Vectors

A vector is a quantity which has both magnitude and direction. Examples include, force, displacement, acceleration, momentum and velocity.

Representation of a vector

A vector is represented by a line with an arrow to indicate the direction of the vector.

where the order of the letters shows the direction

Vectors in dimensions

Vectors can be represented in three dimensions as I, j and k along the x, y and z - axes respectively

Resultant of vectors

When several vectors $\left(V_{1}, V_{2}, V_{3} \ldots V_{n}\right)$ are acting on a point object, the net vector R, is calculated as the vector sum
$\mathrm{R}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\ldots+\mathrm{Vn}=\sum_{r=1}^{r=N} V_{r}$

Example 1

Find the resultant of the following vectors
(a) $(2 i+3 j+3 k)$ and $(2 i+4 j-8 k)$

$$
R=\left(\begin{array}{l}
2 \\
3 \\
3
\end{array}\right)+\left(\begin{array}{c}
2 \\
4 \\
-8
\end{array}\right)=\left(\begin{array}{c}
4 \\
7 \\
-5
\end{array}\right) \text { or } 4 i+7 j-5 k
$$

(b) $(7 i-4 j+3 k),(5 i-2 j+8 k),(i-k)$

$$
R=\left(\begin{array}{c}
7 \\
-4 \\
3
\end{array}\right)+\left(\begin{array}{c}
5 \\
-2 \\
8
\end{array}\right)+\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
13 \\
-6 \\
10
\end{array}\right) \text { or } 13 i-6 j+10 k
$$

Example 2

The resultant of $(5 i-2 j),(7 i+4 j),(a i+b j)$ and $(-3 i+2 j)$ is $(5 i+5 j)$. Find the values of a and b.

$$
\begin{aligned}
R & =\binom{5}{-2}+\binom{7}{4}+\binom{a}{b}+\binom{-3}{2}=\binom{5}{5} \\
& =\binom{9+a}{4+b}=\binom{5}{5} \\
& 9+a=5 ; a=-4 \text { also } 4+b=5 ; b=1
\end{aligned}
$$

Example 3

The resultant of the forces $(3 i+(a-c) j) N,((2 a+3 c) I+5 j) N$ and $(4 i, 6 j) N$ acting on a particle is $(10 i+12 j) N$. find
(i) Values of a and c

$$
\begin{array}{l|l}
R=\binom{3}{a-c}+\binom{2 a+3 c}{5}+\binom{4}{6}=\binom{10}{12} & \text { (i) +3(ii) } \\
2 a+3 c+7=10 & 5 a=6 ; a=1.2 \\
2 a+3 c=3 \ldots \ldots . . . \text { (i) } & \text { from eqn. (ii) } \\
a-c+11=12 & \text { c }=0.2
\end{array}
$$

(ii) magnitude of $(2 a+3 c) I+5 j$

$$
\begin{aligned}
& \mathrm{R}=(2 \mathrm{a}+3 \mathrm{c}) I+5 \mathrm{j}=(1.2 \times 2+3 \times 0.2) \mathrm{i}+5 \mathrm{j}=3 \mathrm{i}+5 \mathrm{j} \\
& |R|=\sqrt{3^{2}+5^{2}}=5.831 \mathrm{~N}
\end{aligned}
$$

Magnitude or modulus of a vector

This is the length of a vector
(i) Given $\mathrm{R}=\mathrm{xi}+\mathrm{yj} ;|\mathrm{R}|=\sqrt{x^{2}+y^{2}}$
(ii) Given $\mathrm{R}=\mathrm{xi}+\mathrm{yj}+\mathrm{zk} ;|R|=\sqrt{x^{2}+y^{2}+z^{2}}$

Example 5

Find the magnitude of the following vectors
(a) $3 \mathrm{i}+4 \mathrm{j} ;|R|=\sqrt{3^{2}+4^{2}}=5$
(b) $3 \mathrm{i}+2 \mathrm{j}-6 \mathrm{k} ;|R|=\sqrt{3^{2}+2^{2}(-6)^{2}}=7$

