

This document is sponsored by
CMandune youx dreamo The Science Foundation College Kiwanga- Namanve Uganda East Africa
Senior one to senior six

Linear momentum

This is the product of mass of a body and its velocity.
Momentum = mass x velocity

Collisions

Case 1: bodies separate after collision

Consider two bodies A and B with body A having a mass of M_{A}, initial velocity U_{A}, and body B having a mass $f M_{B}$, initial velocity U_{B}, after collision body A has a final velocity V_{A} and body B has a final velocity V_{B}.
$M_{A} U_{A}+M_{B} U_{B}=M_{A} V_{A}+M_{B} V_{B}$
Loss in k.e $=\left(\frac{1}{2} M_{A} U_{A}{ }^{2}+\frac{1}{2} M_{B} U_{B}{ }^{2}\right)-\left(\frac{1}{2} M_{A} V_{A}{ }^{2}+\frac{1}{2} M_{B} V_{B}{ }^{2}\right)$
$\%$ loss in k.e $=\frac{\left(\frac{1}{2} M_{A} U_{A}{ }^{2}+\frac{1}{2} M_{B} U_{B}{ }^{2}\right)-\left(\frac{1}{2} M_{A} V_{A}{ }^{2}+\frac{1}{2} M_{B} V_{B}{ }^{2}\right)}{\left(\frac{1}{2} M_{A} U_{A}{ }^{2}+\frac{1}{2} M_{B} U_{B}{ }^{2}\right)} x 100 \%$

Case2: bodies stick together and move with a common velocity after collision

Consider two bodies A and B with body A having a mass of M_{A}, initial velocity U_{A}, and body B having a mass $f M_{B}$, initial velocity U_{B}, after collision body A and body B stick together and move with common velocity V .
$M_{A} U_{A}+M_{B} U_{B}=\left(M_{A}+M_{B}\right) V$
Loss in k.e $=\left(\frac{1}{2} M_{A} U_{A}{ }^{2}+\frac{1}{2} M_{B} U_{B}{ }^{2}\right)-\left(\frac{1}{2}\left(M_{A}+M_{B}\right) V^{2}\right)$
$\%$ loss in k.e $=\frac{\left(\frac{1}{2} M_{A} U_{A}{ }^{2}+\frac{1}{2} M_{B} U_{B}{ }^{2}\right)-\left(\frac{1}{2}\left(M_{A}+M_{B}\right) V^{2}\right)}{\left(\frac{1}{2} M_{A} U_{A}{ }^{2}+\frac{1}{2} M_{B} U_{B}{ }^{2}\right)} x 100 \%$

Example 1

A trolley of mass 3 kg travelling at a velocity of $4 \mathrm{~ms}^{-1}$ collide with another trolley of mass 1 kg which is at rest. At what velocity do the two bodies move together after collision?

Before collision
$M_{A} U_{A}+M_{B} U_{B}=\left(M_{A}+M_{B}\right) V$
$(3 \times 4)+(1 \times 0)=(3+1) V$
$12=4 \mathrm{~V}$
$\mathrm{V}=3 \mathrm{~ms}^{-1}$

Example 2

An object of mass 10 kg collides with a stationary object of mass 5 kg . If the objects stick together and move forward with a velocity of $4 \mathrm{~ms}^{-1}$. What was original velocity of the moving objects?

Before collision

After collision
$M_{A} U_{A}+M_{B} U_{B}=\left(M_{A}+M_{B}\right) V$
$(10 \times U)+(5 \times 0)=(10+5) \times 4$
$\mathrm{U}=60 \mathrm{~ms}^{-1}$

Example 3

Two bodies of masses 200 kg and 100 kg travel towards each other with velocities of $20 \mathrm{~ms}^{-1}$ and $25 \mathrm{~ms}^{-1}$ respectively and join to form one body on collision. Find the common velocity.

