## Location of real roots

The range where the root of an equation lie can be located using the following methods
(i) sign change
(ii) Graphical method
(a) Sign change method

## Example 1

Show that equation $x^{3}+6 x^{2}+9 x+2=0$ has a root between -1 and 0
Solution
$f(x)=x^{3}+6 x^{2}+9 x+2$
$f(-1)=(1)^{3}+6(1)^{2}+9(-1)+2=-14$
$f(0)=(0)^{3}+6(0)^{2}+9(0)+2=2$
Since there is a sign change the root lies between 0 and -1 .

## Example 2

Show that the equation $e^{2 x} \sin x-1=0$ has a root between 0 and 1

## Solution

Note that in trigonometric function the calculator must be in radian mode
$\mathrm{f}(\mathrm{x})=e^{2 x} \sin x-1$
$f(0)=e^{2(0)} \sin 0-1=-1$
$f(1)=e^{2} \sin 1-1=5.2177$
Since there is a sign change the root lies between 0 and 1.

## (b) Using graphical method

One or two graph(s) can be drawn to locate the root.
(i) Single graph method

When one graph is drawn then the root lies between the two points where the curve crosses the xaxis.

## Example 3

Using a suitable graph locate the interval over which the root of the equation $3 x^{2}+x-4=0$ lie.

| $x$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 20 | 6 | -2 | -4 | 0 | 10 | 26 |



The root lies between -1 and 1

## Example 4

Show graphically that there is positive real root of equation $x^{3}-5 x+1=0$

| $x$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | -11 | 3 | 5 | 1 | -3 | -1 | 13 |


(ii) Double graph method

When two graphs are drawn, the root lies between the points where the two curves meet.

## Note

(i) Both curves must have a consistent scale and should be labelled.
(ii) A line must be drawn using a ruler while a curve must be drawn using a freehand
(iii) Both graphs must be labelled
(iv) The initial approximation of the root must be located and indicated in the graph

## Example 5

By plotting graph of $\mathrm{y}=e^{x}$ and $\mathrm{y}=4-\mathrm{x}$ on the same axes, show the root of the equation $e^{x}+\mathrm{x}-4=0$ lie between 1 and 2


Therefore the root(1.07) lies between 1 and 2.

## Example 6

Show that the equation $\ln x+x-2=0$ has a real root between $x=1$ and $x=2$

| $x$ | 1 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y=\ln x$ | 0 | 0.1823 | 0.3365 | 0.4700 | 0.5878 | 0.6731 |
| $y=2-x$ | 1 | 0.8 | 0.6 | 0.4 | 0.2 | 0 |



Therefore the root lies between $x=1$ and $x=2$

## Example 7

By plotting graphs $y=e^{x}-2$ an $y=x \sin x$ on the same axis show that the root of the equation $e^{x}-2-x \sin x=0$ lies between $x=0.5$ and $x=1.5$

| $x$ | 0.5 | 0.75 | 1.00 | 1.25 | 1.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y=x \sin x$ | 0.240 | 0.511 | 0.841 | 1.186 | 1.496 |
| $y=e^{x}-2$ | -0.351 | 0.117 | 0.718 | 1.490 | 2.481 |



## Example 8

Show graphically the equation $x+\log x=0.5$ has only one real root that lie between 0.5 and 1 .
Solution
let $y=x+\log x-0.5$

| $x$ | 0.25 | 0.5 | 0.75 | 1.00 | 1.25 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | -.852 | -0.301 | 0.125 | 0.5 | 0.847 |



Therefore the root (0.66) lies between 0.5 and 1

## Revision exercise 1

1. By sketching graphs of $y=2 x$ and $y=\tan x$ show that the equation $2 x=\tan x$ has only one root between $x=1.1$ and 1.2 Use linear interpolation to find the value of the root correct to 2 dp .
2. Given the equation $y=\sin x-\frac{x}{3}$, show by plotting two suitable graphs on the same axis that positive root lies between $\frac{2 \pi}{3}$ and $\frac{5 \pi}{6}$.
3. Show graphically that the positive real root of the equation $2 x^{2}+3 x-3=0$ lies between 0 and 1 [0.7]
4. Use a graphical method to show that the equation $e^{x}-x-2=0$ has only one real root between 2 and -1 by drawing two graphs $y=e^{x}$ and $y=x+2[-1.8]$
5. On the same axes, draw graphs of $y=3-3 x$ and $y=2 x^{2}$ to show that the root of the equation $2 x^{2}+3 x 3=0$ lies between -3 and $-2[-2.2]$
6. Show graphically that the positive real root of the equation $x^{3}-3 x-1=0$, lies between 1 and 2 [1.6]
7. on the same axes, draw graph $y=3 x-1$ and $y=x^{3}$ to show that the root of the equation $x^{3}-3 x-1=0 l i e s$ between 0 and 1.[0.35]
8. Using suitable graphs and plotting them on the same axes. Find the root of the equation $\mathrm{e}^{2 \mathrm{x}} \sin \mathrm{x}-1=0$, in the interval $\mathrm{x}=0.1$ and $\mathrm{x}=0.8$. [0.44]
9. Show graphically that equation $e^{-x}=x$ has only one real root between 0.5 and 1. [0.56]
10. Show graphically that equation $e^{x}=-2 x+2$ has only one real root between 0 and 1.0.
11. on the same axes, draw graphs of $y=9 x-4$ and $y=x^{3}$ show that the root of equation $x^{3}-9 x+4=0$ lie between 2.5 and 3
12. Show that the positive real root of equation $4+5 x^{2}-x^{3}=0$ lies between 5 and 6 .
13. On the same axes, draw graphs of $y=x+1$ and $y=\tan x$ to show that the equation $\tan x-x-1=0$ lie between 1 and 1.5.
14. Using suitable graphs and plotting them on the same axes, find the roots of the equation $5 e^{x}$ $=4 x+6$ in the interval $x=2$ and $x=-1$.
15. On the same axes, draw graphs of $y=2 x+1$ and $y=\log _{e}(x+2)$ to show that the root of equation $\log _{e}(x+2)-2 x-1=0$ lies between 1 and 0 .
16. Using suitable graphs and plotting them on the same axes, find the real root of the equation $9 \log _{10} x=2(\mathrm{X}-1)$ in the interval $\mathrm{x}=3$ and $\mathrm{x}=4$.

