximation
\mid Error $|=|$ exact value - approximate value \mid
$|\Delta x|=|X-x|$

Example 3

Round off 32.5263 to 2 dp and determine the absolute error.
Solution
$X=32.5263, x=32.53$

$$
|\Delta x|=|X-x|=|32.5263-32.53|=0.0037
$$

(b) Relative error

Relative error $=\frac{\text { absolute error }}{\text { exact value }}=\frac{|\Delta x|}{X}=\frac{|X-x|}{X}$
(c) Percentage error or percentage relative error

Percentage relative error $=\frac{\text { absolute error }}{\text { exact value }} \times 100 \%=\frac{|\Delta x|}{X} \times 100 \%=\frac{|X-x|}{X} \times 100 \%$
Example 4
Find the percentage error in rounding off $\sqrt{3} 2 \mathrm{dp}$
Solution
$\mathrm{X}=\sqrt{x}=1.732050808, \mathrm{x}=1.73$
Percentage error $=\frac{|X-x|}{X} \times 100 \%=\frac{|1.732050808-1.73|}{1.732050808} \times 100 \%=0.118 \%$
(d) Error bound or minimum possible error in an approximated number This depends on the number of decimal places the number is rounded to. If the number is rounded to ndp , then the maximum possible error in that number is $=0.5 \times 10^{-\mathrm{n}}$.

Example 4

If a student weighs 50 kg . Find the range where his weight lies
Solution
$\mathrm{n}=0 \mathrm{dp}, \mathrm{e}=0.5 \times 10^{-0}=0.5$
Range $=50 \pm 0.5=(49.5,50.5)$

Example 5

If x is given to stated level of accuracy stat the lower and upper bounds of x
(a) 6.45
$\mathrm{n}=2 \mathrm{dp}, \mathrm{e}=0.5 \times 10^{-2}=0.005$
Lower bound $=6.45-0.005=6.445$
upper bound $=6.45+0.005=6.455$
(b) 0.278
$\mathrm{n}=3 \mathrm{dp}, \mathrm{e}=0.5 \times 10^{-3}=0.0005$
(c) Lower bound $=0.278-0.0005=0.2775$
upper bound $=0.278+0.0005=0.2785$

Example 6

A value of $w=150.58 \mathrm{~m}$ was obtained when measuring the width of the football pitch. Given that the relative error in this value as 0.07%, find the limit within which the value w lies.
$\%$ relative error $=\frac{|\Delta w|}{w} x 100 \%$
$0.07=\frac{|\Delta w|}{150.58} \times 100$
$|\Delta w|=0.105$

Lower limit $=150.58-0.105=150.475$
Upper limit $=150.58+0.105=150.685$

Absolute error in an operation

When the minimum and maximum value is known then.
absolute error $=\frac{1}{2}[$ maximum value - minimum value $]$

Absolute error in addition

Given two numbers a and b with errors $\Delta \mathrm{a}+\Delta \mathrm{b}$

$$
\begin{aligned}
& (a+b)_{\max }=a_{\max }+b_{\max }=(a+\Delta a)+(b+\Delta b) \\
& (a+b)_{\min }=a_{\min }+b_{\min }=(a-\Delta a)+(b-\Delta b)
\end{aligned}
$$

Absolute error in subtraction

Given two numbers a and b with errors $\Delta \mathrm{a}+\Delta \mathrm{b}$

$$
\begin{aligned}
& (a-b)_{\max }=a_{\max }-b_{\min }=(a+\Delta a)-(b-\Delta b) \\
& (a+b)_{\min }=a_{\min }-b_{\max }=(a-\Delta a)+(b+\Delta b)
\end{aligned}
$$

