

This document is sponsored by

The Science Foundation College Kiwanga- Namanve
Uganda East Africa
Senior one to senior six

+256 778 633 682, 753 802709 Based on, best for sciences

Flowcharts in mathematics

A flow chart is a diagram comprising of systematic steps followed in order to solve a problem.

Shapes used

Start/stop

2. OPERATIONASSIGNMENT

This indicates that the new number is obtained by adding one to the previous N

3. Decision box

Note: all other shapes can be interchanged except for the decision box

Dry run or trace

This is the method of predicting the outcome of a given flow chart using a table

Perform a dry run and state the purpose of the flowchart

Example 2
Study the flow chart below and perform dry run of the flowchart

Solution

Dry run

N	S	Is N = 15?
1	1	NO
3	4	NO
5	9	NO
7	16	NO
9	25	NO
11	36	NO
13	49	NO
15	64	YES

Purpose is to compute and print the first 8 square numbers

Perform a dry run and state the purpose of the flowchart

Solution

Dry run

С	R	Is C = 8?
0	1	NO
1	2	NO
2	4	NO
3	8	NO
5	32	NO
6	64	NO
7	128	NO
8	256	YES

Purpose is to compute and print 28

Example 4

The flowchart below is used to read the root of the equation $2x^3 + 5x - 8 = 0$

Carry out a dry run of the flow chart and obtain the root of $2x^3 + 5x - 8 = 0$ with an error less than 0.005

N	X_n	X_{n+1}	$ X_{n+1}-X_n $
0	1.2	1.0933	0.1067
1	1.0933	1.0867	0.0066
2	1.0867	1.0866	0.001

Root is 1.087

Study the flowchart below

- (i) Carry out a dry run of the flowchart, taking N = 20, XO = 4 and obtain the root of correct to 3dp.
- (ii) State its purpose

Solution

N	X_n	X_{n+1}	$ X_{n+1}-X_n $
0	4.0	4.5	0.5
1	4.5	4.4722	0.0278
2	4.4722	4.4721	0.0001

Root is 4.472

(ii) to print the square root of a number N

Constructing flowcharts

 Draw a flow chart that reads and prints the mean of the first ten counting numbers

Solution

Let S be sum and m the mean

Draw a flowchart that computes and prints the sum of the cubes of the first 30 natural numbers

2. Draw a flowchart for computing and printing the mean of the square roots of the first 20 natural numbers

4. Draw a flowchart that computes the root of the equation $ax^2 + bx + c = 0$

Solution

Newton Raphson's method and Flowcharts

Example 6

(a) Show that the iterative formula based on Newton Raphson's method for approximating the root of the equation $2 \ln x - x + 1 = 0$ is given by

- (b) Draw a flow chart that
- (i) reads the initial approximation x_0 of the root
- (ii) computes and prints the root correct to two decimal places, using the formula in (a) (05marks)

(ii) Taking x_0 = 3.4, perform a dry run to find the root of the equation (04marks)

Dry run

n	X _n	X _{n+1}	$ x_{n+1}-x_n $
0	3.4	3.51548	0.11548
1	3.51548	3.51286	0.00262
2	3.51286	3.51286	0.0000

(a) Show that the Newton-Raphson formula for finding the root of the equation $x = N^{\frac{1}{5}}$ is given by $X_{n+1} = \frac{4X_n^5 + N}{5X_n^4}$, n = 0, 1, 2, ... (04marks)

$$x = N^{\frac{1}{5}}$$

$$x^{5} = N$$

$$x^{5} - N = 0$$
Let $f(x) = x^{5} - N$

$$f(x_{n}) = x_{n}^{5} - N$$

$$f'(x_{n}) = 5x_{n}^{4}$$

Using

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^5 - N}{5x_n^4} = \frac{5x_n^5 - x_n^5 - N}{5x_n^4}$$
$$x_{n+1} = \frac{4x_n^5 + N}{5x_n^4}, n = 0, 1, 2 \dots$$