## Method of solving for roots

The following methods can be used
(a) Interpolation

## Example 9

Show that the equation $x^{4}-12 x^{2}+12=0$ has root between 1 and 2 . Hence use linear interpolation to get the first approximation of the root.

## Solution

$f(x)=x^{4}-12 x^{2}+12$
$f(1)=1^{4}-12(1)^{2}+12=1$

$$
f(2)=2^{4}-12(2)^{2}+12=-20
$$

Since there is a sign change,
then the root lies between
1 and 2.

| $x$ | 1 | $x_{0}$ | 2 |
| :--- | :--- | :--- | :--- |
| $f(x)$ | 1 | 0 | -20 |
| $\frac{x_{0}-1}{0-1}=\frac{2-1}{-20-1}$ |  |  |  |

$$
x_{0}=1.05
$$

## Example 10

Show that the equation $2 x-3 \cos \left(\frac{x}{2}\right)=0$ has a root between 1 and 2 . Hence use linear interpolation twice to get the approximation of the root.
solution
Note: for trigonometric functions the calculator must be strictly in radian mode
$f(x)=2 x-3 \cos \left(\frac{x}{2}\right)$
$f(1)=2 \times 1-3 \cos \left(\frac{1}{2}\right)=-0.633$
$f(2)=2 \times 1-3 \cos \left(\frac{2}{2}\right)=2.379$
Since there is a sign change,
then the root lies between
1 and 2

| x | 1 | $\mathrm{x}_{0}$ | 2 |
| :--- | :--- | :--- | :--- |
| $\mathrm{f}(\mathrm{x})$ | -0.633 <br> $x_{0}-1$ <br> $0--0.633$$=\frac{2}{2-1}$ |  |  |
| $\mathrm{x}_{0}=1.2102$ | 2.379 |  |  |
| x    <br> $\mathrm{f}(\mathrm{x})$ 1.2102 $\mathrm{x}_{0}$ 2 <br> $\frac{x_{0}-1}{0--0.047}=\frac{-0.047}{2-1}$ 0 2.379  <br> $\mathrm{x}_{0}=1.226$    |  |  |  |

## Example 11

Show that the equation $3 x^{2}+x-5=0$ has a real root between $x=1$ and $x=2$. Hence use linear interpolation twice to calculate the root to 2 dp .

## Solution

$f(x)=3 x^{2}+x-5$
$f(1)=3(1)^{2}+1-5=1$
$f(2)=3(2)^{2}+2-5=9$
Since there is a sign change,
then the root lies between

| $x$ | 1 | $x_{0}$ | 2 |
| :--- | :--- | :--- | :--- |
| $f(x)$ | -1 | 0 | 9 |

$\frac{x_{0}-1}{0--1}=\frac{2-1}{9--1}$

$$
\mathrm{x}_{0}=1.1
$$

| $x$ | 1.1 | $x_{0}$ | 2 |
| :--- | :--- | :--- | :--- |
| $f(x)$ | -0.27 | 0 | 9 |
| $\frac{x_{0}-1.1}{0--0.27}=\frac{2-1.1}{9--0.27}$ |  |  |  |

$$
x_{0}=1.13
$$

## (b) General iterative method

This involves generating equation by splitting the original equation into several equations by making $x$ the subject.

## Example 12

Given $x^{2}+4 x-2=0$. Find the possible equations for estimating the roots

## Solution

Let $x_{n+1}$ be a better approximation
$x_{n}$ be the next approximation
$\left.x_{n+1}=\frac{2}{x_{n}}-4 \quad x_{n+1}=\sqrt{\left(2-4 x_{n}\right)} \right\rvert\, x_{n+1}=\frac{2-x^{2}}{4}$

## Example 13

Given $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}-12=0$. Generate equations in form of $x_{n+1}=g\left(x_{n}\right)$ that can be used to solve the equation $f(x)=0$

## Solution

Let $x_{n+1}$ be a better approximation
$x_{n}$ be the next approximation
$x_{n+1}=\frac{x_{n}^{3}-12}{3}\left|x_{n+1}=\sqrt[2]{\left(3 x_{n}+12\right)}=\frac{12}{x_{n}^{2}-3}\right| x_{n+1}=\sqrt{\left(3+\frac{12}{x_{n}}\right)}=\frac{3 x_{n}+12}{x_{n}^{2}}$

## Testing for convergence

From the several iterative equations obtained, the equation whose $\mid f^{1}\left(x_{n} \mid<1\right.$ is the one which converges the correct root.

