

This document is sponsored by

Resolutions of forces acting on a polygon

For any regular polygon

- all sides are equal
- all angles are equal
- an exterior angle $=\frac{360}{n}$ where n is the number of sides

Example 1

$A B C D$ is a rectangle with $A B=4 \mathrm{~cm}$ and $B C=3 \mathrm{~cm}$. Forces of magnitude $2 N, 1 N, 5 N, 6 N$ and $7 N$ act along $A B, B C, C D, A D$ and $A C$ respectively. In each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal determine
(i) the magnitude of the resultant force

$\theta=\tan ^{-1}\left(\frac{3}{4}\right)=36.87$
$R=\binom{2}{0}+\binom{0}{1}+\binom{-5}{0}+\binom{0}{6}+\binom{7 \cos 36.87}{7 \sin 36.87}=\binom{2.6}{11.2}$
$R=\sqrt{2.6^{2}+11.2^{2}}=11.498 \mathrm{~N}$
(ii) direction of the resultant with $A B$

Direction is 13.069° above $A B$

Example 2

$A B C$ is an equilateral triangle. Forces of magnitude $12 \mathrm{~N}, 10 \mathrm{~N}$ and 10 N act along AB, BC and CA respectively, in each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal determine
(i) the magnitude of the resultant force

$$
\begin{aligned}
& R=\binom{12}{0}+\binom{-10 \cos 60}{10 \sin 60}+\binom{-10 \cos 60}{-10 \sin 60}=\binom{2}{0} \\
& R=\sqrt{2^{2}+0^{2}}=2 \mathrm{~N}
\end{aligned}
$$

(ii) Direction of the resultant with AB

Example 3

ABCDEF is a regular hexagon. Force of magnitude $2 N, 5 N, 3 N, 4 N, 3 N$ and $1 N$ act along the line $A B$, $B C, C D, D E, E F$ and $F A$ respectively, in each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal, determine
(i) the magnitude of the resultant force and

$R=\binom{2}{0}+\binom{5 \cos 60}{5 \sin 60}+\binom{-3 \cos 60}{3 \sin 60}+\binom{-4}{0}+\binom{-3 \cos 60}{-3 \sin 60}+\binom{1 \cos 60}{-1 \sin 60}=\binom{-2}{3.4641}$
$R=\sqrt{(-2)^{2}+3.4641^{2}}=4 N$
(ii) direction of the resultant with $A B$.

$$
\alpha=\tan ^{-1}\left(\frac{3.461}{2}\right)=60^{\circ} \text { to } \mathrm{AB}
$$

Example 4

$A B C D E F$ is a regular hexagon. Forces of magnitude $3 N, 4 N, 2 N$ and $6 N$ act along the line $A B, A C, E A$ and $A F$ respectively, in each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal, determine
(i) the magnitude of the resultant force

$$
\begin{aligned}
& R=\binom{3}{0}+\binom{4 \cos 30}{4 \sin 30}+\binom{-6 \cos 60}{6 \sin 60}+\binom{0}{-2}=\binom{2 \sqrt{3}}{3 \sqrt{3}} \\
& R=\sqrt{(2 \sqrt{3})^{2}+(3 \sqrt{3})^{2}}=6.245 \mathrm{~N}
\end{aligned}
$$