Example 7

Given that $a=2.453, b=6.79$, find the limits and hence absolute error of
(i) $a+b$
solution
$\mathrm{a}=2.453, \Delta \mathrm{a}=0.0005$ and $\mathrm{b}=6.79, \Delta \mathrm{~b}=0.005$
$(a+b)_{\max }=a_{\max }+b_{\max }=(a+\Delta a)+(b+\Delta b)$
$=(2.453+0.0005)+(6.79+0.005)=9.2485$
$(\mathrm{a}+\mathrm{b})_{\text {min }}=\mathrm{a}_{\text {min }}+\mathrm{b}_{\text {min }}=(\mathrm{a}-\Delta \mathrm{a})+(\mathrm{b}-\Delta \mathrm{b})$
$=(2.453-0.0005)+(6.79-0.005)=9.2375$
lower limit $=9.2375 ;$ upper limit $=9.2485$
absolute error $=\frac{1}{2}[9.2485-9.2375]=0.0055$
(ii) $a-b$
solution

$$
\begin{aligned}
(a+b)_{\max } & =a_{\max }-b_{\min }=(a+\Delta a)-(b-\Delta b) \\
& =(2.453+0.0005)-(6.79-0.005)=-4.3315 \\
(a+b)_{\min } & =a \min -b \max =(a-\Delta a)-(b+\Delta b) \\
& =(2.453-0.0005)-(6.79+0.005)=-4.3425
\end{aligned}
$$

lower limit $=-4.3425 ;$ upper limit $=-4.3315$
absolute error $=\frac{1}{2}[-4.3315--4.3425]=0.0055$

Absolute error in multiplication

Given two numbers a and b with errors $\Delta \mathrm{a}+\Delta \mathrm{b}$

$$
\begin{aligned}
& (a b)_{\max }=a_{\max } b_{\max }=(a+\Delta a)(b+\Delta b) \\
& (a b)_{\min }=a_{\min } b_{\min }=(a-\Delta a)(b-\Delta b)
\end{aligned}
$$

Example 8

Given that $a=4.617$, and $b=3.65$ find the absolute error in $a b$
solution
$a=4.617, \Delta a=0.0005, b=3.65, \Delta b=0.005$
$(a b)_{\max }=a_{\max } b_{\max }=(a+\Delta a)(b+\Delta b)=(4.617+0.0005)(3.65 b+0.005)=16.87696$
$(a b)_{\min }=a_{\min } b_{\min }=(a-\Delta a)(b-\Delta b)=(4.617-0.0005)(3.65 b-0.005)=16.82853$
absolute error $=\frac{1}{2}[$ maximum value - minimum value $]=\frac{1}{2}(16.87696-16.82853)=0.02422$

Example 9

Given that $a=4.617$, and $b=-3.65$ find the
(i) Limits of values where ab lies

Solution

$$
a=4.617, \Delta a=0.0005, b=-3.65, \Delta b=0.005
$$

$(\mathrm{ab})_{\max }=\mathrm{a}_{\max } \mathrm{b}_{\max }=(4.617+0.0005)(-3.65 \mathrm{~b}+0.005)=-16.83079$
$(\mathrm{ab})_{\min }=\mathrm{a}_{\min } \mathrm{b}_{\min }=(4.617-0.0005)(-3.65 \mathrm{~b}-0.005=-16.87331$
$(a b)_{\text {min }}=a_{\text {min }} b_{\text {min }}=(4.617-0.0005)(-3.65 b-0.005=-16.87331$
Lower limit $=-16.87331$; upper limit $=-16.83079$
(ii) the interval of values where ab lies
(-16.87331, -16.83079)
(iii) the absolute error

Absolute error $=\frac{1}{2}[-16.83079--16.87331]=0.02126$

Absolute error n division

Given two numbers a and b with errors $\Delta \mathrm{a}+\Delta \mathrm{b}$

$$
\begin{aligned}
& \left(\frac{a}{b}\right)_{\max }=\frac{a_{\max }}{b_{\min }}=\frac{(a+\Delta a)}{(b-\Delta b)} \\
& \left(\frac{a}{b}\right)_{\min }=\frac{a_{\min }}{b_{\max }}=\frac{(a-\Delta a)}{(b+\Delta b)}
\end{aligned}
$$