## Example 14

Given the two iterative formulas
(i) $\quad x_{n+1}=\frac{x_{n}^{3}-1}{5}$
(ii) $x_{n+1}=\sqrt{\left(5+\frac{1}{x_{n}}\right)}$

Using $x_{0}=2$ deduce a more suitable formula for solving the equation. Hence find the root correct to 2dp
$x_{n+1}=\frac{x_{n}^{3}-1}{5}$
$\mathrm{f}\left(x_{n}\right)=x_{n+1}=\frac{x_{n}^{3}-1}{5} ; f^{1}\left(x_{n}\right)=\frac{3 x_{n}^{2}}{5}$
$f^{1}(2)=\frac{3(2)^{2}}{5}=2.4$
since $\left|f^{1}(2)\right|>1$ it will not converge
$x_{n+1}=\sqrt{\left(5+\frac{1}{x_{n}}\right)}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)=\sqrt{\left(5+\frac{1}{x_{n}}\right)} ; f^{1}\left(x_{n}\right)=-\frac{1}{2} x_{n}{ }^{-2}\left(5+\frac{1}{x_{n}}\right)$
$f^{1}(2)=-\frac{1}{2}(2)^{-2}\left(5+\frac{1}{2}\right)=-0.0533$
since $\left|f^{1}(2)\right|<1$ it will converge so this equation gives the root
$x_{n+1}=\sqrt{\left(5+\frac{1}{x_{n}}\right)},|e|=0.005, x_{0}=2$
$\mathrm{x}_{1}=\sqrt{\left(5+\frac{1}{2}\right)}=2.3452$
$\left|x_{1}-x_{0}\right|=2.3452-2=0.3452>0.005$
$\mathrm{x}_{2}=\sqrt{\left(5+\frac{1}{2.3452}\right)}=2.3295$
$\left|x_{2}-x_{1}\right|=2.3452-2.3295=0.0157>0.005$
$x_{3}=\sqrt{\left(5+\frac{1}{2.3295}\right)}=2.3301$
$|e|=|2.3301-2.3295|=0.0006<0.005$
Hence root is 2.33

## Example 15

Show that the iterative formula for solving the equation $\mathrm{x}^{3}=\mathrm{x}+1$ is $x_{n+1}=\sqrt{\left(1+\frac{1}{x_{n}}\right)}$ starting with $\mathrm{x}_{0}=1$ find the solution of the equations to 3 sf .

Solution
$x_{n+1}=\sqrt{\left(1+\frac{1}{x_{n}}\right)}|e|=0.005, \mathrm{x}_{0}=1$
$x_{1}=\sqrt{\left(1+\frac{1}{1}\right)}=1.41421$
$\left|x_{1}-x_{0}\right|=|1.41421-1|=0.41421>0.005$
$x_{2}=\sqrt{\left(1+\frac{1}{1.41421}\right)}=1.30656 ;$
$\left|x_{2}-x_{1}\right|=|1.30656-1.41421|=0.10765>0.005$
$x_{3}=\sqrt{\left(1+\frac{1}{1.30656}\right)}=1.32869$
$\left|x_{3}-x_{2}\right|=|1.32869-1.30656|=0.03691>0.005$
$x_{4}=\sqrt{\left(1+\frac{1}{1.32869}\right)}=1.32389$
$|e|=|1.32389-1.32869|=0.0048<0.005$
Hence the root is 1.32

## Example 16

Given two iterative formulae I and II (shown below) for calculating the positive root of the quadratic equation $f(x)=0$
$x_{n+1}=\frac{1}{2}\left(x_{n}^{2}-1\right)$ and $x_{n+1}=\frac{1}{2}\left(\frac{x_{n}^{2}+1}{x_{n}-1}\right)$ for $\mathrm{n}=1,2,3$
Taking $x_{0}=2.5$, use each formula thrice to two decimal places to decide which is the more suitable formula. Give a reason for your answer.

Solution
Iterative formula $x_{n+1}=\frac{1}{2}\left(x_{n}^{2}-1\right)$
$x_{0}=2.5$
$x_{1}=\frac{1}{2}\left(2.5^{2}-1\right)=2.625$
$\left|x_{1}-x_{0}\right|=0.125$
$x_{2}=\frac{1}{2}\left(2.625^{2}-1\right) 2.99453125$
$\left|x_{2}-x_{1}\right|=0.3200125$
$x_{3}=\frac{1}{2}\left(2.99453125^{2}-1\right)=3.837432861$
$\left|x_{3}-x_{2}\right|=0.89212036$

$$
\begin{aligned}
& \text { Iterative formula } x_{n+1}=\frac{1}{2}\left(\frac{x_{n}^{2}+1}{x_{n}-1}\right) \\
& \mathrm{x}_{0}=2.5 \\
& x_{1}=\frac{1}{2}\left(\frac{2.5^{2}+1}{2.5-1}\right)=2.416666667 \\
& \left|x_{1}-x_{0}\right|=0.083333 \\
& x_{2}=\frac{1}{2}\left(\frac{2.416666667^{2}+1}{2.416666667-1}\right)=2.414215686 \\
& \left|x_{2}-x_{1}\right|=0.002450781 \\
& x_{2}=\frac{1}{2}\left(\frac{2.414215686^{2}+1}{2.414215686-1}\right)=2.414215686 \\
& \left|x_{3}-x_{2}\right|=0.000002124
\end{aligned}
$$

The more suitable formula is $x_{n+1}=\frac{1}{2}\left(\frac{x_{n}^{2}+1}{x_{n}-1}\right)$.
Because the absolute difference between $x_{3}-x_{2}$ is less than absolute error, where as in the first formula the absolute difference between $x_{3}-x_{2}$ is greater than absolute error. In all the $2^{\text {nd }}$ formula converge whereas the first formula diverges.