(ii) direction of the resultant force

$$
\theta=\tan ^{-1}\left(\frac{3 \sqrt{3}}{2 \sqrt{3}}\right)=56.3^{\circ}
$$

1. $A B C D$ is a square. Forces of magnitude $6 N, 4 N$ and $2 \sqrt{2} N$ act along $A D, A B$ and $A C$ respectively in each case the direction of force being the order of the letters. Given that $A B$ is horizontal, determine the magnitude and direction of the resultant force.
[10 N at 53.1^{0} with AB]
2. $A B C D$ is a square. Forces of magnitude $2 N, 1 N, \sqrt{2} N$ and $4 N$ act along $A B, B C$ and $A C$ and $D A$ respectively in each case the direction of force being the order of the letters. Given that $A B$ is horizontal, determine the magnitude and direction of the resultant force.
[5.13 N at 33.7° with AB]
3. ABCD is a square. Three forces of magnitude $4 \mathrm{~N}, 10 \mathrm{~N}$ and 7 N act along AB, AD and CA respectively in each case the direction of force being the order of the letters. Given that $A B$ is horizontal, determine the magnitude [5.1388N]
4. In equilateral triangle PQR, three forces of magnitude $5 \mathrm{~N}, 10 \mathrm{~N}$ and 8 N act along the side PQ , QR and PR respectively. Their direction are the order the letters. Find the magnitude of the resultant force. [16.1N]
5. ABCD is a square. Forces of magnitude $6 \sqrt{3} N N, 2 N$ and $4 \sqrt{3} N$ act along $A B, C B$ and CD respectively in each case the direction of force being the order of the letters. Given that $A B$ is horizontal, determine the magnitude and direction of the resultant force.
[4 N at 30° to AB]
6. $A B C D$ is a rectangle with $A B=4 \mathrm{~cm}$ and $B C=3 \mathrm{~cm}$. Forces of magnitude $3 \mathrm{~N}, 1 \mathrm{~N}$, and 10 N act along $A B, D C$ and $A C$ respectively. In each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal determine the magnitude and direction of the resultant force. [13.4 N at 26.6° with AB]
7. $A B C D$ is a rectangle. Forces of magnitude $8 N, 4 N, 10 N$ and $2 N$ act along $A B, C B, C D$ and $A D$ respectively. In each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal determine the magnitude and direction of the resultant force. [283 N at 45° at AB]
8. In equilateral triangle $A B C$, forces of magnitude 10 N each act along the side $A B, B C$ and $A C$ respectively. Their direction are the order the letters. Find the magnitude of the resultant force and the angle it makes with $A B$. [20 N at 60° to $A B$]
9. In equilateral triangle $A B C$, forces of magnitude $5 N, 9 N$ and $7 N$ act along the side $A B, B C$ and CA respectively. Their direction are the order the letters. Find the magnitude of the resultant force and the angle it makes with AB . [$2 \sqrt{3} \mathrm{~N}$ at 30° to AB$]$
10. In equilateral triangle $A B C$, forces of magnitude $4 N, 4 N$ and $6 N$ act along the side $A B, B C$ and $A C$ respectively. Their direction are the order the letters. Find the magnitude of the resultant force and the angle it makes with AB . [10N at 60° to AB]
11. $A B C D E F$ is a regular hexagon. Forces of magnitude $2 \mathrm{~N}, 5 \mathrm{~N}, 3 \mathrm{~N}, 4 \mathrm{~N}, 3 \mathrm{~N}$ and 1 N act along the line $A B, B C, C D, D E, E F$ and $A F$ respectively, in each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal, determine the magnitude and direction of the resultant force. [6 N at 60° to AB]
12. $A B C D E F$ is a regular hexagon. Forces of magnitude $8 \mathrm{~N}, 7 \mathrm{~N}, 6 \mathrm{~N}, 4 \mathrm{~N}, 7 \mathrm{~N}$, and 6 N act along the line $A B, B C, C D, D E, E F$ and $F A$ respectively, in each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal, determine the magnitude and direction of the resultant force. [12.5 N at 76° to AB]
13. PQRSTU is a regular hexagon. Forces of magnitude $4 \mathrm{~N}, 5 \mathrm{~N}, 2 \mathrm{~N}$, and 6 N act along the line PQ, PR, PT and PU respectively, in each case the direction of the force being given by the order of the letters. Given that PQ is horizontal, determine the magnitude and direction of the resultant force. [11.065N at 61.2^{0} to PQ]
14. $A B C D$ is a square. Forces of magnitude $10 N \mathrm{~N}, 9 \mathrm{~N}, 8 \mathrm{~N}$ and 5 N act along $A B, B C, C D$ and $A D$ respectively in each case the direction of force being the order of the letters. Given that $A B$ is horizontal, determine the magnitude and direction of the resultant force.
[$2 \sqrt{5} \mathrm{~N}$ at 63.43^{0} to AB]
15. $A B C D$ is a rectangle with $A B=4 \mathrm{~cm}$ and $B C=3 \mathrm{~cm}$. Forces of magnitude $3 N, 10 N, 4 N, 6 N$ and $5 N$ act along $A B, B C, C D, D A$, and $A C$ respectively. In each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal determine the magnitude and direction of the resultant force. [7.62N at 66.8^{0} with $\left.A B\right]$

Thank you
Dr. Bbosa Science