Example 10

Given $a=1.26, b=0.435$. Find the absolute error of
(i) Range of value where $\frac{a}{b}$ lies

$$
\left(\frac{a}{b}\right)_{\max }=\frac{a_{\max }}{b_{\min }}=\frac{(1.25+0.005)}{(0.435-0.0005)}=2.91139
$$

$$
\left(\frac{a}{b}\right)_{\min }=\frac{a_{\min }}{b_{\max }}=\frac{(1.25-0.005)}{(0.435+0.0005)}=2.88175
$$

Range of values is $(2.88175,2.91139)$
(ii) Absolute error

$$
=\frac{1}{2}(2.91139-2.88175)=0.01482
$$

Example 11

(a) Given that $\mathrm{y}=e^{x}$ and $\mathrm{x}=0.62$ correct to two decimal places, find the interval within which the exact value of y lies. (05marks)

$$
\begin{aligned}
& e_{x}=0.005 \\
& y_{\max }=e^{0.625}=1.8682 \\
& y_{\min }=e^{0.615}=1.8497 \\
& \text { The interval }=(1.8497,1.8682)
\end{aligned}
$$

(b) Show that the maximum possible relative error in $y \sin ^{2} x$ is

$$
\begin{aligned}
& \left|\frac{\Delta y}{y}\right|+2 \cot x|\Delta x|, \text { where } \Delta x \text { and } \Delta y \text { are errors in } \mathrm{x} \text { and } \mathrm{y} \text { respectively } \\
& \text { Hence find the percentage error in calculating } \mathrm{y} \sin ^{2} x \text { if } \mathrm{y}=5.2 \pm 0.05 \text { and } \mathrm{x}=\frac{\pi}{6} \pm \frac{\pi}{360} \\
& \text { (07 marks) } \\
& \mathrm{z}=\mathrm{y} \sin ^{2} \mathrm{x} \\
& e_{z}=\Delta y \sin ^{2} x+2 \mathrm{y} \Delta x \cos x \sin x \\
& \frac{e_{z}}{z}=\frac{\Delta y \sin ^{2} x}{\mathrm{ysin}^{2} \mathrm{x}}+\frac{2 \mathrm{y} \Delta x \cos x \sin x}{\mathrm{y} \sin ^{2} \mathrm{x}} \\
& \left|\frac{e_{z}}{z}\right|=\left|\frac{\Delta y}{y}+2 \cot x . \Delta x\right| \\
& \quad \leq\left|\frac{\Delta y}{y}\right|+2 \cot x .|\Delta x| \\
& \therefore \text { Maximum possible error is }\left|\frac{\Delta y}{y}\right|+2 \cot x .|\Delta x| \\
& \text { percentage error }=\left[\frac{0.05}{5.2}+2 \cot \frac{\pi}{6} \cdot\left|\frac{\pi}{360}\right|\right] x 100 \%=3.9845 \%
\end{aligned}
$$

Example 12

Two numbers A and B have maximum possible error e_{a} and e_{b} respectively.
(a) Write an expression for the maximum possible error in their sum

Maximum possible error $=\left|e_{a}\right|\left|e_{b}\right|$
(b) If $A=2.03$ and $B=1.547$, find the maximum possible error in $A+B$ (05marks)

$$
\begin{aligned}
& e_{a}=0.005, e_{b}=0.0005 \\
& \begin{aligned}
\left|e_{(A+B)}\right| & =|0.005|+|0.0005| \\
& =0.0055
\end{aligned}
\end{aligned}
$$

Example 13

Given that $\mathrm{y}=\frac{1}{x}+x$ and $\mathrm{x}=2.4$ correct to one decimal place, find the limits within which y lies. (05marks)

Error in $2.4=\frac{1}{2} x \frac{1}{10}=0.05$
$y_{\text {max }}=2.45+\frac{1}{2.35}=2.8755$
$y_{\text {min }}=2.35+\frac{1}{2.45}=2.7582$
\therefore the limits are [2.7582, 2.8755]