## Example 17

(a) (i) Show that the equation $\mathrm{e}^{\mathrm{x}}-2 \mathrm{x}-1=0$ has a root between $\mathrm{x}=1$ and $\mathrm{x}=1.5$.
(ii) Use linear interpolation to obtain an approximation for the root
(b) (i) Solve the equation in (a)(i), using each formula below twice Take the approximation in (a)(i) as the initial value
Formula I: $x_{n+1}=\frac{1}{2}\left(e^{x_{n}}+1\right)$.
Formula II: $x_{n+1}=\frac{e^{x_{n}}\left(x_{n}-1\right)+1}{e^{x_{n}}-2}$
(ii) Deduce with a reason which of the two formulae is appropriate for solving the given equation in (a)(i). Hence write down a better approximate root, correct to two decimal places

Solution
(a) (i) using sign change method let $f(x)=e^{x}-2 x-1$ $f(1)=e^{1}-2(1)-1=-2.817$ $f(1.5)=e^{1.5}-2(1.5)-1=0.4817$

Since $f(1) . f(1.5)<0$, the root lies
between $x=1$ and $x=1.5$
(a)(ii) Extract

| 1 | $\mathrm{x}_{0}$ | 1.5 |
| :---: | :---: | :---: |
| -0.2817 | 0 | 0.4817 |
| $x_{0}-1$ | 1.5 |  |

Hence the approximation to the root is 1.18 ( 2 dp )
(b)(i)

Solution
formula 1: $x_{n+1}=\frac{1}{2}\left(e^{x_{n}}+1\right)$
$x_{0}=1.18$
$x_{1}=\frac{1}{2}\left(e^{1.18}+1\right)=2.1272$
$\left|x_{1}-x_{0}\right|=0.9472$
$x_{2}=\frac{1}{2}\left(e^{2.127187}+1\right)=4.6956$
$\left|x_{2}-x_{1}\right|=2.5684$

$$
\begin{aligned}
& \text { formula 2: } x_{n+1}=\frac{e^{x_{n}}\left(x_{n}-1\right)+1}{e^{x_{n}-2}} \\
& \mathrm{x}_{0}=1.18 \\
& x_{1}=\frac{e^{1.18}(1.18-1)+1}{e^{1.18}-2}=1.2642 \\
& \left|x_{1}-x_{0}\right|=0.0842 \\
& x_{2}=\frac{e^{1.2642}(1.2642-1)+1}{e^{1.2642}-2}==1.2565 \\
& \left|x_{2}-x_{1}\right|=0.0077
\end{aligned}
$$

Formula 1, the sequence $1.18,2.1272,4.6956$ diverge, hence the formula is not suitable
Formula 2 , the sequence $1.18,1.2642,1.2565$ converge, hence the formula is suitable solving the equation

A better approximation $=1.26(2 \mathrm{dp})$

## Revision exercise 2

1. Given the following iterative formula
(i) $\quad x_{n+1}=5-\frac{3}{x_{n}}$
(ii) $x_{n+1}=\frac{1}{5}\left(x_{n}^{2}+3\right)$

Taking $x_{0}=5$ deduce a more suitable iterative formula for solving the equation
2. Show that the iterative formula for solving the equation $x^{2}-5 x+2=0$ can be written in two ways as $x_{n+1}=5-\frac{2}{x_{n}}$ or $x_{n+1}=\frac{x_{n}^{2}+2}{5}$.
Starting with $x_{0}=4$, deduce the more suitable formula for the equation and hence find the root correct to 2 dp [4.56]
3. Show that the iterative formula for solving the equation $\mathrm{x}^{3}-\mathrm{x}-1=0$ is $x_{n+1}=\sqrt{\left(1+\frac{1}{x_{n}}\right)}$. Starting with $\mathrm{xo}=1$ find the root of the equation correct to 3 s.f. [1.33]
4. (a) Show that the iterative formula for solving the equation $2 x^{2}-6 x-3=0$ is $x_{n+1}=\frac{2 x_{n}^{2}+3}{4 x_{n}+6}$
(b) Show that the positive root for $2 x^{2}-6 x-3=0$ lies between 3 and 4 . find the root correct to 2 decimal places [3.44]
5. (a) If $b$ is the first approximation to the root of equation $x 2=a$, show that the second approximation to the root is given by $\frac{b+\frac{a}{b}}{2}$. Hence taking $b=4$, estimate $\sqrt{17}$ correct to 3 dp [4.123]
(b) Show that the positive real root of the equation $x^{2}-17=0$ lies between 1.5 and 1.8 . Hence use the formula in (a) above to determine the root to 3 dp

## (c) Newton Raphson's Method

It is given by $x_{n+1}=x_{n}-\left[\frac{f\left(x_{n}\right)}{f^{1}\left(x_{n}\right)}\right] \mathrm{n}=1,2,3 \ldots$

