

This document is sponsored by
Clantune youx dreamb The Science Foundation College Kiwanga- Namanve

Uganda East Africa

Senior one to senior six
+256778633682, 753802709
Based on, best for sciences

Resultant of forces

A force is anything which change a body's state of rest or uniform motion in a straight line. Examples are weight, tension, reaction, friction, resistance force.

Resultant of two forces
Consider two forces A and B inclined to each other at an angle θ

(i) θ is right angle $\left(\theta=90^{\circ}\right)$

(ii) θ is acute $\left(0^{\circ} \leq \theta \leq 90^{\circ}\right)$

Resultant, $\mathrm{R}=\sqrt{\left[A^{2}+B^{2}-2 A B \cos (180-\theta)\right]}$
(iii) θ is obtuse $\left(90^{\circ} \leq \theta \leq 180^{\circ}\right)$

Direction of resultant, $\frac{\sin \alpha}{A}=\frac{\sin (180-\theta)}{R}$ $\alpha=\sin ^{-1}\left(\frac{A \sin (180-\theta)}{R}\right)$

Resultant, $\mathrm{R}=\sqrt{\left[A^{2}+B^{2}-2 A B \cos (180-\theta)\right]}$

Example 1

Two forces of magnitude 5 N and 12 N act on a particle with their direction inclined at 90°. Find the magnitude and direction of the resultant
$R=\sqrt{5^{2}+12^{2}}=13 \mathrm{~N} \quad \alpha=\tan ^{-1}\left(\frac{5}{12}\right)=22.6^{\circ}$
The resultant $=13 \mathrm{~N}$ at 22.6° to 12 N force

Example 2

Forces of magnitude 7 N and 9 N act on a particle at an angle of 60° between them. Find the magnitude and direction of the resultant.

$$
\begin{aligned}
& \text { Direction of resultant, } \frac{\sin \alpha}{9}=\frac{\sin (180-\theta)}{13.89} \\
& \alpha=\sin ^{-1}\left(\frac{9 \sin (180-60)}{13.89}\right)=34.13^{0}
\end{aligned}
$$

Resultant, $\mathrm{R}=\sqrt{\left[A^{2}+B^{2}-2 A B \cos (180-\theta)\right]}$

$$
\begin{aligned}
& =\sqrt{\left[7^{2}+9^{2}-2 \times 7 \times 9 \cos (180-60)\right]} \\
& =13.89 \mathrm{~N}
\end{aligned}
$$

Example 3

Find the angle between a force of 7 N and 4 N their resultant has a magnitude of 9 N
Solution

$$
\begin{aligned}
& \begin{aligned}
& \alpha=\cos ^{-1}\left(-\frac{2}{7}\right)=106.6^{\circ} \\
& \text { the angle } \theta \text { between the forces }=180-106.6 \\
&=73.4^{0}
\end{aligned}
\end{aligned}
$$

$$
9^{2}=7^{2}+4^{2}-2 \times 7 \times 4 \times \cos \alpha
$$

Example 4

Forces of 3 N and 2 N act on a particle at an angle of 150° between them. Find the magnitude and direction of the resultant.

Direction of resultant, $\frac{\sin \alpha}{2}=\frac{\sin (30)}{1.61}$
$\alpha=\sin ^{-1}\left(\frac{2 \sin (180-60)}{1.61}\right)=38.3^{\circ}$
$R^{2}=2^{2}+3^{2}-2 \times 2 \times 2 \times \cos (30)$
$R=1.61 \mathrm{~N}$

1. Two forces of magnitude 7 N and 24 N act on a particle with their direction at 90°. Find the magnitude and direction of the resultant. [$25 \mathrm{~N}, 16.26^{\circ}$ with 24 N force]
2. Forces of 5 N and 8 N act on a particle at an angle of 50° between them. Find the magnitude and direction of the resultant. [11.9 N at 19° with 8 N force]
3. Forces of 4 N and 6 N act on a particle at angle 60° between them. Find the magnitude and the direction of the resultant. [5.29N, at 40.9° with 6 N force]
4. Forces of 9 N and 10 N act on a particle at angle 40° between them. Find the magnitude and the direction of the resultant. [17.9N, at 18.9° with 10 N force]
5. Forces of 12 N and 10 N act on a particle at angle 105° between them. Find the magnitude and the direction of the resultant. [13.5 N , at 45.7° with 12 N force]
6. Forces of 8 N and 3 N act on a particle at angle 160° between them. Find the magnitude and the direction of the resultant. [5.28N, at 11.2° with 8 N force]
7. Find the angle between a force of 10 N and 4 N their resultant has a magnitude of $8 \mathrm{~N} .\left[130.5^{\circ}\right.$]
8. The angle between a force $\alpha \mathrm{N}$ and a force of 3 N is 120°. If the resultant of the two forces has magnitude 7 N , find the value of α. [8N]
9. The angle between a force βN and a force of $8 N$ is 45°. If the resultant of the two forces has a magnitude 15 N , find the value of β. [8.24N]

Thank you
Dr. Bbosa Science