- (b) Construct a flow chart that
 - (i) reads N and the first approximation x₀.
 - (ii) computes the root to three decimal places
 - (iii) Prints the root (x_n) and the number of iteration (n) (05marks)

(c) Taking N = 50, $x_0 = 2.2$, perform a dry run for the flow chart. Give your root correct to three decimal places.(03marks)

$$N = 50$$
, $x_0 = 2.2$

n	X _n	X _{n+1}	$ x_{n+1}-x_n $
0	2.2	2.18688	0.01312
1	218688	2.18672	0.00016

Root = 2.187(3D)

(a) Show that the iterative formula based on Newton Raphson's method for solving the equation

$$Inx + x - 2 = 0$$
 is given by

$$X_{n+1} = \frac{x_n(3-Inx_n)}{1+x_n}$$
, $n = 0, 1, 2 \dots$ (04marks)

let
$$f(x) = Inx + x - 2$$

 $f(x_n) = Inx_n + x_n - 2$
 $f'(x) = \frac{1}{x_n} + 1 = \frac{1 + x_n}{x_n}$

Using N.R.M

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

 $= x_n - \left(\frac{\ln x_n + x_{n-2}}{\frac{1+x_n}{x_n}}\right)$ $= \frac{x_n}{1} - \frac{x_n(\ln x_n + x_{n-2})}{1+x_n}$ $= \frac{x_n(1+x_n - \ln x_n - x_n + 2)}{1+x_n}$

- (b)(i) Construct a flow chart that;
- reads the initial approximation as r
- computes using the interactive formula in (a), and prints the root of equation $\ln x + x 2 = 0$, when the error is less than 1.0×10^{-4} .

(ii) Perform a dry run of the flow chart when r = 1.6. (08marks)

n	\mathbf{x}_{n}	X_{n+1}	$ x_{n+1}-x_n $
0	1.6	1.5569	0.0431
1	1.5569	1.5571	0.0002
2	1.5571	1.5571	0.0000

Hence the root = 1.557(3D)

- (a) Show that iterative formula based on Newton Raphson's method for approximating the sixth root of a number N is given by $x_{n+1}=\frac{1}{6}\Big(5x_n+\frac{N}{x_n^5}\Big)$
- (b) Draw a flowchart that
 - (i) Reads N and the initial approximation x_0 of the root
 - (ii) computes and prints the root to three decimal places
- (c) Taking N = 60, x0 = 1.9, perform a dry run for the flow chart, give your root correct to three decimal places.

Solution

$$x = N^{\frac{1}{6}}$$

$$x^{6} = N$$

$$x^{6} - N = 0$$
Let $f(x) = x^{6} - N$

$$f(x_{n}) = x_{n}^{6} - N$$

$$f'(x_{n}) = 6x_{n}^{5}$$

Using NRM

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^6 - N}{6x_n^5}$$

$$= \frac{x_n(6x_n^5) - (x_n^6 - N)}{6x_n^5}$$

$$x_{n+1} = \frac{5x_n^6 + N}{6x_n^5}, n = 0, 1, 2 \dots$$

(c) Dry run

$\boldsymbol{x_n}$	x_{n+1}	$ x_{n+1} $
		$-x_n$
1.9	1.9872	0.082
1.9872	1.9787	0.0085
1.9787	1.9786	0.0001
	1.9 1.9872	1.9 1.9872 1.9872 1.9787

- (a) Show that the iterative formula based on Newton Raphson's method for approximating the fourth root of a number N is given by $x_{n+1} = \frac{3}{4} \left(x_n + \frac{N}{3x_n^3} \right)$.
- (b) Draw a flowchart that
 - (i) Records N and initial approximation x₀ of the root
 - (ii) computes and prints the root after four iterations.
- (c) Taking N = 39.0, x0 = 2.0, perform a dry run for the flowchart, give your root correct to three decimal places

