



# Linear momentum

This is the product of mass of a body and its velocity. Momentum = mass x velocity

### Collisions

### Case 1: bodies separate after collision

Consider two bodies A and B with body A having a mass of  $M_A$ , initial velocity  $U_A$ , and body B having a mass f  $M_B$ , initial velocity  $U_B$ , after collision body A has a final velocity  $V_A$  and body B has a final velocity  $V_B$ .

 $M_{A}U_{A} + M_{B}U_{B} = M_{A}V_{A} + M_{B}V_{B}$ Loss in k.e =  $\left(\frac{1}{2}M_{A}U_{A}^{2} + \frac{1}{2}M_{B}U_{B}^{2}\right) - \left(\frac{1}{2}M_{A}V_{A}^{2} + \frac{1}{2}M_{B}V_{B}^{2}\right)$ %loss in k.e =  $\frac{\left(\frac{1}{2}M_{A}U_{A}^{2} + \frac{1}{2}M_{B}U_{B}^{2}\right) - \left(\frac{1}{2}M_{A}V_{A}^{2} + \frac{1}{2}M_{B}V_{B}^{2}\right)}{\left(\frac{1}{2}M_{A}U_{A}^{2} + \frac{1}{2}M_{B}U_{B}^{2}\right)} x100\%$ 

### Case2: bodies stick together and move with a common velocity after collision

Consider two bodies A and B with body A having a mass of  $M_A$ , initial velocity  $U_A$ , and body B having a mass f  $M_B$ , initial velocity  $U_B$ , after collision body A and body B stick together and move with common velocity V.

$$M_{A}U_{A} + M_{B}U_{B} = (M_{A} + M_{B})V$$
Loss in k.e =  $\left(\frac{1}{2}M_{A}U_{A}^{2} + \frac{1}{2}M_{B}U_{B}^{2}\right) - \left(\frac{1}{2}(M_{A} + M_{B})V^{2}\right)$ 
%loss in k.e =  $\frac{\left(\frac{1}{2}M_{A}U_{A}^{2} + \frac{1}{2}M_{B}U_{B}^{2}\right) - \left(\frac{1}{2}(M_{A} + M_{B})V^{2}\right)}{\left(\frac{1}{2}M_{A}U_{A}^{2} + \frac{1}{2}M_{B}U_{B}^{2}\right)} x100\%$ 

### Example 1

A trolley of mass 3kg travelling at a velocity of 4ms<sup>-1</sup> collide with another trolley of mass 1kg which is at rest. At what velocity do the two bodies move together after collision?



 $M_AU_A + M_BU_B = (M_A + M_B)V$ (3 x 4) + (1 x 0) = (3 + 1)V 12 = 4V V = 3ms<sup>-1</sup>

### Example 2

An object of mass 10kg collides with a stationary object of mass 5kg. If the objects stick together and move forward with a velocity of  $4ms^{-1}$ . What was original velocity of the moving objects?



Before collision

 $M_AU_A + M_BU_B = (M_A + M_B)V$  $(10 \times U) + (5 \times 0) = (10 + 5) \times 4$ U = 60ms<sup>-1</sup>

#### Example 3

Two bodies of masses 200kg and 100kg travel towards each other with velocities of 20ms<sup>-1</sup> and 25ms<sup>-1</sup> respectively and join to form one body on collision. Find the common velocity.

$$\begin{array}{c} U_{A} = 20 \text{ms}^{-1} \\ \hline 200 \text{kg} \end{array} \xrightarrow{} U_{B} = 25 \text{ms}^{-1} \\ \hline 100 \text{kg} \end{array}$$

Before collision

After collision

 $M_AU_A + M_BU_B = (M_A + M_B)V$ 

(200 x 20) + (100 x -25) = (200 + 100) x v  $V = 5ms^{-1}$ 

### Example 4

A particle of mass 2kg moving with a speed 10ms<sup>-1</sup> collides with a stationary particle of mass 7kg. Immediately after impact, the particle moves with the same speed but in opposite directions. Find the loss in kinetic energy

 $M_AU_A + M_BU_B = M_AV_A + M_BV_B$  $2 \times 10 + 7 \times 0 = 2 \times -v + 7 \times v$  $v = 4ms^{-1}$ k.e before =  $\frac{1}{2} x 2 x 10^2 + \frac{1}{2} x 7 x 0^2 = 100J$  k.e after  $=\frac{1}{2} x 2 x 4^2 + \frac{1}{2} x 7 x 4^2 = 72J$ lossin k.e = 100 – 72 = 28J

### Example 5

Two particles are moving towards each other along a straight line. The first particle has mass of 0.2kg and moving with velocity 4ms<sup>-1</sup> and then the second has a mass of 0.4kg moving with a velocity of 3ms<sup>-1</sup>. On collision, the first particle reverses its direction and moves with a velocity of 2.5ms<sup>-1</sup>. Find the percentage loss in kinetic energy.