Example 14

The numbers $X=1.2, Y=1.33$ and $Z=2.245$ have been rounded off to the given decimal places. find the maximum possible value of $\frac{Y}{Z-X}$ correct to 3 decimal places

Maximum value $=\frac{(Y+\Delta Y)}{(Z-\Delta Z)-(X+\Delta X)}=\frac{(1.33+0.005)}{(2.245-0.0005)-(1.2+0.05)}=1.342$

Revision exercise 1

1. Given the numbers $x=2.678$ and $y=0.8765$ measured the nearest possible decimal places indicated.
(i) state the maximum possible error in x ans $y[\Delta x=0.0005, \Delta y=0.00005]$
(ii) find the limits within which the product $x y$ lie [2.3467, 2.3478]
(iii) determine the maximum possible error in xy [0.000572]
2. The length, width and height of water all rounded off to $3.65 \mathrm{~m}, 2.14 \mathrm{~m}$ and 2.5 m respectively. Determine the least and greatest amount of water the tank can contain [19.066, 19.992]
3. Given that the values $x=4, y=6$ and $z=8$ each has been approximate to the nearest integer. find the maximum and minimum values of
(i) $\frac{y}{x}[1.85714,1.22222]$
(ii) $\frac{z-x}{y}[0.90909,0.46154]$
(iii) $\quad(x+y) z[93.5,67.5]$

Error propagation

Triangular inequality state that $|a \pm b| \leq|\Delta a|+|\Delta b|$

Addition

Consider two numbers X and Y are approximated by x and y with errors Δx and Δy.

$$
\begin{aligned}
& \begin{aligned}
\left|e_{x+y}\right| & =|(x+\Delta x)+(y+\Delta y)-(x+y)| \\
& =|\Delta x+\Delta y|=|\Delta x|+|\Delta y|
\end{aligned} \\
& \text { R.E } E_{\max }=\left[\left|\frac{\Delta x}{X+Y}\right|+\left|\frac{\Delta y}{X+Y}\right|\right]
\end{aligned}
$$

Alternatively

$$
\begin{aligned}
\text { absolute error } & =\frac{1}{2}[\max -\min] \\
& =\frac{1}{2}[(x+\Delta x)+(y+\Delta y)]-[(x-\Delta x)+(y-\Delta y)]
\end{aligned}
$$

$\left|e_{x+y}\right|=|\Delta x+\Delta y|=|\Delta x|+|\Delta y|$
R. $E_{\max }=\left[\left|\frac{\Delta x}{X+Y}\right|+\left|\frac{\Delta y}{X+Y}\right|\right]$

Example 15

Given numbers $x=7.824$ and $y=3.36$ rounded to the given number of decimal places. Find the limits within which $(x+y)$ lies

Solution

$\Delta x=0.0005, \Delta y=0.005$
$\left|e_{x+y}\right|=|\Delta x|+|\Delta y|=0.0005+0.005=0.0055$

Alternatively
$(x+y)_{\max }=7.8245+3.365=10.1895$
$(x+y)_{\min }=7.8235+3.355=10.1785$

Upper limit $=10.184+0.0055=10.1895$
Lower limit $=10.184-0.0055=10.1785$

Example 16

If $x=4.95$ and $y=2.2$ are each rounded off to the given number of decimal places. Calculate
(i) The percentage error in $x+y$

Solution
$\Delta x=0.005, \Delta y=0.05$
\%error $=\left[\left|\frac{\Delta x}{X+Y}\right|+\left|\frac{\Delta y}{X+Y}\right|\right] x 100 \%=\left[\left|\frac{0.005}{4.95+2.2}\right|+\left|\frac{0.05}{4.95+2.2}\right|\right] x 100 \%=0.769$
Alternatively
Working value $x+y=4.95+2.2=7.15$
$\left|e_{x+y}\right|=|\Delta x|+|\Delta y|=0.005+0.05=0.055$
$\%$ error $=\frac{0.055}{7.15} \times 100 \%=0.769$
(ii) Find the limit within which $(x+y)$ is expected to lie. Give your answer to two decimal places.

