Variable acceleration

This occurs when the rate of change of velocity is not constant.
Differential calculus
Let $\mathrm{r}=$ displacement, $\mathrm{v}=$ velocity and $\mathrm{a}=$ acceleration and are functions of time, t .
velocity, $\mathrm{v}=\frac{d r}{d t}$ while acceleration, $\mathrm{a}=\frac{d v}{d t}=\frac{d^{2} r}{d t^{2}}$
Differentiation; displacement => velocity $=>$ acceleration

Example 1

A particle moves along a straight line such that after t seconds, its displacement from a fixed point is r metres where $r=8 t^{2} i-t^{4} j$. Find
(a) velocity after t seconds
(b) velocity after 1 s
(c) speed after 1 s

Solution

$$
\begin{aligned}
v_{(t=t)} & =\frac{d r}{d t}=\frac{d\left(8 t^{2} i-t^{4} j\right)}{d t} \\
& =\left(16 \mathrm{ti}-4 \mathrm{t}^{3} \mathrm{j}\right) \mathrm{ms}^{-1}
\end{aligned}
$$

(b) when $t=1$

$$
\begin{aligned}
& v_{(t=1)}=(16 \mathrm{i}-4 \mathrm{j}) \mathrm{ms}^{-1} \\
& \begin{aligned}
\text { (c) speed } & =\left|v_{(t=1)}\right|=\sqrt{16^{2}-(-4)^{2}} \\
& =16.49 \mathrm{~ms}^{-2}
\end{aligned}
\end{aligned}
$$

Example 2

A particle move along a straight line such that after t seconds its displacement from a fixed point is s in metres where $s=2 \operatorname{sinti}+3 \operatorname{costj}$. Find
(a) acceleration after t seconds
(b) acceleration after $\frac{\pi}{2} s$ (c) magnitude of acceleration after $\frac{\pi}{2} s$

$$
\text { (a) } \begin{aligned}
v_{(t=t)} & =\frac{d r}{d t}=\frac{d(2 \operatorname{sinti}+3 \operatorname{cost})}{d t} \\
& =(2 \operatorname{costi}-3 \operatorname{sintj}) \mathrm{ms}^{-1} \\
a_{(t=t)} & =\frac{d v}{d t}=\frac{d(2 \operatorname{costi}-3 \operatorname{sintj})}{d t} \\
& =(-2 \operatorname{sinti}-3 \operatorname{costj}) \mathrm{ms}^{-2}
\end{aligned}
$$

(b) when $t=\frac{\pi}{2} \mathrm{~s}$
$a_{\left(t=\frac{\pi}{2}\right)}=\left(-2 \sin \left(\frac{\pi}{2}\right) \mathrm{i}-3 \cos \left(\frac{\pi}{2}\right) \mathrm{j}\right)=-2 i \mathrm{~ms}^{-2}$
(c) $\left|a_{\left(t=\frac{\pi}{2}\right)}\right|=\sqrt{(-2)^{2}-0^{2}}=2 \mathrm{~ms}^{-2}$

Example 3

A particle moves along a straight line such that after t seconds its displacement from a fixed point is s where $s=\left(\begin{array}{c}\sin 2 t \\ t+1 \\ \cos t+\sin t\end{array}\right)$. Find
(a) velocity when $t=\frac{\pi}{2} s$
(b) speed when $t=\frac{\pi}{2} s$
(c) acceleration when $t=\frac{\pi}{2} s$

Solution

$$
\begin{aligned}
v_{(t=t)} & =\frac{d r}{d t}=\frac{d[\sin 2 \mathrm{ti}+(\mathrm{t}+1) \mathrm{j}+(\cos \mathrm{t}+\sin \mathrm{t}) \mathrm{k}]}{d t} \\
& =2 \cos 2 \mathrm{ti}+\mathrm{j}+(\sin t-\cos \mathrm{t}) \mathrm{k}
\end{aligned}
$$