 $M_AU_A + M_BU_B = M_AV_A + M_BV_B$ k.e after =  $\frac{1}{2} x 0.2 x - 2.5^2 + \frac{1}{2} x 0.4 x 0.25^2$ 0.2 x 4 + 0.4 x -3 = 0.2 x -2.5 + 0.4V  $V = 0.25 \text{ms}^{-1}$ = 0.6375J k.e before =  $\frac{1}{2} x 0.2 x 4^2 + \frac{1}{2} x 0.4 x 3^2$ % loss in k.e =  $\frac{(3.4 - 0.6375)}{3.4} x \ 100\%$  = 81.25% = 3.41

#### Example 6

A bullet of mass 20g is fired into a block of wood of mass 400g lying on a smooth horizontal surface. If the bullet and the wood move together with the speed of 20ms<sup>-1</sup>. Calculate (a) the speed with which the bullet hits the wood



 $M_AU_A + M_BU_B = (M_A + M_B)V$ 0.02 x UA + 0.4 x 0 = 0.42 x 20 UA = 420ms<sup>-1</sup>

(b) The kinetic energy loss k.e energy before  $=\frac{1}{2} x \ 0.02 \ x \ 420^2 = 1764J$ k.e after  $=\frac{1}{2} \ x \ 0.42 \ x \ 20^2 = 84J$ Loss in k.e = 1764 - 84 = 1680J

### Example 7

Two bodies A and B of mass 4kg and 3kg moving with velocities (2i + 3j)ms<sup>-1</sup> and (5i - 6j)ms<sup>-1</sup> respectively collide. After collision A moves with a velocity (5i)ms<sup>-1</sup>, Find the

- (i) velocity of B after collision  $M_AU_A + M_BU_B = M_AV_A + M_BV_B$   $4(2i + 3j) + 3(5i - 6j) = 4 (5i) + 3V_B$  $V_B = (i - 2j) \text{ ms}^{-1}$
- (ii) loss in kinetic energy k.e before =  $\frac{1}{2}x4(2^2 + 3^2) + \frac{1}{2}x3(5^2 + (-6)^2) = 117.5J$ k.e after =  $\frac{1}{2}x4(5^2) + \frac{1}{2}x3(1^2 + (-2)^2) = 57.5J$ Loss in k.e = 117.5 - 57.5 = 60J

### Example 8

Two bodies A and B of mass 7.5kg and 5.0kg moving with velocities of  $(-i - 2j)ms^{-1}$  and  $(9i + 8j)ms^{-1}$  respectively. After collision the bodies stick together and move with a common velocity, find the

- (i) common velocity  $M_A U_A + M_B U_B = (M_A + M_B)V$  7.5(-i - 2j) + 5.0(9i + 8j) = 12.5V $V = (3i + 2j)ms^{-1}$
- (ii) percentage loss in kinetic energy k.e before =  $\frac{1}{2} x 7.5((-1)^2 + (-2)^2) + \frac{1}{2} x 5(9^2 + 8^2) = 381.25J$ k.e after =  $\frac{1}{2} x 12.5(3^2 + 2^2) = 81.25J$ Loss in k.e = 381.25 - 81.25 = 300J%loss in k.e =  $\frac{300}{381.25} x 100\% = 78.69\%$

### Example 9

Two bodies A and B of masses 3kg and 2kg respectively are 7m a part on a smooth horizontal surface. A moving directly towards B with a speed of 2ms<sup>-1</sup> and acceleration of 0.3ms<sup>-2</sup>. B is moving in the in the same direction as A with a speed of 5ms<sup>-1</sup> and retardation of 0.2ms<sup>-2</sup>. If the bodies collide and coalesce, calculate

(i) Time taken before collision occurs let the distance travelled by B before collision = xs = ut +  $\frac{1}{2}$  at<sup>2</sup> For A: 7 + x = 2t +  $\frac{1}{2}$  x 0.3t<sup>2</sup> ...... (i) For B: x = 5t -  $\frac{1}{2}$  x 0.2t<sup>2</sup> .....(ii) Subtract (ii) from (i) 7 = -3t + 0.25t<sup>2</sup> t<sup>2</sup> - 12t - 28 = 0 t = 14s (ii) Common velocity immediately after collision Initial velocity of A before collision V<sub>A</sub> = 2 + 0.3 x 14 = 6.2ms<sup>-1</sup> Initial velocity of B before collision VB = 5 - 0.2 x 14 = 2.2ms<sup>-1</sup> Let the common velocity be V M<sub>A</sub>U<sub>A</sub> + M<sub>B</sub>U<sub>B</sub> = (M<sub>A</sub> + M<sub>B</sub>)V 3 x 6.2 + 2 x 2.2 = 5V V = 4.6ms<sup>-1</sup>

# Recoil velocity of a gun and muzzle velocity of a bullet

When a bullet of mass Mb is fired with a muzzle velOcity of Vb, the gun of mass Mg jerks backward with a recoil velocity of Vg.