Upper limit $=7.15+0.055=7.21$; lower limit $=7.15-0.055=7.10$
Alternatively
Upper limit $=4.955+2.25=7.21$; lower limit $=4.945+2.15=7.10$

Subtraction

Consider two numbers X and Y are approximated by x and y with errors Δx and Δy.

$$
\begin{aligned}
& \begin{aligned}
\left|e_{x-y}\right| & =|(x+\Delta x)-(y+\Delta y)-(x-y)| \\
& =|\Delta x-\Delta y|=|\Delta x|+|\Delta y|
\end{aligned} \\
& \text { R.E } E_{\max }=\left[\left|\frac{\Delta x}{X-Y}\right|+\left|\frac{\Delta y}{X-Y}\right|\right]
\end{aligned}
$$

Alternatively
absolute error $=\frac{1}{2}[\max -\min]$

$$
=\frac{1}{2}\{[(x+\Delta x)-(y-\Delta y)]-[(x+\Delta x)-(y+\Delta y)]\}
$$

$\left|e_{x-y}\right|=|\Delta x+\Delta y|=|\Delta x|+|\Delta y|$
R. $\mathrm{E}_{\max }=\left[\left|\frac{\Delta x}{X-Y}\right|+\left|\frac{\Delta y}{X-Y}\right|\right]$

Example 17

Given number $x=6.375$ and y 4.46 rounded off to the given number of decimal places. Find the limit within which $(x-y)$ lies

Solution
$\Delta x=0.0005, \Delta y=0.005$
$\left|e_{x-y}\right|=|\Delta x|+|\Delta y|=|0.0005|+|0.005|=0.0055$
working value $=6.375-4.46=1.915$
Upper limit $=1.915+0.0055=1.9205 ;$ Lower limit $=1.915-0.0055=1.9095$
Alternatively
$(x-y)_{\max }=6.3755-4.455=1.9205$
$(x-y)_{\text {min }}=6.3745-4.465=1.9095$

Example 18

If $x=1.563$ and $y=9.87$ are each rounded off to the given number of decimal places. Calculate
(i) the percentage error in $(\mathrm{x}-\mathrm{y})$
\% error $=\left[\left|\frac{\Delta x}{X-Y}\right|+\left|\frac{\Delta y}{X-Y}\right|\right] x 100 \%=\left[\left|\frac{0.0005}{1.563-9.87}\right|+\left|\frac{0.005}{1.563-9.87}\right|\right] x 100 \%=0.0662$
Alternatively
Working value $=\mathrm{x}-\mathrm{y}=1.563 \quad 9.87=-8.307$
$\left|e_{x-y}\right|=|\Delta x|+|\Delta y|=|0.0005|+|0.005|=0.0055$
$\%$ error $=\frac{0.0055}{-8.307} \times 100 \%=0.0662$
(ii) the limit within which $(x-y)$ is expected to lie. Give your answer to three decimal places Upper limit $=-8.307+0.0055=-8.302$
Lower limit $=-8.307-0.0055=-8.313$
Alternatively

$$
\begin{aligned}
& (x-y)_{\max }=1.5635-9.865=-8.302 \\
& (x-y)_{\min }=1.5625-9.875=-8.313
\end{aligned}
$$

Multiplication

Consider two numbers X and Y are approximated by x and y with errors $\Delta \mathrm{x}$ and $\Delta \mathrm{y}$.

$$
\begin{aligned}
\left|e_{x y}\right|= & |(x+\Delta x)(y+\Delta y)-(x y)| \\
& =|x y+y \Delta x+x \Delta y+\Delta x \Delta y-x y|
\end{aligned}
$$