When $\mathrm{t}=\frac{\pi}{2} \mathrm{~s}$

$$
\begin{aligned}
v_{\left(t=\frac{\pi}{2}\right)} & =2 \cos \left(\frac{2 \pi}{2}\right) i+j+\left(\sin \frac{\pi}{2}-\cos \frac{\pi}{2}\right) k \\
& =(-2 i+j-k) \mathrm{ms}^{-1}
\end{aligned}
$$

(b) $\left|v_{\left(t=\frac{\pi}{2}\right)}\right|=\sqrt{(-2)^{2}+1^{2}+(-1)^{2}}$

$$
=2.45 \mathrm{~ms}^{-1}
$$

(c) $a_{(t=t)}=\frac{d v}{d t}=\frac{d[2 \cos 2 \mathrm{ti}+\mathrm{j}+(\operatorname{sint}-\cos \mathrm{t}) \mathrm{k}]}{d t}$

$$
\begin{aligned}
& =-4 \sin 2 \mathrm{ti}+(\cos \mathrm{t}+\sin \mathrm{t}) \mathrm{k} \\
a_{\left(t=\frac{\pi}{2}\right)} & =-4 \sin 2\left(\frac{\pi}{2}\right) i+\left[\cos \frac{\pi}{2}+\sin \frac{\pi}{2}\right] k \\
\mathrm{a} & =\mathrm{kms}^{-2}
\end{aligned}
$$

Example 4

A particle moves in $x-y$ plane such that its position at any time t is given by $r=\left(3 t^{2}-1\right) i+\left(4 t^{3}+t-1\right) j$. Find (a) speed after time $t=2$ (b) magnitude of acceleration after $t=2 \mathrm{~s}$

$$
\begin{aligned}
v_{(t=t)} & =\frac{d r}{d t}=\frac{d\left[\left(3 t^{2}-1\right) i+\left(4 t^{3}+t-1\right)\right]}{d t} \\
& =6 \mathrm{ti}+\left(12 \mathrm{t}^{2}+1\right) \mathrm{j} \mathrm{~ms}^{-1}
\end{aligned}
$$

when $t=2 s$

$$
\begin{aligned}
v_{(t=2)} & =\left[6 \times 2 i+\left(12 \times 2^{2}+1\right) j\right] \mathrm{ms}^{-1} \\
& =[12 \mathrm{i}+49 \mathrm{j}] \mathrm{ms}^{-1}
\end{aligned} \text { speed }=\left|v_{(t=2)}\right|=\sqrt{12^{2}+49^{2}}=50.45 \mathrm{~ms}^{-1} . ~ \$
$$

(b) $a_{(t=t)}=\frac{d v}{d t}=\frac{d\left[6 t i+\left(12 t^{2}+1\right) \mathrm{j}\right]}{d t}$

$$
=(6 i+24 t j) \mathrm{ms}^{-2}
$$

when $t=2 s$

$$
\begin{aligned}
& a_{(t=2)}=6 \mathrm{i}=+(24 \times 2) \mathrm{j}=(6 \mathrm{i}+48 \mathrm{i}) \mathrm{ms}^{-2} \\
& \left|a_{(t=2)}\right|=\sqrt{6^{2}+48^{2}}=48 \mathrm{~ms}^{-2}
\end{aligned}
$$

