Motion in straight line

Distance and displacement

Distance is a length between 2 fixe points
Displacement is the distance covered in a specific direction

Speed and velocity

Speed is the rate of change of distance with time
Velocity is the rate of change of displacement with time
Average speed $=\frac{\text { total distance }}{\text { total time taken }}$
Average velocity $=\frac{\text { total displacement }}{\text { total time taken }}$

Example 1

Find the distance travelled in 5 s by a body moving with a constant speed of $3.2 \mathrm{~ms}^{-1}$
Solution

Average speed $=\frac{\text { total distance }}{\text { total time taken }}$	$3.2=\frac{\text { total distance }}{5}$	distance $=16 \mathrm{~m}$

Example 2

John ran 1500m in 3minutes and 33s, find his average speed.
Average speed $\left.=\frac{\text { total distance }}{\text { total time taken }} \right\rvert\,$ speed $=\frac{1500}{(3 \times 60+33)}=7.04 \mathrm{~ms}^{-1}$

Acceleration

It is the rate of change of velocity
Acceleration $\left.=\frac{\text { change in velocity }}{\text { total time taken }} \quad \right\rvert\, \mathrm{a}=\frac{v-u}{t}$ where $\mathrm{v}=$ final velocity, $\mathrm{u}=$ initial velocity, $\mathrm{t}=$ time

Uniform acceleration

This is the constant rate of change of velocity with time

Equations of uniform acceleration

$1^{\text {st }}$ equation

Suppose a body moving in a straight line with uniform acceleration a, increases its velocity from u to v in time t, then from the definition of acceleration

$\mathrm{a}=\frac{v-u}{t} |$| at $=\mathrm{v}-\mathrm{u}$ | $\mathbf{v}=\mathbf{u}+\mathrm{at} \ldots \ldots1$ |
| :--- | :--- |

$2^{\text {nd }}$ equation
Suppose an object with velocity u moves with uniform acceleration a time t and attains a velocity v, the distance s travelled by the object is given by: $s=$ average velocity x time
$\mathrm{s}=\left(\frac{v+u}{2}\right) t$ but $\mathrm{v}=\mathrm{u}+$ at
$\mathrm{s}=\left(\frac{u+u+a t}{2}\right) t$

$$
\begin{align*}
& s=\left(\frac{2 u t+a t^{2}}{2}\right) \\
& s=u t+\frac{1}{2} a t^{2} \ldots \ldots2
\end{align*}
$$

$3^{\text {rd }}$ equation

$s=$ average velocity x time
$\mathrm{s}=\left(\frac{v+u}{2}\right) t$ but $\mathrm{t}=\frac{v-u}{a}$
$\mathrm{s}=\left(\frac{v+u}{2}\right)\left(\frac{v-u}{a}\right)=$

$$
\begin{aligned}
& \mathrm{s}=\left(\frac{v^{2}-u^{2}}{2 a}\right) \\
& \boldsymbol{v}^{2}=\boldsymbol{u}^{2}-2 \boldsymbol{a s} \ldots \ldots3
\end{aligned}
$$

Example 3

A car is initially at rest at a point O. The car moves from O in a straight line with an acceleration of $4 \mathrm{~ms}^{-2}$. find how far the car
(i) is from O after 2 s

From $\mathbf{s}=\mathbf{u t}+\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{a} \boldsymbol{t}^{\mathbf{2}} ; \mathbf{s}=0 \times 2+\frac{1}{2} \times 4 \times 2^{2}=8 \mathrm{~m}$
(ii) is from O after 3 s

$$
\mathbf{s}=0 \times 2+\frac{1}{2} \times 4 \times 2^{2}=18 \mathrm{~m}
$$

(iii) distance travelled in the third second $=18-8=10 \mathrm{~m}$

Example 4

A body at O moving with a velocity $10 \mathrm{~ms}^{-2}$ decelerates at $2 \mathrm{~ms}^{-2}$.
(a) find the displacement of the body from O after 7 s

$$
\begin{aligned}
& \text { From } \mathrm{s}=\mathrm{ut}+\frac{1}{2} a t^{2} \\
& \mathrm{~s}=10 \times 7+\frac{1}{2} x-2 \times 7^{2}=21 \mathrm{~m}
\end{aligned}
$$