Solution

$$x = N^{\frac{1}{4}}$$

$$x^{4} = N$$

$$x^{4} - N = 0$$
Let $f(x) = x^{4} - N$

$$f(x_{n}) = x_{n}^{4} - N$$

$$f'(x_{n}) = 4x_{n}^{3}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^4 - N}{4x_n^3}$$

$$= \frac{x_n(4x_n^3) - (x_n^3 - N)}{4x_n^3}$$

$$x_{n+1} = \frac{3x_n^3 + N}{4x_n^4} = \frac{3}{4} \left(x_n + \frac{N}{3x_n^3} \right), \, n = 0, 1, 2 \dots$$

(b) Flowchart

(c) Dry run

n	x_n	x_{n+1}	$ x_{n+1}-x_n $
0	2.0	2.7188	0.7188
1	2.7188	2.5242	0.1945
2	2.5242	2.4994	0.0249
3	2.4994	4.4990	0.0004

- (a) Show that the iterative formula based on Newton's Raphson's method for finding the natural logarithm of a number N is given by $x_{n+1} = \frac{e^{x_n}(x_n-1)+N}{e^{x_n}}$, n = 0, 1, 2, ...
- (b) Draw a flowchart that
 - (i) Records N and initial approximation x_0 of the root
 - (ii) computes and prints the natural logarithm after four iteration and gives natural logarithm to 3 decimal places.
- (c) Taking N = 10, $x_0 = 2$, perform a dry run for the flowchart, give your root correct to three decimal places

Solution

(a)
$$x = InN$$
; $e^{x} = N => e^{x} - N = 0$
 $f(x) = e^{x} - N$; $f^{1}(x) = e^{x}$
 $x_{n+1} = x_{n} - \left(\frac{e^{x_{n} - N}}{e^{x}}\right)$

$$= \frac{x_{n}e^{x} - (e^{x_{n} - N})}{e^{x}}$$

$$= \frac{e^{x}(x_{n} - 1) + N}{e^{x}}$$

(b) Flowchart

(c) Dry run

n	x_n	x_{n+1}	$ x_{n+1}-x_n $
0	2.0	2.3533	0.3533
1	2.3533	2.3039	0.0494
2	2.3039	2.3026	0.0013
3	2.3026	2.3026	0.0000

Example 12

A shop offers a 25% discount on all items in their store and a second discount of 5% for paying cash.

- (a) Construct a flowchart for the above information
- (b) perform a dry run for (i) a shoe of 75,000/= cash and (ii) a shirt of 45,000/= credit

(a) Flowchart

(c) dry run

MP	D=	Pay	Cash	Credit
	0.75MP		= 0.95D	= D
75,000	56,250	cash	53437.50	
45,000	33,750	credit		33750

Example 13

Given that a man deposited 100,000/= to a bank which gives a compound interest of 5%. Draw a flowchart to compute the amount of money accumulated after 5 years and perform a dry run for the flowchart.

Flowchart

Dry run

n	Р	Α
0	100,000	100,000
1	100,000	105,000
2	105,000	110,250
3	110,250	115,762.0
4	115,762,5	121,550.625
5	121,550.625	127,628.1563

