

This document is sponsored by

Moment of a force acting on a polygon

Example 1

$A B C D$ is a square of side 4 m . Forces of magnitude $4 N, 3 N, 2 N$ and $5 N$ act along $A B, B C, C D$ and $A D$ respectively in each case the direction of force being given by the order of the letters. Given that $A B$ is horizontal, find the moment of force about
(i) center of the square
(ii) point A

Solution

$$
\begin{aligned}
\text { O } \mathrm{G} & =4 \times 2+3 \times 2+2 \times 2-(5 \times 2) \\
& =8 \mathrm{Nm} \text { anticlockwise } \\
\widehat{\mathrm{A}} \mathrm{G} & =(4 \times 0)+(3 \times 4)+(2 \times 2)-(5 \times 0) \\
& =20 \mathrm{Nm} \text { anticlockwise }
\end{aligned}
$$

Example 2

$A B C D$ is a rectangle where $A B=6 \mathrm{~m}$ and $B C=4 \mathrm{~m}$. Forces of magnitude $3 \mathrm{~N}, 4 \mathrm{~N}, 5 \mathrm{~N}, 2 \mathrm{~N}$ and 6 N act along line $A B, B C, C D, A D$, and $B D$ respectively. In each case the direction of force being given by the order of the letters. Find the moment of forces about
(i) center of the rectangle
(ii) point A

Solution

$$
\text { O } \mathrm{G}=3 \times 3+4 \times 3+5 \times 2-(3 \times 2)+\left(6 \sin 33.7^{0} \times 3\right)-
$$

$\left(6 \sin 33.7^{\circ} \times 3\right)=22 \mathrm{Nm}$ anticlockwise
A $G=(3 \times 0)+(4 \times 6)+(5 \times 4)-(2 \times 0)+$
$\left(6 \sin 33.7^{0} \times 0\right)-\left(6 \cos 33.7^{0} \times 0\right)$
$=63.97 \mathrm{Nm}$ anticlockwise

Example 3

$A B C D$ is a rectangle where $A B=4 \mathrm{~m}$ and $B C=3 \mathrm{~m}$. Forces of magnitude $4 \mathrm{~N}, 3 \mathrm{~N}, 5 \mathrm{~N}, 6 \mathrm{~N}$ and 5 N act along line $A B, B C, C D, D A$, and $A c$ respectively. In each case the direction of force being given by the order of the letters. Find the moment of forces about
(ii) center of the rectangle
(ii) point A

$$
\begin{aligned}
\mathrm{O}_{\mathrm{G}} \mathrm{G}= & 4 \times 1.5+3 \times 2+5 \times 1.5+(6 \times 2)- \\
& \left(5 \sin 36.9^{\circ} \times 2\right)+\left(5 \sin 36.9^{\circ} \times 1.5\right)
\end{aligned}
$$

$=31.49 \mathrm{Nm}$ anticlockwise

$$
\begin{aligned}
A G & =(3 \times 4)+(5 \times 3) \\
& =27 \mathrm{Nm} \text { anticlockwise }
\end{aligned}
$$

Example 4

ABCDEF is a regular hexagon of side 5 m . Forces of magnitude $2 \mathrm{~N}, 5 \mathrm{~N}, 3 \mathrm{~N}, 4 \mathrm{~N}, 3 \mathrm{~N}$ and 4 N act along the lines $A B, B C, C D, D E, E F$ and $F A$ respectively. In each case the direction of force being given by the order of the letters. Given that $A B$ is horizontal, find the sum of moments of forces about
(i) center O of the hexagon

(ii) Point A

$$
\begin{aligned}
\hat{A}^{h} G & =(5 \sin 600 \times 5)+(3 \sin 600 \times 10)+(4 \times 10 \sin 600)+(3 \sin 600 \times 5) \\
& =95.26 \mathrm{Nm} \text { anticlockwise }
\end{aligned}
$$

Example 5

Forces of magnitude $3 \mathrm{~N}, 4 \mathrm{~N}, 5 \mathrm{~N}$ and 6 N act on a rectangle along lines $A B, B C, C D$ and $D A$ of a rectangle. Their direction is the order of the letters. $B C$ is horizontal. Find the resultant force and the couple at the centre of a rectangle of sides $2 m$ and $4 m$.