Since Δx and Δy are very small, $\Delta x \Delta y \approx 0$

$$
\left|e_{x y}\right|=|y \Delta x+x \Delta y|=|y \Delta x|+|x \Delta y|
$$

$$
\text { R.E }_{\max }=\left|\frac{y \Delta x}{x y}\right|+\left|\frac{x \Delta y}{x y}\right|
$$

$$
=\left|\frac{\Delta x}{x}\right|+\left|\frac{\Delta y}{y}\right|
$$

Alternatively
absolute error $=\frac{1}{2}|\max -\min |$

$$
=\frac{1}{2}[(x+\Delta x)(y+\Delta y)-[(x-\Delta x)(y-\Delta y)]]
$$

$\left|e_{x y}\right|=|y \Delta x+x \Delta y|=|y \Delta x|+|x \Delta y|$
R. $\mathrm{E}_{\text {max }}=\left|\frac{y \Delta x}{x y}\right|+\left|\frac{x \Delta y}{x y}\right|$

Example 19

Given numbers $x=6.375$ and $y=4.46$ rounded off to eh given number of decimal places. Find the limit within which ($x y$) lies

Solution

$\Delta x=0.0005 \Delta y=0.005$
$\left|e_{x y}\right|=|y \Delta x|+|x \Delta y|=|6.375 \times 0.005|+|4.46 \times 0.0005|=0.0341$
working value $=x y=6.375 \times 4.46=28.4325$
Upper limit $=28.4325+0.0341=28.4666$
Lower limit $=28.4325-0.0341=28.3984$
Alternatively
$(x y)_{\text {max }}=6.3755 \times 4.465=28.4666$
$(x y)_{\text {min }}=6.3745 \times 4.455=28.3984$

Example 20

If $x=1.563$ and $y=9.87$ are each rounded off to the given number of decimal places. Calculate
(i) Percentage error in (xy)
$\Delta x=0.0005, \Delta y=0.005$
$\%$ error $=\left\{\left|\frac{\Delta x}{x}\right|+\left|\frac{\Delta y}{y}\right|\right\} x 100 \%=\left\{\left|\frac{0.0006}{1.563}\right|+\left|\frac{0.005}{9.87}\right|\right\} x 100 \%=0.0826$
Alternatively
Working value $=1.563 \times 9.87=15.4268$

$$
\begin{array}{r}
\left|e_{x y}\right|=|y \Delta x|+|x \Delta y|=9.87 \times 0.0005+1.563 \times 0.005=0.0128 \\
\% \text { error }=\frac{0.0128}{15.4268} \times 100 \%=0.0826
\end{array}
$$

(ii) the limit within which (xy) is expected to lie. Give your answer to three decimal places.

Upper limit $=15.4268+0.0128=15.440$
Lower limit $=15.4268-0.0128=15.414$
Alternatively
Upper limit $=1.5635 \times 9.875=15.440$
Lower limit $=1.5625 \times 9.865=15.414$

Division

Consider two numbers X and Y are approximated by x and y with errors Δx and Δy.

$$
\begin{aligned}
|e x / y| & =\left|\frac{x+\Delta x}{y+\Delta y}-\frac{x}{y}\right|=\left|\frac{x y+y \Delta x-x \Delta y-x y}{y^{2}+y \Delta y}\right| \\
& =\left|\frac{y \Delta x-x \Delta y}{y^{2}\left(1+\frac{\Delta y}{y}\right)}\right|
\end{aligned}
$$

Since Δx and Δy are very small, then $\frac{\Delta y}{y} \approx 0$

$$
\begin{aligned}
& \left|e_{x} / y\right|=\left|\frac{y \Delta x-x \Delta y}{y^{2}}\right| \\
& \left|e_{x} / y\right| \leq \frac{|y \Delta x|+|x \Delta y|}{\left|y^{2}\right|} \\
& \mathrm{e}_{\max }=\frac{|y \Delta x|+|x \Delta y|}{\left|y^{2}\right|} \\
& \text { R. } \mathrm{E}_{\max }=\frac{|y \Delta x|-|x \Delta y|}{\left|y^{2}\right|} \div \frac{x}{y} \\
& \text { R. } \mathrm{E}_{\max }=\left|\frac{\Delta x}{x}\right|+\left|\frac{\Delta y}{y}\right|
\end{aligned}
$$