Revision Exercise

- 1. (a) show that the iterative formula based on Newton Raphson's method for approximating the cube root of a number N is given by $x_{n+1} = \frac{1}{3} \left(2x_n + \frac{N}{x_n^2} \right)$, n = 0, 1, 2, ...
 - (b) Draw a flowchart that
 - (i) reads N and the initial approximation x_0 of the root
 - (ii) computes and prints the root to three decimal places.
 - (c) Taking N = 54, x_0 = 3.7, perform a dry run for the flowchart, give your root to three decimal places [3.780]
- 2. (a) show that the iterative formula based on Newton Raphson's method for approximating the fourth root of a number N is given by $x_{n+1} = \frac{3}{4} \left(x_n + \frac{N}{3x_n^3} \right)$, n = 0, 1, 2, ...
 - (b) Draw a flowchart that
 - (i) reads N and the initial approximation x_0 of the root
 - (ii) computes and prints the root to two decimal places.
 - (c) Taking N = 35, x_0 = 2.3, perform a dry run for the flowchart, give your root to two decimal places. [2.43]
- 3. (a) show that the iterative formula based on Newton Raphson's method for finding the root of a number $N^{\frac{1}{5}}$ is given by $x_{n+1} = \left(\frac{4x_n^5 + N}{5N_n^4}\right)$, n = 0, 1, 2, ...
 - (c) Draw a flowchart that
 - (i) reads N and the initial approximation x_0 of the root
 - (ii) computes and prints the root to three decimal places.
 - (d) Taking N = 50, x_0 = 2.2, perform a dry run for the flowchart, give your root to three decimal places [2.187]
- 4. (a) show that the iterative formula based on Newton Raphson's method for approximating the cube root of $2\ln x x + 1 = 0$ is given by $x_{n+1} = x_n \left(\frac{2\ln x_n 1}{x_n 2}\right)$, n = 0, 1, 2, ...
 - (b) Draw a flowchart that
 - (i) reads N and the initial approximation x_0 of the root
 - (ii) computes and prints the root
 - (c) Taking $x_0 = 3.4$, perform a dry run for the flowchart, give your root to three decimal places
- 5. (a) show that the iterative formula based on Newton Raphson's method for approximating the cube root of $\ln x + x 2 = is$ given by $x_{n+1} = x_n \left(\frac{3 \ln x_n}{1 + x_n} \right)$, n = 0, 1, 2, ...
 - (b) Draw a flowchart that
 - (iii) reads N and the initial approximation r of the root
 - (iv) computes and prints the root of the equation, when the error is less than 10. x 10⁻⁴.
 - (c) Taking r = 1.6, perform a dry run for the flowchart, give your root to three decimal places
- 6. (a) show that the iterative formula based on Newton Raphson's method for approximating the cube root of x = In(x +2) is given by $x_{n+1} = \frac{e^{x_n}(x_n-1)+2}{e^{x_n}-1}n = 0, 1, 2, ...$
 - (b) Draw a flowchart that
 - (i) reads the initial approximation x_0 of the root
 - (ii) computes and prints the root to three decimal places
 - (c) Taking $x_0 = 1.2$, perform a dry run for the flowchart, give your root to three decimal places
- 7. (a) show that the iterative formula based on Newton Raphson's method for finding the natural logarithm of number N is given by $x_{n+1} = \frac{e^{x_n}(x_n-1)+N}{e^{x_n}}$, n=0,1,2,...
 - (b) Draw a flowchart that

- (i) reads N and the initial approximation x_0 of the root
- (ii) computes and prints the root to two decimal places.
- (c) Taking N = 45, x_0 = 3.5, perform a dry run for the flowchart, give your root to two decimal places [3.81]
- 8. (a) show that the iterative formula based on Newton Raphson's method for finding the root of the $2x^3 + 5x$ -8 is given by $x_{n+1} = \left(\frac{4x_n^3 + 8}{6x_n^2 + 5}\right)$, n = 0, 1, 2, ...
 - (b) Draw a flowchart that
 - (i) reads N and the initial approximation α of the root
 - (ii) computes and prints the root when the error is less than 0.001.
 - (c) Taking α = 1.1, perform a dry run for the flowchart, give your root to three decimal places [1.087]
- 9. A shop offers a 25% discount on all items in their store and a second discount of 5% for paying cash.
 - (a) Construct a flowchart for the above information
 - (b) perform a dry run for (i) a radio of 125,000/= cash and (ii) a T.V of 340,000/= credit [89.062.50, 255,0000]
- 10. Given that a man deposited 120,000/= to a bank which gives a compound interest of 15%. Draw a flowchart to compute the amount of money accumulated after 4 years and perform a dry run for the flowchart. [209,880.75/=]

Thank you Dr. Bbosa Science