Before collision

$$
\left.A+M_{B}\right) V
$$

$M_{A} U_{A}+M_{B} U_{B}=\left(M_{A}+M_{B}\right) V$
$(200 \times 20)+(100 \times-25)=(200+100) \times v$
$\mathrm{V}=5 \mathrm{~ms}^{-1}$

Example 4

A particle of mass 2 kg moving with a speed $10 \mathrm{~ms}^{-1}$ collides with a stationary particle of mass 7 kg . Immediately after impact, the particle moves with the same speed but in opposite directions. Find the loss in kinetic energy

$$
\begin{array}{l|l}
M_{A} U_{A}+M_{B} U_{B}=M_{A} V_{A}+M_{B} V_{B} & \text { k.e after }=\frac{1}{2} \times 2 \times 4^{2}+\frac{1}{2} \times 7 \times 4^{2}=72 \mathrm{~J} \\
2 \times 10+7 \times 0=2 \mathrm{x}-\mathrm{v}+7 \times \mathrm{V} & \text { lossin k.e }=100-72=28 \mathrm{~J} \\
\mathrm{v}=4 \mathrm{~ms}^{-1} &
\end{array}
$$

k.e before $=\frac{1}{2} \times 2 \times 10^{2}+\frac{1}{2} \times 7 \times 0^{2}=100 J$

Example 5

Two particles are moving towards each other along a straight line. The first particle has mass of 0.2 kg and moving with velocity $4 \mathrm{~ms}^{-1}$ and then the second has a mass of 0.4 kg moving with a velocity of $3 \mathrm{~ms}^{-1}$. On collision, the first particle reverses its direction and moves with a velocity of $2.5 \mathrm{~ms}^{-1}$. Find the percentage loss in kinetic energy.

Before collision

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{A}} \mathrm{U}_{\mathrm{A}}+\mathrm{M}_{\mathrm{B}} \mathrm{U}_{\mathrm{B}}=\mathrm{M}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}+\mathrm{M}_{\mathrm{B}} \mathrm{~V}_{\mathrm{B}} \\
& 0.2 \times 4+0.4 \times-3=0.2 \times-2.5+0.4 \mathrm{~V} \\
& \mathrm{~V}=0.25 \mathrm{~ms}^{-1} \\
& \text { k.e before } \\
& \quad=\frac{1}{2} \times 0.2 \times 4^{2}+\frac{1}{2} \times 0.4 \times 3^{2} \\
& \quad=3.4 \mathrm{~J}
\end{aligned}
$$

Before collision

After collision
$M_{A} U_{A}+M_{B} U_{B}=\left(M_{A}+M_{B}\right) V$
$0.02 \times \mathrm{UA}+0.4 \times 0=0.42 \times 20$
$\mathrm{UA}=420 \mathrm{~ms}^{-1}$
(b) The kinetic energy loss
k.e energy before $=\frac{1}{2} \times 0.02 \times 420^{2}=1764 \mathrm{~J}$
k.e after $=\frac{1}{2} \times 0.42 \times 20^{2}=84 \mathrm{~J}$

Loss in k.e $=1764-84=1680 \mathrm{~J}$

Example 7

Two bodies A and B of mass $4 k g$ and 3 kg moving with velocities $(2 i+3 j) \mathrm{ms}^{-1}$ and $(5 i-6 j) \mathrm{ms}^{-1}$ respectively collide. After collision A moves with a velocity (5 i) ms^{-1}, Find the
(i) velocity of B after collision

$$
\begin{aligned}
& M_{A} U_{A}+M_{B} U_{B}=M_{A} V_{A}+M_{B} V_{B} \\
& 4(2 i+3 j)+3(5 i-6 j)=4(5 i)+3 V_{B}
\end{aligned}
$$

$$
V_{B}=(i-2 j) \mathrm{ms}^{-1}
$$

(ii) loss in kinetic energy
k.e before $=\frac{1}{2} \times 4\left(2^{2}+3^{2}\right)+\frac{1}{2} \times 3\left(5^{2}+(-6)^{2}\right)=117.5 \mathrm{~J}$
k.e after $=\frac{1}{2} \times 4\left(5^{2}\right)+\frac{1}{2} \times 3\left(1^{2}+(-2)^{2}\right)=57.5 \mathrm{~J}$

Loss in k.e $=117.5-57.5=60 \mathrm{~J}$

Example 8

Two bodies A and B of mass 7.5 kg and 5.0 kg moving with velocities of $(-i-2 j) \mathrm{ms}^{-1}$ and $(9 \mathrm{i}+8 \mathrm{j}) \mathrm{ms}^{-1}$ respectively. After collision the bodies stick together and move with a common velocity, find the
(i) common velocity

$$
\begin{aligned}
& M_{A} U_{A}+M_{B} U_{B}=\left(M_{A}+M_{B}\right) V \\
& 7.5(-i-2 j)+5.0(9 i+8 j)=12.5 \mathrm{~V} \\
& V=(3 i+2 j) \mathrm{ms}^{-1}
\end{aligned}
$$