## Example 18

Use Newton Raphson's method to find the root of equation $x^{3}+x-1=0$ using $x 0=0.5$ as the initial approximation, correct your answer to 2 decimal places

## Solution

$f(x)=x^{3}+x-1, f^{1}(x)=2 x^{2}+1$
$x_{n+1}=x_{n}-\left[\frac{\left(x^{3}+x-1\right)}{3 x^{2}+1}\right]$
$x_{1}=0.5-\left[\frac{\left((0.5)^{3}+0.5-1\right)}{3(0.5)^{2}+1}\right]=0.7142$
$\left|x_{1}-x_{0}\right|=0.7142-0.5=0.2142>0.005$
$x_{2}=0.7142-\left[\frac{\left((0.7142)^{3}+0.7142-1\right)}{3(0.7142)^{2}+1}\right]=0.6831$

$$
\begin{aligned}
& \begin{aligned}
&\left|x_{2}-x_{1}\right|=|0.6831-0.7142| \\
&=0.0311>0.005 \\
& x_{2}=0.6831-\left[\frac{\left((0.6831)^{3}+0.6831-1\right)}{3(0.6831)^{2}+1}\right]=0.6824 \\
&\left|3-x_{2}\right|=|0.6824-0.6831| \\
&=0.0007<0.005
\end{aligned} \\
& \qquad
\end{aligned}
$$

$\therefore$ Root $=0.68$

## Example 19

Show that the equation $5 x-3 \cos 2 x=0$ has a root between 0 and 1 . Hence use Newton Raphson's method to find the root of equation correct to 2 decimal places using $x_{0}=0.5$.

## Solution

Using sign change method to locate
The roots. Note for trigonometric functions the calculator is used in radians mode
$f(x)=5 x-3 \cos 2 x$
$f(0)=5(0)-3 \cos 2(0)=-3$
$f(1)=5(1)-3 \cos 2(1)=2.455$
Since there is change sign the root lies between $x=0$ and $\mathrm{x}=1$
$f(x)=5 x-3 \cos 2 x, f^{1}(x)=5+6 \sin 2 x$
$x_{n+1}=x_{n}-\left[\frac{\left(5 \mathrm{x}_{n}-3 \cos 2 \mathrm{x}_{n}\right)}{5+6 \sin 2 \mathrm{x}_{n}}\right]$
$\mathrm{x}_{0}=0.5,|e|=0.005$
$x_{1}=0.5-\left[\frac{(5(0.5)-3 \cos 2(0,5)}{5+6 \sin 2(0.5)}\right]=0.4125$
$\left|x_{1}-x_{0}\right|=|0.4125-0.5|=0.0875>0.005$
$x_{1}=0.4125-\left[\frac{(5(0.4125)-3 \cos 2(0.4125)}{5+6 \sin 2(0.4125)}\right]=0.4096$
$\left|x_{2}-x_{1}\right|=|0.4096-0.4125|=0.0029<0.005$
$\therefore$ Root $=0.41$

## Example 20

Use Newton Raphson's iterative formula to show that the cube root of a number $N$ is given by $\frac{1}{3}\left(2 x_{n}+\frac{N}{x_{n}^{2}}\right)$. Hence taking $\mathrm{x}_{0}=2.5$ determine $\sqrt[3]{10}$ correct to 3 dp.

Solution
$\mathrm{x}=N^{\frac{1}{3}}$
$x^{3}-N=0$
$f(x)=x^{3}-N ; f^{1}(x)=3 x^{2}$
$x_{n+1}=x_{n}-\left[\frac{\left(\mathrm{x}_{n}{ }^{3}-\mathrm{N}\right)}{3 \mathrm{x}_{n}{ }^{2}}\right]=\frac{x_{n}\left(3 \mathrm{x}_{n}{ }^{2}\right)-\left(\mathrm{x}_{n}{ }^{3}-\mathrm{N}\right)}{3 \mathrm{x}_{n}{ }^{2}}$

$$
=\frac{2 \mathrm{x}_{n}^{3}+\mathrm{N}}{3 \mathrm{x}_{n}^{2}}=\frac{1}{3}\left(2 x_{n}+\frac{N}{x_{n}^{2}}\right) .
$$

$\mathrm{x}_{0}=2.5, \mathrm{~N}=10,|e|=0.005$
$x_{n+1}=\frac{1}{3}\left(2 x_{n}+\frac{N}{x_{n}^{2}}\right)$

$$
\begin{aligned}
& x_{1}=\frac{1}{3}\left(2(2.5)+\frac{N}{2.5^{2}}\right)=2.2 \\
& \left|x_{1}-x_{0}\right|=|2.2-2.5|=0.3>0.005 \\
& x_{2}=\frac{1}{3}\left(2(2.2)+\frac{N}{2.2^{2}}\right)=2.1554 \\
& \left|x_{2}-x_{1}\right|=|2.1554-2.2|=0.0446>0.005 \\
& x_{3}=\frac{1}{3}\left(2(2.1554)+\frac{N}{2.1554^{2}}\right)=2.1544 \\
& \left|x_{3}-x_{2}\right|=|2.1544-2.1554|=0.001<0.005 \\
& \therefore \text { Root }=2.154
\end{aligned}
$$