Alternatively
absolute error $=\frac{1}{2}|\max -\min |$

$$
\begin{aligned}
&=\frac{1}{2}\left|\frac{(x+\Delta x)}{(y-\Delta y)}-\frac{(x-\Delta x)}{(y+\Delta y)}\right| \\
& e_{x / y}=\left|\frac{x \Delta y+y \Delta x}{y^{2}-\Delta y^{2}}\right|
\end{aligned}
$$

Since Δx and Δy are very small, then $\Delta y^{2} \approx 0$

$$
\begin{aligned}
& \left|e_{x / y}\right|=\left|\frac{\mid y \Delta x-x \Delta y}{y^{2}}\right| \\
& |e x / y| \leq \frac{|y \Delta x|+|x \Delta y|}{\left|y^{2}\right|} \\
& \mathrm{e}_{\max }=\frac{|y \Delta x|+|x \Delta y|}{\left|y^{2}\right|} \\
& \text { R.E } \operatorname{E}_{\max }=\frac{|y \Delta x|-|x \Delta y|}{\left|y^{2}\right|} \div \frac{x}{y} \\
& \text { R.E }_{\max }=\left|\frac{\Delta x}{x}\right|+\left|\frac{\Delta y}{y}\right|
\end{aligned}
$$

Example 21

Given numbers $x=5.794$ and $y=0.28$ rounded off to the given number of decimal places. Find limit within which $\frac{x}{y}$ lies

Solution

$\Delta x=0.0005, \Delta y=0.005$

$$
\begin{aligned}
|e x / y| & =\frac{|y \Delta x|+|x \Delta y|}{\left|y^{2}\right|} \\
& =\frac{|0.28 \times 0.0005|+|5.794 \times 0.005|}{\left|0.8^{2}\right|} \\
& =0.3713
\end{aligned}
$$

Working value $=\frac{x}{y}=\frac{5.794}{0.28}=20.6929$

Example 22

If $x=7.37$ and $y=2.00$ are each rounded off to the given number of decimal places. Calculate
(i) Percentage error
$\%$ error $==\left\{\left|\frac{\Delta x}{x}\right|+\left|\frac{\Delta y}{y}\right|\right\} x 100 \%=\left\{\left|\frac{0.005}{7.37}\right|+\left|\frac{0.005}{2.00}\right|\right\} x 100 \%=0.318$
Alternatively

$$
|e x / y|=\frac{|y \Delta x|+|x \Delta y|}{\left|y^{2}\right|}=\frac{|2.00 \times 0.005|+|7.37 \times 0.005|}{\left|2.00^{2}\right|}=0.0117
$$

Working value $=\frac{x}{y}=\frac{7.37}{2.00}=3.685$
$\%$ error $=\frac{0.0117}{3.685} \times 100=0.318$
(ii) the limit within which $\left(\frac{x}{y}\right)$ is expected to lie. Give your answer to three decimal places. Upper limit $=3.685+0.318=3.697$ Lower limit $=3.685-0.318=3.673$

Alternatively
Upper limit $=\frac{7.375}{1.995}=3.697$
Lower limit $=\frac{7.365}{2.005}=3.673$

Error in functions

Given a function $f(x)$ with a maximum possible error Δx.
Absolute error, $|e|=|\Delta x| f^{1}(x)$

Maximum possible relative error, R.E $=\frac{|\Delta x| f^{1}(x)}{f(x)}$

Example 23

Find the absolute error and maximum relative error in each of the following functions
(i) $\mathrm{y}=\mathrm{x}^{4}$

$$
\begin{aligned}
& |e|=|\Delta x| f^{1}(x)=4 \mathrm{x}^{3}|\Delta x| \\
& \text { R.E }=\frac{|\Delta x| f^{1}(x)}{f(x)}=\frac{4 \mathrm{x}^{3}|\Delta x|}{x^{4}}=\frac{4|\Delta x|}{x}
\end{aligned}
$$