(ii) percentage loss in kinetic energy
k.e before $=\frac{1}{2} \times 7.5\left((-1)^{2}+(-2)^{2}\right)+\frac{1}{2} \times 5\left(9^{2}+8^{2}\right)=381.25 \mathrm{~J}$
k.e after $=\frac{1}{2} x 12.5\left(3^{2}+2^{2}\right)=81.25 \mathrm{~J}$

Loss in k.e $=381.25-81.25=300 \mathrm{~J}$
$\%$ loss in k.e $=\frac{300}{381.25} \times 100 \%=78.69 \%$

Example 9

Two bodies A and B of masses 3 kg and 2 kg respectively are 7 m a part on a smooth horizontal surface. A moving directly towards B with a speed of $2 \mathrm{~ms}^{-1}$ and acceleration of $0.3 \mathrm{~ms}^{-2}$. B is moving in the in the same direction as A with a speed of $5 \mathrm{~ms}^{-1}$ and retardation of $0.2 \mathrm{~ms}^{-2}$. If the bodies collide and coalesce, calculate
(i) Time taken before collision occurs let the distance travelled by B before collision $=x$

$$
s=u t+1 / 2 a t^{2}
$$

For $\mathrm{A}: 7+\mathrm{x}=2 \mathrm{t}+\frac{1}{2} \times 0.3 t^{2}$ \qquad
For B: $\mathrm{x}=5 \mathrm{t}-\frac{1}{2} \times 0.2 \mathrm{t}^{2}$
Subtract (ii) from (i)
$7=-3 t+0.25 t^{2}$
$t^{2}-12 t-28=0$
$t=14 s$
(ii) Common velocity immediately after collision

Initial velocity of A before collision $V_{A}=2+0.3 \times 14=6.2 \mathrm{~ms}^{-1}$
Initial velocity of B before collision $V B=5-0.2 \times 14=2.2 \mathrm{~ms}^{-1}$
Let the common velocity be V
$M_{A} U_{A}+M_{B} U_{B}=\left(M_{A}+M_{B}\right) V$
$3 \times 6.2+2 \times 2.2=5 \mathrm{~V}$
$V=4.6 \mathrm{~ms}^{-1}$

Recoil velocity of a gun and muzzle velocity of a bullet

When a bullet of mass Mb is fired with a muzzle vel0city of Vb , the gun of mass Mg jerks backward with a recoil velocity of Vg .

$\mathrm{Mg}_{\mathrm{g}} \times 0+\mathrm{M}_{\mathrm{b}} \times 0=\mathrm{M}_{\mathrm{g}} \mathrm{X}-\mathrm{V}_{\mathrm{g}}+\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}$
$\mathrm{M}_{\mathrm{g}} \times \mathrm{V}_{\mathrm{g}}=\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}$

Example 10

A bullet of mass 60 g is fired from a gun of mass 3 kg . The bullet leaves the gun with velocity of $400 \mathrm{~ms}^{-1}$. Find the initial speed of recoil of the gun and gain in kinetic energy of the system.
$0.06 \times 400=3 \times V$
$\mathrm{V}=8 \mathrm{~ms}^{-1}$
Gain in k.e $=$ k.e after $=\frac{1}{2} x 0.06 \times 400^{2}+\frac{1}{2} x 3 \times 8^{2}=4896 \mathrm{~J}$

Example 11

A gun of mass 3000 kg fires horizontally a shell at initial velocity of $300 \mathrm{~ms}^{-1}$. If the recoil of the gun is brought to rest by a constant opposing force of 9000 N in 2 seconds, find the
(a)(i) Initial velocity of the recoil gun
$F=m a$
$-9000=3000 a$
$a=-3 \mathrm{~ms}^{-2}$

$$
\begin{aligned}
& v=u+a t \\
& 0=u-3 \times 2 \\
& u=6 \mathrm{~ms}^{-1}
\end{aligned}
$$