(b) how far from O does the body come to rest and how long does it take

$$
\begin{aligned}
& \mathrm{s}=\left(\frac{v^{2}-u^{2}}{2 a}\right)=\frac{0^{2}-10^{2}}{2 x-2}=25 \mathrm{~m} \\
& \mathrm{t}=\frac{v-u}{a}=\frac{0-10}{-2}=5 \mathrm{~s}
\end{aligned}
$$

Example 5

A taxi approaching a stage runs two successive half kilometres in 16 s and 20 s respectively. Assuming the retardation is uniform, find
(i) Initial speed of the taxi
$\mathrm{s}=\mathrm{ut}+\frac{1}{2} a t^{2}$
For the first half kilometre or 500 m
$500=16 \mathrm{u}+\frac{1}{2} a(16)^{2} \ldots \ldots . .$. (i)
for the kilometre or 1000 m

$$
\begin{equation*}
1000=36 u+\frac{1}{2} a(36)^{2} \tag{ii}
\end{equation*}
$$

from eqn. (i) and eqn. (ii)
$\mathrm{a}=\frac{25}{72}$ and $\mathrm{u}=34.028 \mathrm{~ms}^{-1}$
(ii) the further distance, the taxi runs before stopping
$\mathrm{s}=\left(\frac{v^{2}-u^{2}}{2 a}\right)=\mathrm{s}=\left(\frac{0^{2}-(34.028)^{2}}{2\left(\frac{25}{72}\right)}\right)=1667.3 \mathrm{~m}$
Extra distance $=1667.3-1000=667.3 \mathrm{~m}$

Example 6

An overloaded taxi travelling at constant velocity of $90 \mathrm{~km} / \mathrm{h}$ overtakes a stationary traffic police car. $2 s$ later, the police car sets in pursuit, accelerating at a uniform rate of $6 \mathrm{~ms}^{-2}$. How far does the traffic car travel before catching up with the taxi?

Solution
$\mathrm{t}_{1}=$ time taken by the taxi
$\mathrm{t}_{2}=$ time taken by the police car
$\mathrm{t}_{1}=2+\mathrm{t}_{2}$
speed of the taxi in m / s
$90 \mathrm{~km} / \mathrm{h}=\frac{90 \times 1000}{3600}=25 \mathrm{~ms}^{-1}$
$\mathrm{s}=\mathrm{ut}+\frac{1}{2} a t^{2}$
$S_{T}=25 t_{1}$
$\mathrm{s}_{\mathrm{C}}=0 \mathrm{xt}_{2}+\frac{1}{2} \times 6 \times t_{2}{ }^{2}=3 t_{2}{ }^{2}$

For the car to catch taxi; $\mathrm{s}_{\mathrm{T}}=\mathrm{s}_{\mathrm{c}}$
$25 \mathrm{t}_{1}=3 \mathrm{t}_{2}{ }^{2}$
$25\left(2+t_{2}\right)=3 t_{2}{ }^{2}$
$\mathrm{t}=10 \mathrm{~s}$ or $\mathrm{t}=\frac{4}{3} \mathrm{~s}$
the car leaves 2 s later then 10 s is the correct time since it gives positive distance
$\mathrm{s}_{\mathrm{C}}=3 \mathrm{t}_{2}{ }^{2}=3 \times 10^{2}=300 \mathrm{~m}$

Example 7

A lorry starts from a point A and moves along a straight horizontal road with a constant acceleration of $2 \mathrm{~ms}^{-2}$. At the same time a car moving with a speed of $20 \mathrm{~ms}^{-1}$ and a constant acceleration of $3 \mathrm{~ms}^{-1}$ is 400 m behind the point A and moving in the same direction as the lorry. find:
(a) how far from A the car overtakes the lorry. a car over takes the lorry; both move in the same time, t

$$
\mathrm{s}=\mathrm{ut}+\frac{1}{2} a t^{2}
$$

distance moved by the car $=400+$ distance moved by the lorry
$20 \mathrm{t}+\frac{1}{2} \times 3 \times t^{2}=400+\frac{1}{2} \times 2 \times t^{2}$
$t^{2}+40 t-800=0 ; t=14.64 s$ or $t=-54.64 s$
Hence $\mathrm{t}=14.64 \mathrm{~s}$
sL $=\frac{1}{2} \times 2 x(14.64)^{2}=214.33 \mathrm{~m}$
(b) the speed of the lorry when it is being overtaken

$$
\begin{aligned}
v & =u+a t \\
& =0+2 \times 14.64=29.28 \mathrm{~ms}^{-1}
\end{aligned}
$$