## Example 21

(a) Show that the equation $x-3 \sin x=0$ has a root between 2 and 3. (03marks)

$$
\begin{aligned}
& f(x)=x-3 \sin x \\
& f(2)=2-3 \sin 2=-0.7279 \\
& f(3)=3-3 \sin 3=2.5766 \\
& \text { since } f(2) \cdot f(3)=-1.8755<0 \\
& \text { there exist a root of } x-3 \sin x=0 \text { between } 2 \text { and } 3
\end{aligned}
$$

(b) Show that Newton- Raphson iterative formula for estimating the root of the equation in (a) is given by

$$
X_{n+1}=\frac{3\left(\sin x_{n}-x_{n} \cos x_{n}\right)}{1-3 \cos x_{n}}, n=0,1,2 \ldots
$$

Hence find the root of the equation corrected to 2 decimal places (09 marks)

$$
\begin{aligned}
& \begin{aligned}
\mathrm{f}^{\prime}(\mathrm{x}) & =1-3 \cos \mathrm{x} \\
\mathrm{x}_{\mathrm{n}+1} & =\mathrm{x}_{\mathrm{n}}-\frac{f(x)}{f \prime(x)} \\
& =\mathrm{x}_{\mathrm{n}}-\frac{x_{n}-3 \sin x_{n}}{1-3 \cos x_{n}} \\
& =\frac{x_{n}-3 x_{n} \cos x_{n}-x_{n}+3 \sin x_{n}}{1-3 \cos x_{n}} \\
\mathrm{x}_{\mathrm{n}+1} & =\frac{3\left(\sin x_{n}-x_{n} \cos x_{n}\right.}{1-3 \cos x_{n}}
\end{aligned} \\
& \text { Taking } \mathrm{x}_{0}=\frac{2+3}{2}=2.5
\end{aligned} \quad \begin{aligned}
& \mathrm{x}_{1}=\frac{3(\sin 2.5-2.5 \cos 2.5}{1-3 \cos 2.5}=2.293 \\
& \text { Error }=|2.293-2.5|=0.207>0.005 \\
& \mathrm{x}_{2}=\frac{3(\sin 2.293-2.5 \cos 2.293}{1-3 \cos 2.293}=2.279 \\
& \text { Error }=|2.279-2.293|=0.014>0.005 \\
& \mathrm{x}_{3}=\frac{3(\sin 2.279-2.5 \cos 2.279}{1-3 \cos 2.279}=2.279 \\
& \text { Error }=|2.279-2.279|=0.000<0.005 \\
& \therefore \text { root }=2.279=2.28(2 \mathrm{D})
\end{aligned}
$$

## Example 22

(a) On the same axis, draw graphs of $y=x$ and $y=4 \sin x$ to show that the root of the equation $x-4 \sin x=0$ lies between $x=2$ and $x=3$


Therefore the root (2.47) lies between $x=2$ and $x=3$
(b) Use Newton Raphson's method to calculate the root of the equation $x-4 \sin x=0$, taking approximate root in (a) as the initial approximation to the root. correct your answer to 3 decimal places.
$f(x)=x-4 \sin x$
$\mathrm{f}^{\prime}(\mathrm{x})=1-4 \cos \mathrm{x}$
$x_{n+1}=x_{n}-\frac{x_{n}-4 \sin x_{n}}{1-4 \cos x_{n}}$
Taking $x_{0}=2.47$
$x_{1}=2.47-\frac{2.47-4 \sin 2.45}{1-4 \cos 2.47}=2.4746$
Error $=|2.4746-2.47|=0.0046>0.0005$
$x_{2}=2.4746-\frac{2.4746-4 \sin 2.4546}{1-4 \cos 2.4746}=2.4746$
Error $=|2.4746-2.4746|=0.000<0.0005 \quad \therefore$ the root $=2.475(3 \mathrm{D})$

## Example 23

(a) Draw on the same axes the graphs of the curves $\mathrm{y}=2-\mathrm{e}^{-\mathrm{x}}$ and $\mathrm{y}=\sqrt{x}$ values $2 \leq \mathrm{x} \leq 5$. (04marks)

| $x$ | $y=2-e^{-x}$ | $y=\sqrt{x}$ |
| :--- | :--- | :--- |
| 2.0 | 1.86 | 1.41 |
| 2.5 | 1.92 | 1.58 |
| 3.0 | 1.95 | 1.73 |
| 3.5 | 1.97 | 1.87 |
| 4.0 | 1.98 | 2.00 |
| 4.5 | 1.99 | 2.12 |
| 5.0 | 1.99 | 2.24 |


(b) Determine from your graph the interval within which the roots of the equation

$$
e^{-x}+\sqrt{x-2=0} \text { lies }
$$

Hence, use Newton-Raphson's method to find the root of the equation correct to 3 decimal places (07marks)

Root lies between 3.9 and 4
$f(x)=2-e^{-x}-\sqrt{x}$
$f^{\prime}(x)=e^{-x}-\frac{1}{2 \sqrt{x}}$
$\mathrm{f}\left(\mathrm{X}_{\mathrm{n}}\right)=e^{-x_{n}}-\frac{1}{2 \sqrt{x_{n}}}$
$\mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}}-\frac{2-e^{x_{n}}-\sqrt{x_{n}}}{2 e^{-x_{n}} \sqrt{x_{n}}-1}$
$\mathrm{X}_{0}=\frac{3.9+4}{2}=3.95$
$x_{1}=3.95-\frac{2 \sqrt{3.95}\left(2-e^{-3.95}-\sqrt{3.95}\right)}{2 e^{-3.95 \sqrt{3.95}-1}}=3.9211$
Error $=|3.9211-3.95|=0.0289$
$x_{2}=3.9211-\frac{2 \sqrt{3.9211}\left(2-e^{-3.9211}-\sqrt{3.9211}\right)}{2 e^{-3.9211} \sqrt{3.9211}-1}=3.9211$
$\therefore$ Root $=3.921$ (3dp)

## Example 24

Given the equation $x^{3}-6 x^{2}+9 x+2=0$
(a) Show that the equation has a root between -1 and 0 .