Revision exercise 1

1. The position vector of a particle at any time (t) is given by $r(t)=\left[\left(t^{2}+4 t\right) I+\left(3 t-t^{3}\right) j\right] m$. Find the speed of the particle at $t=3$ seconds. [$26 \mathrm{~ms}^{-1}$]
2. The displacement of a particles after t seconds is given by $r=t^{3} i+9 t j$. Find the speed when $t=$ $2 \mathrm{~s} .\left[15 \mathrm{~ms}^{-1}\right]$
3. The displacement of a particle after t seconds is given by $s=2 \sqrt{3} \operatorname{sinti}+8$ costj. find the speed when $\mathrm{t}=\frac{\pi}{6} s .\left[5 \mathrm{~ms}^{-1}\right]$
4. The displacement of a particle after t seconds is given by $r=8 t^{3} i+2 t^{2} j$. Find
(i) acceleration when $t=1 \mathrm{~s}\left[(6 \dot{i}+4 j) \mathrm{ms}^{-2}\right]$
(ii) magnitude of the acceleration when $t=1 \mathrm{~s}\left[7.21 \mathrm{~ms}^{-2}\right]$
5. The velocity of a particle after t seconds is given by $v=\sin 2 t i-\operatorname{costj}$. Find
(i) acceleration when $\mathrm{t}=\frac{\pi}{6} s\left[(-2 \mathrm{i}+\mathrm{j}) \mathrm{ms}^{-2}\right]$
(ii) magnitude of acceleration when $t=\frac{\pi}{6} s\left[2.24 \mathrm{~ms}^{-2}\right]$
6. The velocity of a particle after t seconds is given by $v=2 t^{2} i+6 j$. find the magnitude of acceleration when $t=3 .\left[12 \mathrm{~ms}^{-2}\right]$
7. A particle of mass 6 kg moves such that its displacement $\mathrm{s}=\binom{t^{2}-5}{t^{2}-3 t+2} \mathrm{~m}$. Find the
(a) velocity after time $t\left[2 t i+(2 t-3) \mathrm{jms}^{-1}\right]$
(b) speed of the particle at $t=2 \mathrm{~s}\left[15 \mathrm{~ms}^{-1}\right]$
(c) acceleration and hence determine the force acting on the particle $\left.[2 i+2 j) \mathrm{ms}^{-2},(12 i+12 j) \mathrm{N}\right]$
8. A particle of mass 2 kg moves such that its displacement $\mathrm{s}=\binom{t^{2}-4 t-5}{t^{2}-4 t+3} \mathrm{~m}$. Find
(a) speed of the particle at $t=2 \mathrm{~s}\left[0 \mathrm{~ms}^{-1}\right]$
(b) force acting on the particle $[(4 i+4 j) N]$
9. A particle of mass 4 kg moves such that its displacement $\mathrm{s}=\left(\mathrm{t}^{3}-t^{2}-4 t+3\right) I+\left(t^{3}-2 t^{2}+3 t-7\right) j$. Find the
(i) the speed of the particle at $t=4 \mathrm{~s}\left[50.21 \mathrm{~ms}^{-1}\right]$
(ii) magnitude of the force acting on the particle when $t=\frac{2}{3} s$ [8N]
10. A particle of mass 0.5 kgmoves such that its displacement $r=\binom{4 \sin 2 t}{2 \cos t-1} \mathrm{~m}$. Find the
(a) velocity of the particle after $\mathrm{t}=\frac{\pi}{6} \mathrm{~S}\left[(4 \mathrm{i}-\mathrm{j}) \mathrm{ms}^{-1}\right]$
(b) force acting on the particle at any time $\mathrm{t}[(-8 \sin 2 \mathrm{ti}-\operatorname{costj}) \mathrm{N}]$
11. A particle of mass 2 kg moves such that its displacement $r=(2-\cos 3 \mathrm{t}) \mathrm{I}+(6 \sin 2 \mathrm{t}) \mathrm{j}$. Find the
(a) velocity of the particle at $\mathrm{t}=\frac{\pi}{6} s\left[(3 \mathrm{i}+6 \mathrm{j}) \mathrm{ms}^{-1}\right]$
(b) force acting on the particle at $\mathrm{t}=\pi s[-18 \mathrm{~N}]$
12. A particle moves such that its displacement $s=(2 \sin t+\sin 2 t) I+(4 \cos t+\cos 2 t) j$. Find the
(a) velocity of the particle at $\mathrm{t}=\frac{\pi}{3} s\left[-3 \sqrt{3} j \mathrm{~ms}^{-1}\right.$
(b) acceleration of the particle at $t=\frac{\pi}{2} s\left[(-2 i+4 j) \mathrm{ms}^{-2}\right]$

Integral calculus

If r, v or a are function of time t;
velocity, $\mathrm{v}=\int a d t+c$ and displacement, $\mathrm{r}=\int v d t+c$
integration; acceleration => velocity => displacement

