Resolution of forces

The component of a vector is the effective value of a vector along a particular direction. The component along any direction is the magnitude of a vector multiplied by the cosine of the angle between its direction and the direction of the component.

Suppose a force F pulls a body of mass m along a truck at an angle θ to the horizontal as shown below

The effective force that makes the body move along the horizontal is the component of F along the horizontal

$\cos \theta=\frac{F_{x}}{F} ;$
$F_{x}=F \cos \theta$
$\sin \theta=\frac{F_{y}}{F} ;$
$F_{y}=F \sin \theta$
Resultant $F_{R}=\sqrt{F_{x}{ }^{2}+F_{y}{ }^{2}}$
Direction, $\alpha=\tan ^{-1}\left(\frac{F_{y}}{F_{x}}\right)$

Note
When a vector is inclined at an angle θ to the horizontal then;

* along the horizontal, the component of the vector is $\cos \theta$
* along the vertical, the component of the vector is $\sin \theta$

When a vector is inclined at an angle θ to the horizontal then;

* along the horizontal, the component of the vector is $\sin \theta$
* along the vertical, the component of the vector is $\cos \theta$

Example 1

Find the resultant of the system of forces below
(a)

$$
\begin{aligned}
F_{R} & =\binom{2}{0}+\binom{4 \cos 30}{4 \sin 30}+\binom{7 \cos 30}{-7 \sin 30}+\binom{-3 \cos 60}{3 \sin 60}+\binom{0}{-6} \\
& =\binom{10.03}{-4.90} \\
F_{R} & =\sqrt{(10.03)^{2}+(-4.90)^{2}}=11.16 \mathrm{~N}
\end{aligned}
$$

$\theta=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1}\left(\frac{4.9}{10.03}\right)=26.04^{0}$
The resultant force is 11.16 N at 26.04° below the horizontal
(b)

$F_{R}=\binom{3}{0}+\binom{2 \sin 30}{2 \cos 30}+\binom{4 \cos 30}{-4 \sin 30}+\binom{-5 \sin 30}{-5 \cos 30}+\binom{-6 \cos 60}{6 \sin 60}=\binom{1.964}{0.598}$
$F_{R}=\sqrt{1.964^{2}+0.598^{2}}=2.053 \mathrm{~N}$

$\theta=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1}\left(\frac{0.598}{1.964}\right)=16.9^{\circ}$
The resultant force is 2.053 N at 16.9° below the horizontal

Example 2

Forces of $3 \mathrm{~N}, 6 \mathrm{~N}, 5 \mathrm{~N}, 8 \mathrm{~N}, 9 \mathrm{~N}$ and 7 N act on a particle as shown in the figure below. Find the resultant force.

$F_{R}=\binom{3 \cos 10}{3 \sin 10}+\binom{6 \sin 30}{6 \cos 30}+\binom{-5 \sin 30}{5 \cos 30}+\binom{-8 \cos 30}{-8 \sin 30}+\binom{-9 \sin 40}{-9 \cos 40}+\binom{7 \sin 50}{-7 \cos 50}=\binom{-3.967}{-5.347}$
$F_{R}=\sqrt{(-3.967)^{2}+(-5.347)^{2}}=6.658 \mathrm{~N}$

Resultant force is 6.658 N at 53.43° below horizontal
Example 3
A body of mass 1 kg is acted on by the forces shown below. Find
(i) Magnitude of the resultant force
(ii) acceleration of the body
(iii) distance moved in 2 s

$$
\begin{aligned}
& F_{R}=\binom{-3}{0}+\binom{7 \cos 60}{7 \sin 60}+\binom{0}{-4}=\binom{0.5}{2.06} \\
& F_{R}=\sqrt{(0.5)^{2}+(2.06)^{2}}=2.12 \mathrm{~N} \\
& \text { but } F_{R}=m a
\end{aligned}
$$

$2.12=1 a$
$\mathrm{a}=2.12 \mathrm{~ms}^{-2}$
Froms $s=u t+1 / 2 a t^{2}$
$\mathrm{u}=0, \mathrm{t}=2 \mathrm{~s}, \mathrm{a}=2.12 \mathrm{~ms}^{-2}$
$s=0 \times 2+1 / 2 \times 2.12 \times 2^{2}=4.24 \mathrm{~m}$ from the origin
Revision exercise

1. A force of 3 N acts at 60° to a force of 5 N . Find the magnitude and direction of their resultant. [7 N at 21.8^{0} to the 5 N force]
2. A force of 3 N at 90° to the force of 4 N . Find the magnitude and direction of their resultant. [5 N at 37° to the 4 N force]
3. Two coplanar forces act on a point O as shown below

Calculate the magnitude and direction of the resultant force
[12.3N at 68.0 above the horizontal
4. The resultant of two forces pN and 3 N is 7 N . If the 3 N is reversed, the resultant is $\sqrt{17} \mathrm{~N}$ Find the value of p and the angle between the two forces. $\left[2 \sqrt{6} N, 57.02^{0}\right]$
5. Forces of $2 \mathrm{~N}, 3 \mathrm{~N}, 5 \mathrm{~N}$ and 5 N act on a particle in the direction $030^{\circ}, 090^{\circ}, 120^{\circ}, 210^{\circ}$, and 330° respectively. Find the magnitude and direction of the resultant force. [1.92N at 7.8° to the horizontal]
6. Forces of $7 \mathrm{~N}, 2 \mathrm{~N}, 2 \mathrm{~N}$ and 5 N act on a particle in the direction $060^{\circ}, 160^{\circ}, 200^{\circ}$, and 315° respectively. Find the resultant force. [4.14N at 52.36° below the horizontal]
7. Find the magnitude and direction of the resultant of force $10 \mathrm{~N}, 15 \mathrm{~N}$ and 8 N acting in the direction $030^{\circ}, 150^{\circ}$ and 225°. [12.1N at 55.6° below the positive x-axis]

Thank you
Dr. Bbosa Science