Let $f(x)=x^{3}-6 x^{2}+9 x+2$
$f(-1)=(-1)^{3}-6(-1)^{2}+9(-1)+2$

$$
=-1-6-9+2=-14
$$

$f(0)=0+0+0+2$

$$
=2
$$

$f(-1) \cdot f(0)=-14 \times 2=-28$
since $f(-1) . f(0)<0$; the root exist between -1 and 0 .
(b) (i) Show that the Newton Raphson formula approximating the root of the equation is given by $X_{n+1}=\frac{2}{3}\left[\frac{x_{n}^{3}-3 x_{n}^{2}-1}{x_{n}^{2}-4 x_{n}+3}\right]$

$$
\begin{aligned}
f(\mathrm{x}) & =\mathrm{X}^{3}-6 \mathrm{x}^{2}+9 \mathrm{x}+2 \\
\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right) & =x_{n}^{3}-6 x_{n}^{2}+9 x_{n}+2 \\
\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right) & =3 x_{n}^{2}-12 x_{n}+9 \\
x_{n+1} & =x_{n}-\left(\frac{x_{n}^{3}-6 x_{n}^{2}+9 x_{n}+2}{3 x_{n}^{2}-12 x_{n}+9}\right) \\
& =\frac{x_{n}\left(3 x_{n}^{2}-12 x_{n}+9\right)-\left(x_{n}^{3}-6 x_{n}^{2}+9 x_{n}+2\right)}{3 x_{n}^{2}-12 x_{n}+9} \\
& =\frac{\left(3 x_{n}^{3}-12 x_{n}^{2}+9 x_{n}\right)-\left(x_{n}^{3}-6 x_{n}^{2}+9 x_{n}+2\right)}{3 x_{n}^{2}-12 x_{n}+9} \\
& =\frac{2 x_{n}^{3}-6 x_{n}^{2}-2}{3 x_{n}^{2}-12 x_{n}+9} \\
& =\frac{2}{3}\left[\frac{x_{n}^{3}-3 x_{n}^{2}-1}{x_{n}^{2}-4 x_{n}+3}\right]
\end{aligned}
$$

(ii) Use the formula in (b)(i) above, with initial approximation of $x_{0}=-0.5$, to find the root of the given equation correct to two decimal places
Taking $\mathrm{x}=-0.5$
$x_{1}=\frac{2}{3}\left[\frac{(-0.5)^{3}-3(-0.5)^{2}-1}{(-0.5)^{2}-4(-0.5)+3}\right]=-0.2381$
$|e|=|0.2381-(-0.5)|=0.2619$
$x_{2}=\frac{2}{3}\left[\frac{(-0.2381)^{3}-3(-0.2381)^{2}-1}{(-0.2381)^{2}-4(-0.2381)+3}\right]=-0.1968$
$|e|=|0.1968-(-0.2381)|=0.0 .0413$
$x_{3}=\frac{2}{3}\left[\frac{-0.1968^{3}-3(-0.1968)^{2}-1}{(-0.1968)^{2}-4(-0.1968)+3}\right]=-0.1958$
$|e|=|-0.1958-(-0.1968)|=0.001<0.005$
Hence the root $=-0.20(2 \mathrm{D})$