Solution

For a couple
$\rightarrow, X=4-6=-2$
个, $Y=5-3=2$
The resultant force, $R=\sqrt{(-2)^{2}+2^{2}}$

$$
=2.83 \mathrm{~N}
$$

O $\mathrm{O}=4 \times 1+5 \times 2+6 \times 1+3 \times 2$
$=26 \mathrm{Nm}$ anticlockwise

For the system of forces to reduce to couple, an additional force equal in magnitude to the resultant but acting in opposite direction must be added. Hence the moment of the couple about the center is 26 Nm in the sense BADC or clockwise.

Revision exercise

1. Forces of $2 \mathrm{~N}, 3 \mathrm{~N}, 4 \mathrm{~N}$ and 5 N act along the sides of a square $A B C D$ of side 4 m in direction $A B$, $B C, C D$ and $A D$ respectively. Find the sum of moments of the forces about
(i) the center of square $[8 \mathrm{Nm}]$
(ii) Point A [28Nm]
2. Forces of $5 \mathrm{~N}, 6 \mathrm{~N}, 4 \mathrm{~N}, 7 \mathrm{~N}, 6 \mathrm{~N}$ and 8 N act in direction $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, \mathrm{DA}, \mathrm{AC}$, and DB respectively of a square $A B C D$ of side 6 m . Find the sum of moments of forces about
(i) centre of the square [66Nm]
(ii) point A [26Nm]
3. $A B C D$ is a rectangle with $A B=8 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$. Forces of $4 N, 5 N, 3 N, 6 N$ and $8 N$ act in the direction $A B, B C, C D, A D$ and $B D$ respectively of the rectangle $A B C D$, find the sum of moments of the forces about
(i) the center of the rectangle [17Nm]
(ii) point A [96.4Nm]
4. $A B C D E F$ is a regular hexagon 2 m . Forces of magnitude $5 \mathrm{~N}, 2 \mathrm{~N}, 6 \mathrm{~N}, 4 \mathrm{~N}, 8 \mathrm{~N}$ and 3 N acting along the line $A B, B C, C D, D E, E F$ and $F A$ respectively, in each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal. Find the sum of moments of the force about point A. [50.23Nm]
5. $A B C D E F$ is a regular hexagon with side 3 m . Forces of magnitude $4 \mathrm{~N}, 5 \mathrm{~N}, 1 \mathrm{~N}, 3 \mathrm{~N}, 7 \mathrm{~N}$ and 2 N act along line $A B, B C, C D, D E, E F$ and $F A$ respectively, in each case the direction of the force being given by the order of the letters. Find the sum of moments of the forces about point A [$30 \sqrt{3} \mathrm{Nm}$]
6. ABDCEF is a regular hexagon of 4 m . Forces of magnitude $8 \mathrm{~N}, 4 \mathrm{~N}, 7 \mathrm{~N}, 4 \mathrm{~N}, 6 \mathrm{~N}$ and 5 N act along $A B, B C, C D, D E, E F$ and $F A$ respectively, in each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal, find the sum of moments of the forces about point $A[64 \sqrt{3} \mathrm{Nm}$]
7. $A B D C E F$ is a regular hexagon of 4 m . Forces of magnitude $5 \mathrm{~N}, 6 \mathrm{~N}, 7 \mathrm{~N}, 4 \mathrm{~N}, 5 \mathrm{~N}$ and 8 N act along $A B, B C, C D, D E, E F$ and $F A$ respectively, in each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal, find the sum of moments of the forces about
(i) centre of hexagon $[70 \sqrt{3} \mathrm{Nm}]$
(ii) point $A[66 \sqrt{3} \mathrm{Nm}]$
8. $A B D C E F$ is a regular hexagon of 3 m . Forces of magnitude $3 \mathrm{~N}, 1 \mathrm{~N}, 2 \mathrm{~N}, 5 \mathrm{~N}, 6 \mathrm{~N}$ and 4 N act along $A B, B C, C D, E D, E F$ and $A F$ respectively, in each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal, find the sum of moments of the forces about
(iii) centre of hexagon [4.5 $\sqrt{3} \mathrm{Nm}$]
(iv) point A

Thank You

Dr. Bbosa Science