Example 5

The velocity of the particle $v=3 t^{2} i+10 t j$. Given that the displacement is $4 i-4 j$ at $t=0$. Find the distance of the body from the origin when $t=2 \mathrm{~s}$.

```
\(r=\int v d t+c\)
\(r_{(t=t)}=\int\left(3 t^{2} i+10 t j\right) d t+C\)
\(r_{(t=t)}=t^{3} i+5 t^{2} j+C\)
At \(t=0, r=4 i-4 j\)
\(4 i-4 j=0^{3} i+5 \times 0^{2} j+C\)
\(c=4 i-4 j\)
```

$$
r_{(t=t)}=\left[\left(t^{3}+4\right) i+\left(5 t^{2}-4\right) j\right]
$$

when $t=2 \mathrm{~s}$

$$
\begin{aligned}
& r_{(t=2)}=\left[\left(2^{3}+4\right) i+\left(5 x 2^{2}-4\right) j\right]=(12 \mathrm{i}+16 \mathrm{j}) \mathrm{m} \\
& \left|r_{(t=2)}\right|=\sqrt{12^{2}+16^{2}}=20 \mathrm{~m}
\end{aligned}
$$

Example 6

A particle is accelerated from rest at the origin with an acceleration of $(2 t+4) \mathrm{ms}^{-2}$. Find
(a) velocity attained after $t=2 \mathrm{~s}$
(b) distance travelled at $\mathrm{t}=1 \mathrm{~s}$

Solution
$\mathrm{v}=\int a d t+c$
$v=\int(2 t+4) d t+c$
$v_{(t=t)}=2 t^{2}+4 t+c$
At $t=0, v=0$
$0=2(0)^{2}+4(0)+c$
$\mathrm{c}=0$

$$
\begin{array}{l|l}
v_{(t=t)}=2 t^{2}+4 t & 0=\frac{0^{3}}{3}+2 x 0^{2}+c \\
v_{(t=2)}=2 x 2^{2}+4 x 2=12 \mathrm{~ms}^{-1} & \mathrm{c}=0 \\
\mathrm{r}=\int v d t+c & r_{(t=t)}=\frac{t^{3}}{3}+2 t^{2} \\
r_{(t=t)}=\int\left(2 t^{2}+4 t\right) d t+c & r_{(t=1)}=\frac{1^{3}}{3}+2 x 1^{2}=2.33 \mathrm{~m} \\
r_{(t-t)}=\frac{t^{3}}{}+2 t^{2}+c &
\end{array}
$$

Example 7

A particle is accelerated from rest at the origin with acceleration of $(4 t+2) I-3 j$. Find
(i)
velocity attained after $t=3 \mathrm{~s}$
(ii) speed after 3 s

Solution
$\mathrm{v}=\int a d t+c$
$\mathrm{v}=\int\{(4 t+2) i-3 j\} d t+c$
$v_{(t=t)}=\left(2 t^{2}+2 t\right) i-3 t j+c$
$\mathrm{t}=0, \mathrm{v}=0$
$0=\left(2 x 0^{2}+2 \times 0\right) i-3 \times 0 j+c$

$$
\left\{\begin{aligned}
& \mathrm{c}=0 \\
& v_{(t=t)}=\left(2 t^{2}+2 t\right) i-3 t j \\
& v_{(t=3)}=\left(2 \times 3^{2}+2 \times 3\right) i-3 \times 3 j \\
&=24 \mathrm{i}-9 \mathrm{j}
\end{aligned}\right.
$$

$$
\text { Speed }=\left|v_{(t=3)}\right|=\sqrt{24^{2}+(-9)^{2}}=25.63 \mathrm{~ms}^{-1}
$$