## Revision Exercise 3

1. Using the Newton Raphson's formula, show that the reciprocal of a number N is $x_{n}\left(2-N x_{n}\right)$
2. Use Newton Raphson's iterative formula to show that the cube root of a number $N$ is given by $\frac{1}{3}\left(2 x_{n}+\frac{N}{x_{n}^{2}}\right)$. Hence use the iterative formula to find $\sqrt[3]{96}$ correct to3 decimal places. use $x_{0}=5$. [4.579]
3. (a) Show that the equation $3 x 3+x-5=0$ has real root between $x=1$ and $x=2$.
(b) Using linear interpolation, find the first approximation for this root to 2 dp . [1.04]
(c) Using Newton Raphson's method twice find the value of this root correct to 2 dp . [1.09]
4. (a) Show graphically that there is a positive real root of equation $x e^{-x}-2 x+5=0$ between $x=2$ and $x=3$
(b) Using Newton Raphson's method, find this root correct to 1 dp. [2.6]
5. Using the iterative formula for NRM, show that the fourth root of a number $N$ is
$\frac{3}{4}\left(x_{n}+\frac{N}{3 x_{n}^{3}}\right)$. Starting with $x_{0}=2.5$ show that $(45.7)^{\frac{1}{4}}=2.600$ (3dp)
6. On the same axes, draw graphs of $y=x^{3}$ and $y=2 x+5$. Using NRM twice find the positive root of the equation $x^{3}-2 x-5=0$ correct to 2 decimal places. [2.09]
7. (a) Show that the Newton Raphson's formula for finding the smallest positive root of the equation $3 \tan \mathrm{x}+\mathrm{x}=0$ is $\frac{6 x_{n}-3 \sin 2 x_{n}}{6+2 \cos 2 x_{n}}$
(b) By sketching the graphs of $y=$ tans, $y=\frac{-x}{3}$ Or otherwise, find the first approximation to the required root and use it to find the actual root correct to 3 dp . [2.456]
8. (a) Show that the root of the equation $f(x)=e^{x}+x^{3}-4 x=0$ has a root between $x=1$ and $x=2$
(b) Use the Newton Raphson's method to find the root of equation in (a) correct to 2 decimal places. [ $x_{0}=1$, root $=1.12$ ]
9. (a) Show that the iterative formula for approximation of the root of $f(x)=0$ by NRM process for the equation $\mathrm{xe}^{\mathrm{x}}+5 \mathrm{x}-10=0$ is $x_{n+1}=\frac{x_{n}{ }^{2} e^{x_{n}}+10}{x_{n} e^{x_{n}}+e^{x_{n}+5}}$.
(b) Show that the root of the equation in (i) above lies between $x=1$ and $x=2$. Hence find the root of the equation correct to 2 dp . [1.20]
10. (a) Use a graphical method to find a first approximation to the real root of $x^{3}+2 x-2=0$.
(b) Use the Newton Raphson's method to find the root of the equation in (a) correct to 2 dp. [0.77]
11. (a) Show that equation $x=\ln (8-x)$ has a root between $x=1$ and $x=2$.
(b) Use the Newton Raphson's method to find the root of the equation in (a) correct to 2 decimal places [1.82]
12. (a) Use graphical method to find the first approximation to the root of $x^{3}-3 x+4=0$. [-2]
(b) Use NRM to find the root of the equation in (a) correct to 2 d.p. [-2.20]
13. Show graphically that equation $e^{x}+x-4=0$ has only one root between $x=1$ and $x=2$. Use NRM to find the approximation of the equation correct to 3dp. [1.07]
14. Show that the NRM for approximating the $K^{\text {th }}$ root of a number $N$ is given by $\frac{1}{K}\left((K-1) x_{n}+\frac{N}{x_{n}{ }^{K-1}}\right)$. Hence use your formula to find the positive square root of 67 correct to 4 s.f. [8.185].
15. (a) Show that equation $x^{3}+3 x-9=0$ has a root between $x=1$ and $x=2$.
(b) Use the Newton Raphson's method to find the root of the equation in (a) correct to 2 One places [1.6]
16. (a) Show graphically that there is a positive real root of equation $x e^{-x}-2 x-1=0$ between $x=1$ and $x=2$
(b) Using Newton Raphson's method, find this root for the equation in (a) correct to 2 dp. [1.26]
17. (a) Show that equation $2 x-3 \cos \left(\frac{x}{2}\right)=0$ has a root between $x=1$ and $x=2$.
(b) Use the Newton Raphson's method to find the root of the equation in (a) correct to one places [1.23]
18. (a) If $a$ is the first approximation to the root of the equation $x^{5}-b=0$, show that the second approximation is given by $\frac{4 a+\frac{b}{a^{4}}}{5}$.
(b) Show that the positive real root of the equation $x^{5}-17=0$ lies between 1.5 and 1.8. Hence use the formula in (a) above to determine the root to 3 decimal places. [1.762]
19. (a)(i) On the same axes, draw graphs of $y=x^{2}$ and $y=\operatorname{cox} x$ for $0 \leq x \leq \frac{\pi}{2}$ at intervals of $\frac{\pi}{8}$.
(ii) Use your graphs, to find to 1 decimal place an approximate root of the equation $x^{2}-\cos x=0[0.8]$
(b) Use the NRM to calculate the root of the equation $x^{2}-\cos x=0$ taking the approximate root in (a) as the initial approximation. Correct your answer to 3 dp . [0.824]
20. (a) (i) Draw on same axes the graphs of equation $y=x \sin x$ and $y=e^{x}-2$ for $0 \leq x \leq 1.5$.
(ii) Use your graphs to find an approximate root of the equation $2-\mathrm{e}^{\mathrm{x}}+\mathrm{x} \sin \mathrm{x}=$ [1.1]
(c) Use the Newton Raphson's method to find the root of the equation in (a)(ii) correct to three decimal places [1.085]
21. Show graphically that equation $e^{x}+x-8=0$ has only one real root between $x=1$ and $x=$ 2. Use NRM to find approximation of $x=\ln (x 8)$ correct to 3 dp [1.821]
22. Draw using the same axes, graphs of $y=x^{2}$ and $y=\sin 2 x$ for $0 \leq x \leq \frac{\pi}{2}$. From the graphs obtain to one decimal place an approximation of the non-zero root of the equation $x^{2}-\sin 2 x=0$. Using NRM, calculate to $2 d p$ a more suitable approximation. [0.97]
23. Given the equation $\ln (1+2 x)-x=0$.
(i) show the root of the equation above lies between $x=1$ and $x=1.5$
(ii) Use NRM twice to estimate the root of the equation, correct to 2 dp . [1.26]

Thank you
Dr. Bbosa Science