Direction of a vector

Consider $\mathrm{R}=\mathrm{xi}+\mathrm{yj}$

$$
\theta=\tan ^{-1}\left(\frac{x}{y}\right)
$$

Example 6

Find the magnitude and direction of the resultant of each of the following
(a) $(2 \mathrm{i}+3 \mathrm{j}) \mathrm{N},(5 \mathrm{t}-2 \mathrm{j}) \mathrm{N},(-3 \mathrm{i}, 3 \mathrm{j})$ $R=\binom{2}{3}+\binom{5}{-2}+\binom{-3}{3}=\binom{4}{4}$ $|R|=\sqrt{4^{2}+4^{2}}=5.6569 \mathrm{~N}$

$$
\theta=\tan ^{-1}\left(\frac{4}{4}\right)=45^{\circ}
$$

(b) $\binom{2}{4} N,\binom{-6}{-5}$ Nand $\binom{2}{1} N$
$R=\binom{2}{4}+,\binom{-6}{-5}+\binom{2}{1}=\binom{-2}{0}$
$|R|=\sqrt{(-2)^{2}+0^{2}}=2 \mathrm{~N}$

$$
\theta=\tan ^{-1}\left(\frac{0}{-2}\right)=180^{\circ}
$$

Example 7

Four forces of $a i+(a-1) j, 3 i+2 a j, 5 i-6 j$, and $-i-2 j$ act on a particle. The resultant forces make an angle of 45° with horizontal. Find a. Hence determine the magnitude of the resultant force.

$$
\left.\begin{array}{rl|l}
R & =\binom{a}{a-1}+\binom{3}{2 a}+\binom{5}{-6}+\binom{-1}{-2} & \begin{array}{l}
\frac{a+7}{3 a-9}=\tan ^{-1}\left(45^{0}\right)=1 \\
\\
=\binom{a+7}{3 a-9} \\
\mathrm{a}+7=3 \mathrm{a}-9, \mathrm{a}=8 \\
\mathrm{~F}_{\mathrm{y}} \uparrow \\
\mathrm{~F}_{\mathrm{x}}
\end{array} \\
R=\binom{a+7}{3 a-9}=\left(\begin{array}{c}
8+7 \\
3 \\
3
\end{array} 8-9\right.
\end{array}\right)=\binom{15}{15} .
$$

Unit vector

This a vector whose magnitude is unit (1)
Unit vector of r denoted by $r=\frac{r}{|r|}$

Example 8

Find the unit vector of $a=6 i-2 j+3 k$
Solution
$a=\frac{6 i-2 j+3 k}{\sqrt{6^{2}+(-2)^{2}+3^{2}}}=\frac{1}{7}(6 i-2 j+3 k)$
Parallel vectors
If vectors a and b are parallel, then one of them is a scalar multiple of the other.
If a vector r of magnitude $|r|$ moves in direction $x i+y j+z k$ then, $r=|r|\left(\frac{x i+y j+z k}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$

Example 9

Find the vector, V which has a magnitude of 15 units and is parallel to $16 i+12 j$
$\mathrm{V}=15 \times \frac{16 \mathrm{i}+12 \mathrm{j}}{\sqrt{16^{2}+12^{2}}}=15 \times \frac{16 \mathrm{i}+12 \mathrm{j}}{20}=12 i+9 j$

Example 10

A body of velocity v and of magnitude $20 \mathrm{~m} / \mathrm{s}$ moves in the direction $6 \mathrm{i}+8 \mathrm{j}$. Find V .
$V=20 \times \frac{6 i+8 j}{\sqrt{6^{2}+8^{2}}}=20 \times \frac{6 i+8 j}{10}=12 i+16 j$
Example 11
A force of magnitude 12 N acts on a body in the direction $2 i+j+2 k$. Find the force
$\mathrm{V}=12 \times \frac{2 \mathrm{i}+\mathrm{j}+2 \mathrm{k}}{\sqrt{2^{2}+1^{2}+2^{2}}}=12 x \frac{2 \mathrm{i}+\mathrm{j}+2 \mathrm{k}}{3}=8 i+4 j+8 k$

Example 12

The force A of magnitude 5 N in the direction with unit vector $\frac{1}{5}(3 i+4 j)$ and force B of magnitude 13 N in the direction with unit vector $\frac{1}{13}(5 i-12 j)$. Find the resultant forces of A and B.
$\mathrm{FA}=\frac{1}{5}(3 i+4 j) x 5=3 i+4 j$
$\mathrm{FB}=\frac{1}{13}(5 i-12 j) \times 13=5 i-12 j$

$$
\begin{aligned}
& F=\binom{3}{4}+\binom{5}{-12}=\binom{8}{-8} \\
& |F|=\sqrt{8^{2}+(-8)^{2}}=11.3137 \mathrm{~N}
\end{aligned}
$$

Example 13

A particle P moves through a displacement of $2 m$ when acted o by two forces F_{1} and F_{2}. Find the work done by the resultant force, if $F_{1}=i-j$ and $F_{2}=10 \mathrm{~N}$ and acts in the direction $4 i+3 j$

Solution
$F_{1}=i-j$
$F_{2}=10 x \frac{4 i+3 j}{\sqrt{4^{2}+3^{2}}}=8 i+6 j$

$$
\begin{aligned}
& \mathrm{F}=\binom{1}{-1}+\binom{8}{6}=\binom{9}{5} \\
& |F|=\sqrt{9^{2}+5^{2}}=10.2956 \mathrm{~N} \\
& \mathrm{~W}=|F| x d=10.2956 \times 2=20.5912 \mathrm{~J}
\end{aligned}
$$