(ii) $\mathrm{y}=x^{\frac{3}{2}}$
$|e|=|\Delta x| f^{1}(x)=\frac{3}{2} x^{\frac{1}{2}}|\Delta x|$

$$
\text { R.E }=\frac{|\Delta x| f^{1}(x)}{f(x)}=\frac{\frac{3}{2} x^{\left.\frac{1}{2} \right\rvert\,}|\Delta x|}{x^{\frac{3}{2}}}=\frac{3}{2} \frac{|\Delta x|}{x}
$$

(iii) $y=\sin x$

$$
|e|=|\Delta x| f^{1}(x)=\cos x|\Delta x|
$$

$$
\text { R.E }=\frac{|\Delta x| f^{1}(x)}{f(x)}=\frac{\cos x|\Delta x|}{\sin x}=|\Delta x||\cot x|
$$

Example 24

Given that the error in measuring an angle is 0.4^{0}. find the maximum possible error and relative error in tanx if $\mathrm{x}=60^{\circ}$.

Solution

$|e|=|\Delta x| f^{1}(x)=\left(1+\tan ^{2} \mathrm{x}\right)|\Delta x|$

$$
R . E=\frac{0.0280}{\tan 60}=0.0162
$$

$|e|=\left(1+\tan ^{2} 60\right)\left|\frac{0.4}{180} \pi\right|=0.0280$

Error in a function that has more variables

Given a function $f(x, y)$ with a maximum possible error Δx and Δy respectively
Absolute error, $|e|=|\Delta x| f^{1}(x)+|\Delta y| f^{1}(y)$
Maximum possible relative error $=\frac{|\Delta x| f^{1}(x)+|\Delta y| f^{1}(y)}{f(x, y)}$

Example 25

Given that X and Y are rounded off to give x and y with error Δx and Δy respectively. Show that the maximum relative error recorded in $x^{4} y$ is given by $4\left|\frac{\Delta x}{x}\right|+\left|\frac{\Delta y}{y}\right|$

Solution
$|e|=|\Delta x| f^{1}(x)+|\Delta y| f^{1}(y)=\left|\Delta x 4 x^{3} y\right|+\Delta y x^{4}$

$$
\begin{aligned}
\text { R.E } & =\frac{4\left|x^{3} y\right||\Delta x|+\left|x^{4}\right||\Delta y|}{x^{4} y} \\
& =4\left|\frac{\Delta x}{x}\right|+\left|\frac{\Delta y}{y}\right|
\end{aligned}
$$

Example 26

Show that the maximum possible relative error in $y \sin ^{2} x$ is
$\left|\frac{\Delta y}{y}\right|+2 \cot x|\Delta x|$, where Δx and Δy are errors in x and y respectively
Hence find the percentage error in calculating $y \sin ^{2} x$ if $y=5.2 \pm 0.05$ and $x=\frac{\pi}{6} \pm \frac{\pi}{360}$ (07 marks)
$z=y \sin ^{2} x$
$e_{z}=\Delta y \sin ^{2} x+2 y \Delta x \cos x \sin x$
$\frac{e_{z}}{z}=\frac{\Delta y \sin ^{2} x}{y \sin ^{2} \mathrm{x}}+\frac{2 \mathrm{y} \Delta x \cos x \sin x}{\mathrm{y} \sin ^{2} \mathrm{x}}$
$\left|\frac{e_{z}}{z}\right|=\left|\frac{\Delta y}{y}+2 \cot x . \Delta x\right|$
$\leq\left|\frac{\Delta y}{y}\right|+2 \cot x .|\Delta x|$
\therefore Maximum possible error is $\left|\frac{\Delta y}{y}\right|+2 \cot x .|\Delta x|$
percentage error $=\left[\frac{0.05}{5.2}+2 \cot \frac{\pi}{6} \cdot\left|\frac{\pi}{360}\right|\right] x 100 \%=3.9845 \%$

Thank you
Dr. Bbosa Science