Example 8

The seed of a taxi decreases from $90 \mathrm{kmh}^{-1}$ to $18 \mathrm{kmh}^{-1}$ in a distance of 120 metres. Find the speed of the taxi when it had covered a distance of 50metres. (05marks)

$$
\begin{aligned}
& \text { Given } u=90 \mathrm{kmh}^{-1}, v=18 \mathrm{kmh}^{-1}, \mathrm{~s}=120 \mathrm{~m}=0.12 \mathrm{~km} \\
& \text { Using } \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \\
& \qquad \begin{array}{l}
18^{2}=90^{2}+2 \mathrm{a}(0.12) \\
\mathrm{a}=-32400 \mathrm{kmh}^{-2}
\end{array} \\
& \text { When } \mathrm{s}=50 \mathrm{~m}=0.05 \mathrm{~km}, \mathrm{u}=90 \mathrm{kmh}^{-1}, \mathrm{a}=-32400 \mathrm{kmh}^{-2} \\
& \text { Using } \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as} \\
& \qquad \mathrm{v}^{2}=90^{2}-2 \times 32400 \times 0.05=4860 \\
& \quad v=\sqrt{4860}=69.71 \mathrm{kmh}^{-1}
\end{aligned}
$$

Example 9

(a) Show that the final velocity v of a body which starts with an initial velocity u and moves with uniform acceleration a consequently covering a distance x , is given by $\mathrm{v}=\left[u^{2}+2 a x\right]^{\frac{1}{2}}$
$x=$ average velocity x time
$\mathrm{x}=\left(\frac{v+u}{2}\right) t$ but $\mathrm{t}=\frac{v-u}{a}$
$\mathrm{x}=\left(\frac{v+u}{2}\right)\left(\frac{v-u}{a}\right)=\left(\frac{v^{2}-u^{2}}{2 a}\right)$

$$
\begin{aligned}
& v^{2}=u^{2}+2 a x \\
& v=\left[u^{2}+2 a x\right]^{\frac{1}{2}}
\end{aligned}
$$

(b) Find the value of x in (a) if $v=300 \mathrm{~m} / \mathrm{s}, \mathrm{u}=10 \mathrm{~m} / \mathrm{s}$ and $\mathrm{a}=5 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& 30=\left[10^{2}+2 x 5 x\right]^{\frac{1}{2}} \\
& 900=100+10 \mathrm{x} \\
& x=80 \mathrm{~m}
\end{aligned}
$$

Velocity-time graphs

Example 10

A car started from rest and attained a velocity of $20 \mathrm{~m} / \mathrm{s}$ in 40 s . It then maintained the velocity attained for 50 s . After that it was brought to rest by a constant breaking force in 20 s .
(i) Draw a velocity-time graph for the motion

(ii) using the graph, find the total distance travelled by the car

Total distance $=$ total area under the graph

$$
\begin{aligned}
& =\frac{1}{2} b h+l w+\frac{1}{2} b h \\
& =\frac{1}{2} \times 40 \times 20+50 \times 20+\frac{1}{2} \times 20 \times 20=1600 \mathrm{~m}
\end{aligned}
$$

Method II (area of a trapezium)

$$
\mathrm{A}=\frac{1}{2} h(a+b)=\frac{1}{2} \times 20(50+110)=1600 \mathrm{~m}
$$

(iii) what is the acceleration of the car?

$$
\mathrm{a}=\frac{v-u}{t}=\frac{20-0}{40}=0.5 \mathrm{~ms}^{-2}
$$

Example 11

A car from rest accelerates steadily to 10 s up to a velocity f 20 ms . It continues with uniform velocity for further 20s and then decelerates so that it stops in 20s.
(a) Draw a velocity-time graph to represent the motion

(b) Calculate
(i) acceleration

$$
\mathrm{a}=\frac{v-u}{t}=\frac{20-0}{10}=2 \mathrm{~ms}^{-2}
$$

(ii) deceleration

$$
\mathrm{a}=\frac{v-u}{t}=\frac{0-20}{20}=-1 m s^{-2}
$$

(i) Distance = area under the graph

$$
\begin{aligned}
A & =\frac{1}{2} \times 10 \times 20+20 \times 20+\frac{1}{2} \times 20 \times 20 \\
& =700 \mathrm{~m}
\end{aligned}
$$

Method II (area of a trapezium)
$A=\frac{1}{2} \times 20(50+20)=700 m$
Average speed $=\frac{\text { distance }}{\text { time }}$

$$
=\frac{700}{50}=14 \mathrm{~m} / \mathrm{s}
$$

Example 12

The graph below shows the motion in the body.