(ii) Gain in kinetic energy of the shell just after firing

$$
\begin{aligned}
& M_{g} V_{g}=M_{b} V_{b} \\
& 3000 \times 6=M_{b} \times 300
\end{aligned}
$$

$$
\mathrm{M}_{\mathrm{b}}=60 \mathrm{~kg}
$$

(b)(i) displacement of the gun

$$
s=\frac{v^{2}-u^{2}}{2 a}=\frac{0^{2}-6^{2}}{2 x-3}=6 m
$$

(ii) work done against the opposing force

$$
W=F s=9000 \times 6=54,000 J
$$

Revision exercise

1. A bullet of mass 50 g travelling horizontally at $80 \mathrm{~ms}-1$ hits a block of wood of mass 10 kg resting on a smooth horizontal plane. If the bullet emerges with a speed of $50 \mathrm{~ms}^{-1}$, find the speed with which the block moves. [$0.15 \mathrm{~ms}^{-1}$]
2. A bullet of mass 0.1 kg travelling at $420 \mathrm{~ms}-1$ hits a block of wood of mass 2 kg resting on a smooth horizontal plane. If the bullet becomes embedded on the block, find the speed with which the block moves after impact. [20ms-1]
3. A 2 kg object moving with a velocity of $8 \mathrm{~ms}^{-1}$ collides with a 3 kg object moving with a velocity $6 \mathrm{~ms}^{-1}$ along the same direction. If the collision is completely inelastic, calculate the decrease in kinetic energy.[2.4J]
4. A particle A of mass 150 g lies at rest in a smooth horizontal surface. A second particle B of mass 100 g is projected along the surface with the speed ums^{-1} and collides directly with A. On collision the masses coalesce and move with speed $4 \mathrm{~ms}^{-1}$. Find the value of u and loss in the kinetic energy of the system during impact. [10 $\left.\mathrm{ms}^{-1}, 3 \mathrm{~J}\right]$
5. Two bodies A and B of masses 2 kg and 4 kg moving with velocities of $8 \mathrm{~ms}^{-1}$ and $5 \mathrm{~ms}^{-1}$ respectively collide and move in the same direction. Object A^{\prime} 's new velocity is $6 \mathrm{~ms}^{-1}$.
(i) find the velocity of B after collision $\left[6 \mathrm{~ms}^{-1}\right]$
(ii) calculate the percentage loss in kinetic energy [5.26\%]
6. Two bodies A and B of mass 2 kg and 3 kg moving with velocities of $4 \mathrm{~ms}^{-1}$ and $3 \mathrm{~ms}^{-1}$ respectively in the same direction collide and coalesce, find he
(i) common speed after collision $\left[3.4 \mathrm{~ms}^{-1}\right]$
(ii) loss in kinetic energy [0.6J]
(iii) percentage loss in kinetic energy [2.03\%]
7. A bullet of mass 30 g is fired horizontally at $200 \mathrm{~ms}^{-1}$ and hits a block of wood of mass 2 kg resting on smooth horizontal plane. If the bullet becomes embedded on the block, find the
(i) common velocity of bullet and wood. [2.96 ms^{-1}]
(ii) percentage loss in kinetic energy. [98.52\%]
8. Two smooth sphere A and B of equal radii and mass 3 kg and 1.5 kg respectively are travelling along the same horizontal line in opposite direction. The speeds of A and B are $6 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$ respectively. The sphere A collides and after collision B reverses its direction and moves with speed of $4 \mathrm{~ms}^{-1}$. Find the velocity of A after collision. [$3 \mathrm{~ms}^{-1}$]
9. Two smooth spheres A and B of equal radii and masses 180 g and 100 g respectively travelling along the same horizontal line. The initial speeds of A and B are $2 \mathrm{~ms}^{-1}$ and $6 \mathrm{~ms}^{-1}$ respectively. The spheres collide and after collision both spheres reverse their directions and B moves with speed of $3 \mathrm{~ms}^{-1}$. Find the speed of A after collision and loss in kinetic energy of the system. [$3 \mathrm{~ms}^{-1}, 0.9 \mathrm{~J}$]
10. A particle of mass 2 kg moving with speed $10 \mathrm{~ms}^{-1}$ collides with stationary particles of mass 7 kg . Immediately after impact the particles move with the same speeds but in opposite direction. Find the loss in kinetic energy during collision. [28J].
