

Resultant of forces

A force is anything which change a body's state of rest or uniform motion in a straight line. Examples are weight, tension, reaction, friction, resistance force.

Resultant of two forces

Consider two forces A and B inclined to each other at an angle $\boldsymbol{\theta}$

(i) θ is right angle ($\theta = 90^{\circ}$)

Resultant, R = $\sqrt{A^2 + B^2}$ Direction of resultant, $\beta = \tan^{-1}\left(\frac{A}{B}\right)$

(ii) θ is acute ($0^0 \le \theta \le 90^0$)

Direction of resultant, $\frac{\sin \alpha}{A} = \frac{\sin(180-\theta)}{R}$ $\alpha = \sin^{-1}\left(\frac{A\sin(180-\theta)}{R}\right)$

Resultant, R = $\sqrt{[A^2 + B^2 - 2ABcos(180 - \theta)]}$

(iii) θ is obtuse (90° $\leq \theta \leq 180°$)

Resultant, R = $\sqrt{[A^2 + B^2 - 2AB\cos(180 - \theta)]}$

Direction of resultant,
$$\frac{\sin \alpha}{A} = \frac{\sin(180-\theta)}{R}$$

 $\alpha = \sin^{-1}\left(\frac{A\sin(180-\theta)}{R}\right)$

Example 1

Two forces of magnitude 5N and 12N act on a particle with their direction inclined at 90°. Find the magnitude and direction of the resultant

$$R = \sqrt{5^2 + 12^2} = 13N$$
 $\alpha = \tan^{-1}\left(\frac{5}{12}\right) = 22.6^{\circ}$

The resultant = 13N at 22.6° to 12N force

Example 2

Forces of magnitude 7N and 9N act on a particle at an angle of 60^o between them. Find the magnitude and direction of the resultant.

Direction of resultant, $\frac{\sin \alpha}{9} = \frac{\sin(180-\theta)}{13.89}$ $\alpha = \sin^{-1} \left(\frac{9\sin(180-60)}{13.89} \right) = 34.13^{0}$

Resultant, R = $\sqrt{[A^2 + B^2 - 2ABcos(180 - \theta)]}$

$$=\sqrt{[7^2 + 9^2 - 2x7 x 9\cos(180 - 60)]}$$
$$= 13.89N$$

Example 3

Find the angle between a force of 7N and 4N their resultant has a magnitude of 9N

Solution

Example 4

Forces of 3N and 2N act on a particle at an angle of 150⁰ between them. Find the magnitude and direction of the resultant.

R = 1.61N

Revision exercise

- 1. Two forces of magnitude 7N and 24N act on a particle with their direction at 90[°]. Find the magnitude and direction of the resultant. [25N, 16.26[°] with 24N force]
- 2. Forces of 5N and 8N act on a particle at an angle of 50^o between them. Find the magnitude and direction of the resultant. [11.9N at 19^o with 8N force]
- 3. Forces of 4N and 6N act on a particle at angle 60[°] between them. Find the magnitude and the direction of the resultant. [5.29N, at 40.9[°] with 6N force]
- 4. Forces of 9N and 10N act on a particle at angle 40⁰ between them. Find the magnitude and the direction of the resultant. [17.9N, at 18.9⁰ with 10N force]
- 5. Forces of 12N and 10N act on a particle at angle 105^o between them. Find the magnitude and the direction of the resultant. [13.5N, at 45.7^o with 12N force]
- 6. Forces of 8N and 3N act on a particle at angle 160⁰ between them. Find the magnitude and the direction of the resultant. [5.28N, at 11.2⁰ with 8N force]
- 7. Find the angle between a force of 10N and 4N their resultant has a magnitude of 8N. [130.5⁰]
- 8. The angle between a force αN and a force of 3N is 120⁰. If the resultant of the two forces has magnitude 7N, find the value of α . [8N]
- 9. The angle between a force βN and a force of 8N is 45° . If the resultant of the two forces has a magnitude 15N, find the value of β . [8.24N]

Thank you Dr. Bbosa Science