 $M_g x 0 + M_b x 0 = M_g x - V_g + M_b V_b$ 

 $M_g x V_g = M_b V_b$ 

#### Example 10

A bullet of mass 60g is fired from a gun of mass 3kg. The bullet leaves the gun with velocity of 400ms<sup>-1</sup>. Find the initial speed of recoil of the gun and gain in kinetic energy of the system.

0.06 x 400 = 3 x V

V = 8ms<sup>-1</sup>

Gain in k.e = k.e after =  $\frac{1}{2} x 0.06 x 400^2 + \frac{1}{2} x 3 x 8^2$  =4896J

#### Example 11

A gun of mass 3000kg fires horizontally a shell at initial velocity of 300ms<sup>-1</sup>. If the recoil of the gun is brought to rest by a constant opposing force of 9000N in 2 seconds, find the

(a)(i) Initial velocity of the recoil gun

| F = ma                 | v = u + at            |
|------------------------|-----------------------|
| -9000 = 3000a          | 0 = u – 3 x 2         |
| a = -3ms <sup>-2</sup> | u = 6ms <sup>-1</sup> |

(ii) Gain in kinetic energy of the shell just after firing  $M_gV_g = M_bV_b$   $3000 \times 6 = M_b \times 300$  $M_b = 60 kg$ 

(b)(i) displacement of the gun

$$s = \frac{v^2 - u^2}{2a} = \frac{0^2 - 6^2}{2x - 3} = 6m$$

(ii) work done against the opposing force

W = Fs = 9000 x 6 = 54,000J

# **Revision exercise**

- 1. A bullet of mass 50g travelling horizontally at 80ms-1 hits a block of wood of mass 10kg resting on a smooth horizontal plane. If the bullet emerges with a speed of 50ms<sup>-1</sup>, find the speed with which the block moves. [0.15ms<sup>-1</sup>]
- 2. A bullet of mass 0.1kg travelling at 420ms-1 hits a block of wood of mass 2kg resting on a smooth horizontal plane. If the bullet becomes embedded on the block, find the speed with which the block moves after impact. [20ms-1]
- A 2kg object moving with a velocity of 8ms<sup>-1</sup> collides with a 3kg object moving with a velocity 6ms<sup>-1</sup> along the same direction. If the collision is completely inelastic, calculate the decrease in kinetic energy.[2.4J]
- 4. A particle A of mass 150g lies at rest in a smooth horizontal surface. A second particle B of mass 100g is projected along the surface with the speed ums<sup>-1</sup> and collides directly with A. On collision the masses coalesce and move with speed 4ms<sup>-1</sup>. Find the value of u and loss in the kinetic energy of the system during impact. [10ms<sup>-1</sup>, 3J]
- 5. Two bodies A and B of masses 2kg and 4kg moving with velocities of 8ms<sup>-1</sup> and 5ms<sup>-1</sup> respectively collide and move in the same direction. Object A's new velocity is 6ms<sup>-1</sup>.
  - (i) find the velocity of B after collision [6ms<sup>-1</sup>]
  - (ii) calculate the percentage loss in kinetic energy [5.26%]
- 6. Two bodies A and B of mass 2kg and 3kg moving with velocities of 4ms<sup>-1</sup> and 3ms<sup>-1</sup> respectively in the same direction collide and coalesce, find he
  - (i) common speed after collision [3.4ms<sup>-1</sup>]
  - (ii) loss in kinetic energy [0.6J]
  - (iii) percentage loss in kinetic energy [2.03%]
- 7. A bullet of mass 30g is fired horizontally at 200ms<sup>-1</sup> and hits a block of wood of mass 2kg resting on smooth horizontal plane. If the bullet becomes embedded on the block, find the
  - (i) common velocity of bullet and wood. [2.96ms<sup>-1</sup>]
  - (ii) percentage loss in kinetic energy. [98.52%]
- 8. Two smooth sphere A and B of equal radii and mass 3kg and 1.5kg respectively are travelling along the same horizontal line in opposite direction. The speeds of A and B are 6ms<sup>-1</sup> and 2ms<sup>-1</sup> respectively. The sphere A collides and after collision B reverses its direction and moves with speed of 4ms<sup>-1</sup>. Find the velocity of A after collision. [3ms<sup>-1</sup>]
- 9. Two smooth spheres A and B of equal radii and masses 180g and 100g respectively travelling along the same horizontal line. The initial speeds of A and B are 2ms<sup>-1</sup> and 6ms<sup>-1</sup> respectively. The spheres collide and after collision both spheres reverse their directions and B moves with speed of 3ms<sup>-1</sup>. Find the speed of A after collision and loss in kinetic energy of the system. [3ms<sup>-1</sup>, 0.9J]