(a) Describe the motion of the body

A body with initial velocity of $15 \mathrm{~m} / \mathrm{s}$ accelerates steadily to a velocity of $20 \mathrm{~m} / \mathrm{s}$ in 4 s , it then continues with a uniform velocity for 6 s and brought to rest in 2 s .
(b) Calculate the total distance travelled

Distance $=4 \times 15+\frac{1}{2} \times 4 \times 5+20 \times 6+\frac{1}{2} \times 20 \times 2=210 \mathrm{~m}$

Revision exercise

1. P, Q and R are points on a straight road such that $P Q=20 \mathrm{~m}$ and $Q R=55 \mathrm{~m}$. A cyclist moving with uniform acceleration passes O and then notices that it takes him 10 s and 15 s to travel between P and Q and Q and R respectively. find the acceleration [$a=\frac{2}{15} m s^{-2}$]
2. A car travels from Kampala to Jinja and back. It takes average speed on the return journey is $4 \mathrm{~km} / \mathrm{h}$ greater than that on the outward journey and it takes 12 minutes less. Given that Kampala and Jinja are 80 km apart, find the average speed on the outward journey.[30.05kmh]
3. Car A traveling at $35 \mathrm{~ms}^{-1}$ along a straight horizontal road, accelerates uniformly at $0,4 \mathrm{~ms}^{-2}$. At the same time, another car B moving at $44 \mathrm{~ms}^{-1}$ and accelerating uniformly at $0.5 \mathrm{~ms}^{-2}$ is 200 m behind A
(i) Find the time taken before car B over takes car A. [20s]
(ii) speed with which B over takes A. [55m/s]
4. A car is being driven along a road at $72 \mathrm{kmh}^{-1}$ notices a fallen tree on the road 800 m ahead and suddenly reduces the speed to $36 \mathrm{kh}^{-1}$ by applying brakes. For how long were the brakes applied [53.33s]
5. A train starts from station a with a uniform acceleration of $0.2 \mathrm{~ms}^{-2}$ for 2 minutes and attains a maximum speed and moves uniformly for 15 minutes. it is then brought to rest at constant retardation of $5 / 3 \mathrm{~ms}^{-2}$ at station B. find the distance between A and B. [23212.8m]
6. A motorcycle decelerated uniformly from $20 \mathrm{kmh}^{-1}$ to $8 \mathrm{kmh}^{-1}$ in travelling 896 m . find the rate of deceleration in $\mathrm{ms} 2\left[0.0145 \mathrm{~ms}^{-2}\right.$]
7. A body moves with a uniform acceleration and covers a distance of 27 m in 3 s ; it then moves with a uniform velocity and covers a distance of 60 m in 5 s . Find the initial velocity and acceleration of the body. [$6 \mathrm{~ms}^{-1}, 2 \mathrm{~ms}^{-2}$]
8. A particle is projected away from an origin O with initial velocity of $0.25 \mathrm{~ms}^{-1}$. The particle travels in a straight line and accelerates at $1.5 \mathrm{~ms}^{-2}$. find
(i) how far the particle is from O after 4 s [7.5m]
(ii) the distance travelled by the particle during the fourth second after projection. [5.5m]
9. A taxi which is moving with a uniform acceleration is observed to take 20 s and 30 s to travel successive 400 m . find
(i) initial speed of the taxi. $\left[\frac{68}{3} m s^{-1}\right]$
(ii) the further distance it covers before stopping [163.3m]
10. Two cyclist A and B are 36 m apart on a straight road. Cyclist B starts from rest with an acceleration of $6 \mathrm{~ms}^{-2}$ while A is in pursuit of B with velocity of $20 \mathrm{~ms}^{-1}$ and acceleration of $4 \mathrm{~ms}^{-1}$. Find the time taken when A overtakes B [13466s]

Thank You
Dr. Bbosa Science

