This document is sponsored by
CYastune youx dreamo The Science Foundation College Kiwanga- Namanve

Uganda East Africa

Senior one to senior six
+256 778633 682, 753802709
Based on, best for sciences

Couple of forces

These are equal forces acting in opposite direction

Conditions for forces to form a couple

Forces reduce to a couple if;

- resultant force is zero
- the sum of moments about a point is not zero

Example 1
Forces of $(-5 i-j) N,-3 j$ and $(5 i+4 j)$ act on a body a point with position vectors $(i-j) m,(2 i+j) m$ and $(4 i-5 j) m$ respectively. Show that these forces reduce to a couple

Solution

$$
\begin{aligned}
R & =\binom{-5}{-1}+\binom{0}{-1}+\binom{5}{4}=\binom{0}{0} \\
G & =\left|\begin{array}{cc}
1 & -5 \\
-1 & -1
\end{array}\right|+\left|\begin{array}{cc}
2 & 0 \\
1 & -3
\end{array}\right|+\left|\begin{array}{cc}
4 & 5 \\
-5 & 4
\end{array}\right| \\
& =[(1 \times-1)-(-5 \times-1)]+[(3 \times-3)-(1 \times 0)]+[(4 \times 4)-(5 \times-5)]=29 \mathrm{Nm}
\end{aligned}
$$

Since the resultant force is zero an the sum of moment G is not zero, the forces reduce to a couple.

Example 2

$A B C D$ is a square of side 3 m . Forces of magnitude $1 \mathrm{~N}, 2 \mathrm{~N}, 3 \mathrm{~N}, \mathrm{sN}$ and tN act along the line $A B, B C$, $C D, D A$ and $A C$ respectively, in each case the direction of the force being given by the order of letters. Taking $A B$ as horizontal and $B C$ as vertical, find the values of s and t so that the resultant of the forces is a couple.

$$
\begin{aligned}
& R=\binom{1}{0}+\binom{0}{2}+\binom{-3}{0}+\binom{0}{-s}+\binom{t \cos 45}{t \sin 45}=\binom{0}{0} \\
& (\rightarrow) \operatorname{tcos} 45=2 ; \mathrm{t}=\frac{2}{\cos 45}=2 \sqrt{2} \\
& (\uparrow) 2-\mathrm{s}+\mathrm{t} \sin 45=0 ; \mathrm{s}=2+2 \sqrt{2} \sin 45=4 \mathrm{~N} \\
& \text { It must also be shown the } \mathrm{G}=0 \\
& \text { A } \mathrm{G}=2 \times 3+3 \times 3=15 \mathrm{Nm}
\end{aligned}
$$

Example 3

ABCDEF is a regular hexagon of side 4 m . Forces of magnitude $5 \mathrm{~N}, 1 \mathrm{~N}, 3 \mathrm{~N}, 4 \mathrm{~N}, 2 \mathrm{~N}$ and 2 N act along the lines $A B, B C, C D, D E, E F$ and $F A$ respectively. In each case the direction of the force being given by the order of the letters. Given that $A B$ is horizontal, show that these forces reduce to a couple.

Solution

$$
\begin{aligned}
& \mathrm{OM}=\sqrt{4^{2}-2^{2}}=2 \sqrt{3} m \\
& (\rightarrow) 5-4+(1-3-2+2) \cos 60=0 \\
& (\uparrow)(1+3-2-2) \sin 60=0 \\
& \text { O } \mathrm{G}=2 \sqrt{3}(5+1+3+4+2) \\
& \quad=34 \sqrt{3} \mathrm{~N} \text { anticlockwise }
\end{aligned}
$$

Since $R=0$ and $G \neq 0$ then is a couple.

Revision exercise

1. Forces of $6 \mathrm{~N}, 8 \mathrm{~N}, 6 \mathrm{~N}$ and 8 N act along sides of a rectangle $A B C D$ where $A B=8 \mathrm{~m}$ and $B C=6 \mathrm{~m}$ in the direction $A B, B C, C D$ and $D A$ respectively.
(a) show that the forces reduce to couple
(b) find the moment of the couple about A . (100 Nm)
2. Forces of $5 \mathrm{~N}, 3 \mathrm{~N}, 5 \mathrm{~N}$ and 3 N act along the side of a square $A B C D$ of side 4 m in the directions $A B$, $B C, C D$ and $D A$ respectively.
(a) show that the forces reduce to couple
(b) find the moment of the couple about A . (100Nm
3. $A B C D$ is a rectangle with $A B=6 \mathrm{~m}$ and $B C=2 m$. A force of 3 N acts along each of the four sides $A B, B C, C D$ and $D A$ in the directions indicated by the order of the letters. Show that the forces form a couple and find its moment. [21Nm]
4. $A B C D$ is a rectangle with $A B=6 m$ and $B C=2 m$. A forces of $5 N, 5 N, x N$, and $x N$ acts along each of the four sides $C B, A D, A B$ and $C D$ in the directions indicated by the order of the letters. If the system is in equilibrium, find the value of x. [15N]
5. $A B C D$ is a square of side 40 cm . Forces of magnitude $20 \mathrm{~N}, 15 \mathrm{~N}, 20 \mathrm{~N}$ and Y act along the line $A B$, $B C, C D$ and $D A$ respectively in each case the direction of the force being given by the order of letters. If the system is equivalent to a couple, find the magnitude of Y and the moment of the couple. [15N, 14Nm]
6. A force of $(3 i-5 j) N$ acts at a point which has position vector $(6 i+j) m$ and a force of $(-3 i+5 j) N$ acts at the point which has position vector $(4 i+j) \mathrm{m}$. Show that the forces reduce to a couple and find the moment of the couple [10Nm]
7. A force of $(4 i+3 j) N$ acts at a point which has position vector $(6 i+3 j) m$ and a force of $(-4 i-3 j) N$ acts at the point which has position vector ($3 \mathrm{i}-\mathrm{j}$)m. Show that the forces reduce to a couple and find the moment of the couple [7 Nm]
8. Force of $(i+j) N,(-4 i+j) N$ and $(3 i-2 j) N$ act at the points having position vectors $(2 i+2 j) m$, $1+4 j) m$ and $(4 i-2 j) m$ respectively. Show that the forces reduce to a couple and find the moment of the couple [13Nm]
9. Forces of $(a i+b j) N$ and $(6 i-4 j) N$ act at points having position vectors $(-2 i-2 j) m$ and $(3 i-j) m$ respectively. If these forces reduce to a couple, find a and b and the moment of the couple. [$-6,4$ and 26 Nm]

Thank You
Dr. Bbosa Science