Example 8

A particle starts from origin $(0,0)$. Its acceleration in ms^{-2} at time t seconds is given by a $=6 \mathrm{ti}-4 \mathrm{j}$.
Find its speed after $t=2 s$
$\mathrm{v}=\int a d t+c$
$\mathrm{v}=\int(6 t i-4 j) d t+c$
$v_{(t=t)}=3 \mathrm{t}^{2} \mathrm{i}-4 \mathrm{tj}+\mathrm{c}$
At $t=0, v=0$
$0=3 \times 0^{2} i-4 \times 0 j+c$

$$
\begin{aligned}
& \mathrm{c}=0 \\
& v_{(t=t)}=3 \mathrm{t}^{2} \mathrm{i}-4 \mathrm{tj} \\
& v_{(t=2)}
\end{aligned}=3 \times 2^{2} \mathrm{i}-4 \times 2 \mathrm{tj}, ~=12 \mathrm{i}-8 \mathrm{j},
$$

Example 9

An object of mass 5 kg is initially at rest at a point whose position vector is $-2 i+j$. If it is acted on by a force $F=2 i+3 j-4 k$. Find
(i) acceleration

$$
\begin{aligned}
& \mathrm{F}=\mathrm{ma} \\
& a_{(t=t)}=\frac{1}{5}(2 \mathrm{i}+3 \mathrm{j}-4 \mathrm{k}) m s^{-2}
\end{aligned}
$$

(ii) speed after $t=3 \mathrm{~s}$

$$
v=\int a d t+c
$$

$$
\begin{aligned}
v_{(t=t)} & =\frac{1}{5} \int(2 \mathrm{i}+3 \mathrm{j}-4 \mathrm{k})+c \\
& =\frac{1}{5}(2 \mathrm{ti}+3 \mathrm{tj}-4 \mathrm{tk})+c
\end{aligned}
$$

At $t=0, v=0$

$$
\begin{aligned}
& 0=\frac{1}{5}(2 \times 0 \mathrm{i}+3 \times 0 \mathrm{j}-4 \times 0 \mathrm{k})+c \\
& \mathrm{c}=0
\end{aligned} \quad \begin{aligned}
v_{(t=t)} & =\frac{1}{5}(2 \mathrm{ti}+3 \mathrm{tj}-4 \mathrm{tk}) \\
v_{(t=3)} & =\frac{1}{5}(2 \times 3 \mathrm{i}+3 \times 3 \mathrm{j}-4 \times 3 \mathrm{k}) \\
& =\frac{1}{5}(6 \mathrm{i}+9 \mathrm{j}-12 \mathrm{tk})
\end{aligned} \quad \begin{aligned}
& \left|v_{(t=3)}\right|=\frac{1}{5} \sqrt{6^{2}+9^{2}+(-12)^{2}}=3.23 \mathrm{~ms}^{-1}
\end{aligned}
$$

(iii) its distance from the origin after 3 seconds

$$
\begin{aligned}
& \mathrm{r}=\int v d t+c \\
& \qquad \begin{array}{r}
r_{(t=t)}=\frac{1}{5} \int(2 \mathrm{ti}+3 \mathrm{tj}-4 \mathrm{tk})+c \\
r_{(t=t)}=\frac{1}{5}\left(\mathrm{t}^{2} \mathrm{i}+1.5 \mathrm{t}^{2} \mathrm{j}-2 \mathrm{t}^{2} \mathrm{k}\right)+c
\end{array} \\
& \text { At } \mathrm{t}=0, \mathrm{r}=-2 \mathrm{i}+\mathrm{j} \\
& -2 \mathrm{i}+\mathrm{j}=\frac{1}{5}\left(0^{2} \mathrm{i}+1.5 \times 0^{2} \mathrm{j}-2 \times 0^{2} \mathrm{k}\right)+c \\
& \mathrm{c}=-2 \mathrm{i}+\mathrm{j}
\end{aligned}
$$

Example 10

A particle starts from rest at point $(2,0,0)$ and moves such that its acceleration in $\mathrm{ms}-2$ at time t seconds is given by a $=[16 \cos 4 t i+8 \sin 2 t j+(\operatorname{sint}-2 \sin 2 t) k] \mathrm{ms}^{-2}$. Find the
(a) speed when $t=\frac{\pi}{4}$.

