Moment of a force

This is the product of a force and perpendicular distance from the pivot to the line of action of the force. The unit of moments is Nm.

Matrix approach of finding sum of moments about the origin

If forces $\left(a_{1} \mathrm{i}+b_{1} \mathrm{j}\right) \mathrm{N},\left(a_{2} \mathrm{i}+b_{2} \mathrm{j}\right) \mathrm{N}, \ldots \ldots \ldots . .\left(a_{n} \mathrm{i}+b_{n} \mathrm{j}\right)$ act on the body at point $\left(x_{1}+y_{1}\right),\left(x_{2}+y_{2}\right), \ldots .$. $\left(\left(x_{n}+y_{n}\right)\right.$. The sum of the moments about the origin is
$G=\left|\begin{array}{ll}x_{1} & a_{1} \\ y_{1} & b_{1}\end{array}\right|+\left|\begin{array}{ll}x_{2} & a_{2} \\ y_{2} & b_{2}\end{array}\right|+\cdots+\left|\begin{array}{ll}x_{n} & a_{n} \\ y_{n} & b_{n}\end{array}\right|$
$G=\left(b_{1} x_{1}-a_{1} y_{1}\right)+\left(b_{2} x_{2}-a_{2} y_{2}\right)+\cdots+\left(b_{n} x_{n}-a_{n} y_{n}\right)$
Note
If G is positive, the sum of moments will be anticlockwise and if G is negative the sum of moments will be clockwise.

Example 1
Find the moment about the origin of a force of 4 jN acting at a point which has position vector -5 iN
Solution
$G=\left|\begin{array}{cc}-5 & 0 \\ 0 & 4\end{array}\right|=-5 \times 4-0 \times 0=-20 \mathrm{Nm}$ clockwise
Example 2
Find the moment about the origin of a force of 4 jN acting at a point which has position vector 5 iN
$G=\left|\begin{array}{ll}5 & 0 \\ 0 & 4\end{array}\right|=5 \times 4-0 \times 0=20 \mathrm{Nm}$ anticlockwise
Example 3
Forces of $(2 \mathrm{i}-3 \mathrm{j}) \mathrm{N},(4 \mathrm{i}+\mathrm{j}) \mathrm{N}$ and $(5 \mathrm{i}-3 \mathrm{j}) \mathrm{N}$ act on a body at points with Cartesian co-ordinates $(1,1)$, $(2,4)$, and $(-1,3)$ respectively. Find the sum of moments of the forces about the origin.

Solution

$$
\begin{aligned}
G & =\left|\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right|+\left|\begin{array}{ll}
2 & 4 \\
4 & 1
\end{array}\right|+\left|\begin{array}{cc}
-1 & 5 \\
3 & -3
\end{array}\right|=(1 \times-3-2 \times 1)+(2 \times 1-4 \times 4)+(-1 \times-3-3 \times 5)=-31 \mathrm{Nm} \\
& =31 \mathrm{Nm} \text { clockwise }
\end{aligned}
$$

Example 4
Forces $(2 \mathrm{i}-3 \mathrm{j}) \mathrm{N},(5 \mathrm{i}+\mathrm{j}) \mathrm{N}$ and $(-4 \mathrm{i}+4 \mathrm{j})$ act on a body at points with position vector $(\mathrm{i}+\mathrm{j}),(-2 \mathrm{i}+2 \mathrm{j})$ and $(3 i-4 j)$ respectively. Find the sum of moments of forces about the
(i) origin

$$
\begin{aligned}
G & =\left|\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right|+\left|\begin{array}{cc}
-2 & 5 \\
2 & 1
\end{array}\right|+\left|\begin{array}{cc}
3 & -4 \\
-4 & 4
\end{array}\right|=(1 \times-3-2 \times 1)+(-2 \times 1-2 \times 5)+(3 \times 4--4 \times-4) \\
& =-21 \mathrm{Nm}=21 \mathrm{Nm} \text { clockwise }
\end{aligned}
$$

(ii) point with position vector ($\mathrm{i}-\mathrm{j}$)

$\mathrm{G}=(5 \times 3)+(1 \times 3)+(2 \times 0)+(2 \times 2)+(4 \times 3)-(4 \times 2)=26 \mathrm{Nm}$ clockwise

Revision exercise

1. Find the moment about the origin of a force of $3 i$ acting at a point which has position vector ($2 \mathrm{i}+3 \mathrm{j}$)m. [9Nm clockwise]
2. Find the moment about the origin of force $(4 i+2 j) N$ acting at a point which has position vector $(3 i+2 j) m$. [2Nm clockwise]
3. A force of $(3 \mathrm{i}-2 \mathrm{j}) \mathrm{N}$ act at a point which has position vector $(5 i+j) \mathrm{m}$. Find the moment about the point which has a position vector $(\mathrm{i}+2 \mathrm{j}) \mathrm{m}$. [5Nm clockwise]
4. A force of $(2 i+j) N$ act at a point which has position vector $(2 i+2 j) m$ and a force of $5 i N$ at a point which has position vector $(-2 i+j) m$. Find the sum of moments of these forces about the origin. [7Nm clockwise]
5. A force of $(3 i+2 j) N$ act at a point which has position vector $(5 i+j) m$ and a force of $(1+j) N$ act at a point which has position vector $(2 i+j) m$. Find the sum of moments of these forces about the point which has position vector $(\mathrm{i}+3 \mathrm{j}) \mathrm{m}$. [17Nm anticlockwise]