11. Two identical rail way truck are travelling in the same direction along the same straight piece of track with constant speed of $6 \mathrm{~ms}^{-1}$ and $2 \mathrm{~ms}^{-1}$. The faster truck catches up with the other one on collision, the two trucks couple together. Find the common speed of the trucks after collision. [$4 \mathrm{~ms}^{-1}$]
12. A 2 kg object moving with a velocity of $6 \mathrm{~ms}^{-1}$ collides with a stationary object of mass 1 kg . If the collision is perfectly elastic, calculate the velocity of each object after collision. [$2 \mathrm{~ms}^{-1}, 8 \mathrm{~ms}^{-1}$]
13. A van of mass of mass 1200 kg and a lorry of mass 3200 kg collide. Just before the crash they are moving directly towards each other and each has a speed of $12 \mathrm{~ms}^{-1}$. Immediately after the crash they move with the same velocity. Find the loss in kinetic energy. [251kJ]
14. A body of mass 6 kg moving with velocity $(8 \mathrm{i}-4 \mathrm{j}) \mathrm{ms}^{-1}$ collides with a body of mass 2 kg which is at rest. On collision the two bodies coalesce, find the
(i) common velocity after collision $\left[(6 \mathrm{i}-3 \mathrm{j}) \mathrm{ms}^{-1}\right]$
(ii) loss in kinetic energy [960J]
15. A body of mass 2 kg moving with velocity $(-2 i+4 j) \mathrm{ms}^{-1}$ collides with a body of mass 3 kg moving with velocity $(3 i+4 j) \mathrm{ms}^{-1}$. On collision the two bodies coalesce, find the
(i) common velocity after collision $\left[(i+4 j) \mathrm{ms}^{-1}\right]$
(ii) loss in kinetic energy [15J]
16. A body of mass 500 g moving with velocity $(2 \mathrm{i}-4 \mathrm{j}) \mathrm{ms}^{-1}$ collides with a body of mass 1500 g moving with velocity $(6 i+8 j) \mathrm{ms}^{-1}$. On collision the two bodies coalesce, find the
(i) common velocity after collision $\left[(5 i+5 j) \mathrm{ms}^{-1}\right]$
(ii) loss in kinetic energy [30J]
17. Two bodies A and B of mass 2 kg and 5 kg moving with velocities of $(-2 \mathrm{i}+3 \mathrm{j}) \mathrm{ms}^{-1}$ and $(6 i-10 j) \mathrm{ms}^{-1}$ respectively collide. After collision A moves with velocity $(3 i-2 j) \mathrm{ms}^{-1}$, find the
(i) velocity of B after collision [($\left.4 \mathrm{i}-8 \mathrm{j}) \mathrm{ms}^{-1}\right]$
(ii) loss in kinetic energy [140J]
18. Two bodies A and B of mass 5 kg and 2 kg moving with velocities of $(-4 \mathrm{i}+3 \mathrm{j}) \mathrm{ms}^{-1}$ and $(3 i-10 j) \mathrm{ms}^{-1}$ respectively collide. After collision A moves with a velocity $(-2 i+j) \mathrm{ms}^{-1}$, find the
(i) velocity of B after collision $\left[(-2 i+4 j) \mathrm{ms}^{-1}\right]$
(ii) loss in kinetic energy [40J]
19. A body X, of mass 250 g moving with velocity $(-2 i+3 j) \mathrm{ms}^{-1}$ collide with a body Y of mass 750 g moving with velocity $(5 i+8 j) \mathrm{ms}^{-1}$. After collision X moves with a velocity $(-2 i+j) m s-1$, find the
(i) velocity of Y after collision $\left[(4 i+6 j) \mathrm{ms}^{-1}\right]$
(ii) loss in kinetic energy [5.25J]
20. A shell of mass 5 kg is fired from a gun of mass 2000 kg . The shell leaves the gun with a velocity of $400 \mathrm{~ms}^{-1}$. find the initial speed of recoil of the rifle and gain in kinetic energy of the system [1 $\mathrm{ms}^{-1}, 2520 \mathrm{~J}$)
21. A bullet of mass 20 g is fired from a rifle of mass 2.5 kg . The bullet leaves the gun with a velocity of $500 \mathrm{~ms}^{-1}$. Find the initial of the recoil of rifle and gain in kinetic energy of the system. [$4 \mathrm{~ms}^{-1}, 2520 \mathrm{~J}$]
22. A bullet of mass 5 kg is fired from a rifle of mass 2000 g . The bullet leaves the gun with a velocity of $400 \mathrm{~ms}^{-1}$. Find the recoil velocity of the rifle. [$1 \mathrm{~ms}^{-1}$]

Thank you
Dr. Bbosa Science