$$
\begin{aligned}
\mathrm{a} & =[16 \cos 4 \mathrm{ti}+8 \sin 2 \mathrm{tj}+(\sin \mathrm{t}-2 \sin 2 \mathrm{t}) \mathrm{k}] \mathrm{ms}^{-2} \\
\mathrm{v} & =\int a d t \\
& =\int[16 \cos 4 \mathrm{ti}+8 \sin 2 \mathrm{tj}+(\sin \mathrm{t}-2 \sin 2 \mathrm{t}) \mathrm{k}] \mathrm{dt} \\
& =[4 \sin 4 \mathrm{ti}-4 \cos 2 \mathrm{tj}+(-\cos \mathrm{t}+\cos 2 \mathrm{t}) \mathrm{k}]+\mathrm{c}
\end{aligned}
$$

$$
\text { At } t=0
$$

$$
0=[4 \sin 0 i-4 \cos 0 j+(-\cos 0+\cos 0) k]+c
$$

$$
0=-4 j+c
$$

$$
c=4 j
$$

$$
\Rightarrow v=[4 \sin 4 t i+(-4 \cos 2 t+4) j+(-\cos t+\cos 2 t) k
$$

$$
\text { At } t=\frac{\pi}{4}
$$

$$
\begin{aligned}
\Rightarrow & v=\left[4 \sin \pi i+\left(-4 \cos \frac{\pi}{2}+4\right) j+\left(-\cos \frac{\pi}{4}+\cos \frac{\pi}{2}\right) k\right. \\
& =4 j-\cos \frac{\pi}{4} \mathrm{k} \\
& |v|=\sqrt{4^{2}+\left(-\cos \frac{\pi}{4}\right)^{2}}=\sqrt{16+\frac{2}{4}}=\sqrt{16.5}=4.062 \mathrm{~ms}^{-1}
\end{aligned}
$$

(b) distance from the origin when $t=\frac{\pi}{4}$

$$
\begin{aligned}
\mathrm{s} & =\int v d t \\
& =\int[4 \sin 4 \mathrm{ti}+(-4 \cos 2 \mathrm{t}+4) j+(-\cos \mathrm{t}+\cos 2 \mathrm{t}) \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
& r_{(t=t)}=\frac{1}{5}\left\{\left(\mathrm{t}^{2}-10\right) \mathrm{i}+\left(1.5 \mathrm{t}^{2}+5\right) \mathrm{j}-2 \mathrm{t}^{2} \mathrm{k}\right\} \\
& r_{(t=3)}=\frac{1}{5}\left(\left(3^{2}-10\right) \mathrm{i}+\left(1.5 \times 3^{2}+5\right) \mathrm{j}-18 \mathrm{k}\right) \\
& =\frac{1}{5}\left(-\mathrm{i}+18.5 \mathrm{j}-2 \times 3^{2} \mathrm{k}\right) \\
& \left|r_{(t=3)}\right|=\sqrt{(-1)^{2}+(18.5)^{2}+18^{2}}=5.166 \mathrm{~m}
\end{aligned}
$$

$$
=-\cos 4 \mathrm{ti}+(-2 \sin 2 \mathrm{t}+4 \mathrm{t}) \mathrm{j}+\left(-\sin \mathrm{t}+\frac{1}{2} \sin 2 t\right) k+\mathrm{c}
$$