Revision exercise 1

1. Find the resultant of each of the following forces
(a) $(6 i+2 j) N,(-5 i+j) N,(3 i-3 j) N$. [(4i)N]
(b) $(2 i+4 j) N,(3 i-5 j),(6 i+2 j) N,(-7 i-7 j) N .[(4 i-6 j) N]$
(c) $(2 \mathrm{i}+3 \mathrm{j}-7 \mathrm{k}) \mathrm{N},(2 \mathrm{i}+5 \mathrm{k}) \mathrm{N},(3 \mathrm{j}+4 \mathrm{k}) \mathrm{N} .[(4 \mathrm{i}+6 \mathrm{j}+2 \mathrm{k}) \mathrm{N}]$
2. The resultant of forces $(5 i+7 j)$, $(a i+b j)$ and $(b i-a j) N$ is a force $(11 i+5 j) N$. Find a and b. [$a=4, b=2$]
3. Find the magnitude and direction of the resultant of each of the following;
(a) $(-2 i+5 j) N,(1+2 j) N .\left[7.07 N\right.$ at $\left.98.1^{\circ}\right]$
(b) $(6 \mathrm{i}+2 \mathrm{j}) \mathrm{N},(4 \mathrm{i}-3 \mathrm{j}) \mathrm{N} .\left[10.05 \mathrm{~N}\right.$ at $\left.354.3^{0}\right]$
(c) $(3 i+2 j),(-5 i+j) N \cdot\left[3.61 \mathrm{~N}\right.$ at $\left.124^{\circ}\right]$
4. A force of magnitude 50 N acts on a body in the direction $24 i+7 j$. Find the force. [($48 i+14 j)]$
5. Two forces F_{1} and F_{2} have magnitude αN and βN and act in the direction $i-2 j$ and $4 i+3 j$ respectively. Given that the resultant of F_{1} and F_{2} is $(48 i+14 j)$. Find the magnitude of αN and $\beta \mathrm{N} .[\alpha=8 \sqrt{5} \mathrm{~N}$ and $\beta=50 \mathrm{~N}]$
6. If $a=3 i+4 j, b=4 i+20 j$ and $c=5 i-19 j$; find the
(i) resultant of a and $b[(7 i+24 j)]$
(ii) resultant of a and c [(8i-15j)]
(iii) vector is parallel to a and has magnitude of 15 unit [($9 i+12 j)]$
(iv) vector parallel to $(a+b)$ and has a magnitude of 100 units [($28 i+96 j]$
7. If $a=2 i+5 j, b=-7 i+7 j$ and $14 i$. Find the;
(i) resultant of a and $b[(-5 i+12 j)]$
(ii) resultant of a, b and $c[(9 i+12 j)]$
(iii) $|\mathrm{b}|[7 \sqrt{2}]$
(iv) $\quad|a+b+c|$ [15units]
(v) vector is parallel to a and has a magnitude of $5 \sqrt{29}$ units. ($10 \mathrm{i}+25 \mathrm{j})$
(vi) Vector is parallel to $(a+b+c)$ and has magnitude 90 units. [(54i $+72 j)]$
8. If $a=i-3 j+2 k, b=5 i+4 j$ and $c=3 i+j+4 k$. Find the
(i) resultant of a and $b[(6 i+j+2 k)]$
(ii) resultant of a, b and $c .[(9 i+2 j+6 k)$
(iii) $\quad|a|[\sqrt{14}]$
(iv) $|a+b+c|[11$ units]
(v) Vector parallel to $(a+b+c)$ and has magnitude 5 units $\left[\frac{5}{11}(9 i+2 j+6 k)\right]$
9. If $a=2 i+7 j+7 k, b=6 i-3 j+2 k$ and $c=-4 j-3 k$. find the
(i) resultant a and b $[8 i+4 j j+9 k]$
(ii) resultant a and c $[2 i+3 j+4 k$
(iii) $|\mathrm{b}|$ [7units]
(iv) $|a+b+c|[10$ units $]$
(v) vector is parallel to $|a+b+c|$ and has magnitude of 50 units [40i $+30 k$]