- 10. A particle of mass 2kg moving with speed 10ms<sup>-1</sup> collides with stationary particles of mass 7kg. Immediately after impact the particles move with the same speeds but in opposite direction. Find the loss in kinetic energy during collision. [28J].
- 11. Two identical rail way truck are travelling in the same direction along the same straight piece of track with constant speed of 6ms<sup>-1</sup> and 2ms<sup>-1</sup>. The faster truck catches up with the other one on collision, the two trucks couple together. Find the common speed of the trucks after collision. [4ms<sup>-1</sup>]
- 12. A 2kg object moving with a velocity of 6ms<sup>-1</sup> collides with a stationary object of mass 1kg. If the collision is perfectly elastic, calculate the velocity of each object after collision. [2ms<sup>-1</sup>, 8ms<sup>-1</sup>]
- 13. A van of mass of mass 1200kg and a lorry of mass 3200kg collide. Just before the crash they are moving directly towards each other and each has a speed of 12ms<sup>-1</sup>. Immediately after the crash they move with the same velocity. Find the loss in kinetic energy. [251kJ]
- 14. A body of mass 6kg moving with velocity (8i 4j)ms<sup>-1</sup> collides with a body of mass 2kg which is at rest. On collision the two bodies coalesce, find the
  - (i) common velocity after collision [(6i 3j)ms<sup>-1</sup>]
  - (ii) loss in kinetic energy [960J]
- 15. A body of mass 2kg moving with velocity (-2i + 4j)ms<sup>-1</sup> collides with a body of mass 3kg moving with velocity (3i + 4j)ms<sup>-1</sup>. On collision the two bodies coalesce, find the
  - (i) common velocity after collision [(i + 4j) ms<sup>-1</sup>]
  - (ii) loss in kinetic energy [15J]
- 16. A body of mass 500g moving with velocity (2i 4j)ms<sup>-1</sup> collides with a body of mass 1500g moving with velocity (6i + 8j)ms<sup>-1</sup>. On collision the two bodies coalesce, find the
  - (i) common velocity after collision [(5i + 5j)ms<sup>-1</sup>]
  - (ii) loss in kinetic energy [30J]
- 17. Two bodies A and B of mass 2kg and 5kg moving with velocities of (-2i + 3j)ms<sup>-1</sup> and
  - (6i 10j)ms<sup>-1</sup> respectively collide. After collision A moves with velocity (3i 2j)ms<sup>-1</sup>, find the
  - (i) velocity of B after collision [(4i 8j)ms<sup>-1</sup>]
  - (ii) loss in kinetic energy [140J]
- 18. Two bodies A and B of mass 5kg and 2kg moving with velocities of (-4i + 3j)ms<sup>-1</sup> and
  - (3i 10j)ms<sup>-1</sup> respectively collide. After collision A moves with a velocity (-2i + j)ms<sup>-1</sup>, find the
  - (i) velocity of B after collision [(-2i + 4j)ms<sup>-1</sup>]
  - (ii) loss in kinetic energy [40J]
- 19. A body X, of mass 250g moving with velocity (-2i + 3j)ms<sup>-1</sup> collide with a body Y of mass 750g moving with velocity (5i + 8j)ms<sup>-1</sup>. After collision X moves with a velocity (-2i + j)ms-1, find the
  - (i) velocity of Y after collision [(4i + 6j)ms<sup>-1</sup>]
  - (ii) loss in kinetic energy [5.25J]
- 20. A shell of mass 5kg is fired from a gun of mass 2000kg. The shell leaves the gun with a velocity of 400ms<sup>-1</sup>. find the initial speed of recoil of the rifle and gain in kinetic energy of the system [1ms<sup>-1</sup>, 2520J]
- 21. A bullet of mass 20g is fired from a rifle of mass 2.5kg. The bullet leaves the gun with a velocity of 500ms<sup>-1</sup>. Find the initial of the recoil of rifle and gain in kinetic energy of the system. [4ms<sup>-1</sup>, 2520J]
- 22. A bullet of mass 5kg is fired from a rifle of mass 2000g. The bullet leaves the gun with a velocity of 400ms<sup>-1</sup>. Find the recoil velocity of the rifle. [1ms<sup>-1</sup>]
  - Thank you
    - Dr. Bbosa Science