Scalar products or dot products

The dot product of two vectors a and b inclined at angle θ is given by

$$
a . b=|a||b| \cos \theta
$$

Note

If two vectors are perpendicular then the angle between them is 90° and

$$
a . b=|a||b| \cos 90=0
$$

Example 14

If $a=i-2 k$ and $b=3 i-3 j+k$, find
(i) a.b
(ii) the angle between a and b

Solution
(i) $\quad a \cdot b=\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right) \cdot\left(\begin{array}{c}3 \\ -3 \\ 1\end{array}\right)=3+0+-2=1$
(ii) $\quad \theta=\cos ^{-1}\left(\frac{a . b}{|a||b|}\right)=\cos ^{-1} \frac{1}{\sqrt{1^{2}+(2)^{2} \sqrt{3^{2}+(-3)^{2}+1^{2}}}}=84.1^{\circ}$

Example 15

If $p=2 i-j+3 k$ and $q=i+4 j+3 k$; find the angle between p and q.
Solution
p.q $=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 4 \\ 3\end{array}\right)=2+-4+9=7$
$\theta=\cos ^{-1}\left(\frac{p . q}{|p||q|}\right)=\cos ^{-1} \frac{7}{\sqrt{2^{2}+(-1)^{2}+3^{2} \sqrt{1^{2}+4^{2}+3^{2}}}}=68^{\circ}$

Example 16

If the angle between two vectors $a=x i+2 j a n d b=3 i+j$ is 45°. Find the two possible values of constant x .

Solution
$\binom{x}{2} \cdot\binom{3}{1}=\sqrt{x^{2}+2^{2}} \cdot \sqrt{3^{2}+1^{2}}$
$3 x+2=\sqrt{x^{2}+2^{2}} \cdot \sqrt{10} \cdot \frac{\sqrt{2}}{2}$
$(3 x+2)^{2}=\left(x^{2}+4\right) .10 \times \frac{2}{4}$

$$
\begin{aligned}
& x^{2}+3 x-4=0 \\
& (x+4)(x-1)=0 \\
& x=-4 \text { and } x=1
\end{aligned}
$$

Example 17

If $p=2 \alpha i+7 j-k$ and $q=3 \alpha i+\alpha j+3 k$. Find the value of the scalar α if the vectors are perpendicular Solution
$\left(\begin{array}{c}2 \alpha \\ 7 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}3 \alpha \\ \alpha \\ 3\end{array}\right)=0$
$6 \alpha^{2}+7 \alpha-3=0$
$\alpha=\frac{1}{3}$ and $\alpha=\frac{3}{2}$

Revision exercise 2

1. Find the scalar products for each of the following pairs of vectors.
(i) $a=2 i+j, b=i-3 j[-1]$
(ii) $a=3 i, b=-2 i+j \quad[-6]$
(iii) $a=5 i+j-2 k, b=4 i+3 j-8 k[39]$
(vii) $\left(\begin{array}{c}0 \\ 5 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right)$ [8]
(iv) $2 i+4 j-15 k$ and $-8 i+2 j-k[7]$
(v) $\binom{2}{1}$ and $\binom{3}{-2}$ [4]
(vi) $\left(\begin{array}{l}5 \\ 2 \\ 7\end{array}\right)$ and $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)[2]$
(vi) $\quad\binom{5}{-1}$ and $\binom{2}{4}$ [6]
2. Find the angles between each of the following pairs of vectors
(i) $3 i+4 j$ and $5 i-12 j\left[121^{\circ}\right]$
(ii) $3 i$ and $-2 j\left[90^{\circ}\right]$
(iii) $2 i+3 j-6 k$ and $2 i+j+2 k\left[10^{\circ}\right]$
(iv) $i+2 j-k$ and $-1+2 j-k\left[48^{\circ}\right]$
(v) $\binom{3}{1}$ and $\binom{1}{-2}\left[82^{\circ}\right]$
(vi) $\binom{6}{-8}$ and $\binom{5}{4}\left[92^{\circ}\right]$
(v) (vii) $\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)\left[120^{\circ}\right]$
(viii) $\left(\begin{array}{l}2 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)\left[73^{0}\right]$
3. If $a=\alpha i+2 j-k$ and $b=5 i-\alpha j+k$. Find the value of the scalar α if the vectors are perpendicular [$\left.\frac{1}{3}\right]$
4. If $a=2 i+\alpha j$ and $b=-\alpha-k$. Find the value of the scalar α if the vectors are perpendicular [0]
5. If $a=4 i+5 j$ and $b=q i-8 j$. Find the value of scalar q if the vectors are perpendicular. [10]
6. If $a=6 i-j$ and $b=2 i+p k$. Find the value of scalar p if the vectors are perpendicular [12]
7. Given $\left(\begin{array}{c}q \\ 2+q \\ 3\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 3 \\ 4-q\end{array}\right)$ are perpendicular vectors. Find the value of q. [18]
8. If $a=q i+8 j+(3 q+1) k$ and $b=(q+1) I+(q-1) j-2 k$. Find the value of the possible values of constant q if the vectors are perpendicular. [2 or -2]

Thank you
Dr. Bbosa Science