At $t=0, s=2 i$
By substitution

$$
\begin{aligned}
& 2 i=-\cos 0 i+(-2 \sin 0+4(0)) j+\left(-\sin 0+\frac{1}{2} \sin 2(0)\right) k+c \\
& 2 i=-I+c \\
& \mathrm{c}=3 \mathrm{i} \\
& \Rightarrow \mathrm{~s}=(-\cos 4 \mathrm{t}+3) \mathrm{i}+(-2 \sin 2 \mathrm{t}+4 \mathrm{t}) \mathrm{j}+\left(-\sin \mathrm{t}+\frac{1}{2} \sin 2 t\right) k \\
& \text { At } t=\frac{\pi}{4} \\
& \Rightarrow \mathrm{~s}=(-\cos \pi+3) \mathrm{i}+\left(-2 \sin \frac{\pi}{2} \mathrm{t}+\pi\right) \mathrm{j}+\left(-\sin \frac{\pi}{4}+\frac{1}{2} \sin \frac{\pi}{2}\right) k \\
& =4 i+(\pi-2) j+\left(-\frac{\sqrt{2}}{2}+\frac{1}{2}\right) k \\
& =4 \mathrm{i}+1.416 \mathrm{j}-0.207 \mathrm{k} \\
& |s|=\sqrt{4^{2}+(1.416)^{2}+(-0.207)^{2}} \\
& =4.24828 \\
& =4.248 \text { (3D) }
\end{aligned}
$$

Vector approach of finding work and power

Work done by a variable force is a dot product
$\mathrm{W}=\mathrm{F} . \mathrm{d} \quad$ or $W_{(t=t)}=\int F v d t$
Since power, P = F.v

Example 11

A particle of mass 4 kg starts frm rest at the origin. It is acted on by a force $\mathrm{F}=\left(2 \mathrm{ti}+3 \mathrm{t}^{2} \mathrm{j}+5 \mathrm{k}\right) \mathrm{N}$ Find the work done by the force after 3 second

Solution
$\mathrm{F}=\mathrm{ma}$
$a_{(t=t)}=\frac{1}{4}\left(2 \mathrm{ti}+3 \mathrm{t}^{2} \mathrm{j}+5 \mathrm{k}\right)$
$v=\int a d t+c$
$v_{(t=t)}=\frac{1}{4} \int\left(2 \mathrm{ti}+3 \mathrm{t}^{2} \mathrm{j}+5 \mathrm{k}\right) d t+c$
$v_{(t=t)}=\frac{1}{4}\left(\mathrm{t}^{2} \mathrm{i}+\mathrm{t}^{3} \mathrm{j}+5 \mathrm{tk}\right)+c$
At $t=0, v=0$
$0=\frac{1}{4}\left(0^{2} \mathrm{i}+0^{3} \mathrm{j}+5 \times 0 \mathrm{k}\right)+c$
$c=0$

$$
\left\{\begin{array}{l}
v_{(t=t)}=\frac{1}{4}\left(\mathrm{t}^{2} \mathrm{i}+\mathrm{t}^{3} \mathrm{j}+5 \mathrm{tk}\right) \\
v_{(t=3)}=\frac{1}{4}\left(3^{2} \mathrm{i}+3^{3} \mathrm{j}+5 \mathrm{x} 3 \mathrm{k}\right) \\
v_{(t=t)}=\frac{1}{4}(9 \mathrm{i}+27 \mathrm{j}+15 \mathrm{k}) \\
\left|v_{(t=t)}\right|
\end{array}=\frac{1}{4} \sqrt{9^{2}+27^{2}+15^{2}}, ~=\frac{1}{4} \sqrt{1,025} \mathrm{~ms}^{-1} .\right.
$$

Alternatively
$P_{(t=t)}=F . v$
$P_{(t=t)}=\left(\begin{array}{c}2 t \\ 3 t^{2} \\ t\end{array}\right) \cdot \frac{1}{4}\left(\begin{array}{c}t^{2} \\ t^{3} \\ 5 t\end{array}\right)=\frac{1}{4}\left(2 t^{3}+3 t^{5}+5 t^{2}\right)$
$W_{(t=0}$ and $\left.t=3\right)=\int_{0}^{3} F . v d t$

$$
\begin{aligned}
& =\frac{1}{4} \int_{0}^{3}\left(2 t^{3}+3 t^{5}+5 t^{2}\right) d t \\
& =\frac{1}{4}\left[\frac{1}{2} t^{4}+\frac{1}{2} t^{6}+\frac{25}{2} t^{2}\right]_{0}^{3} \\
& =\frac{1}{4}\left\{\left(\frac{1}{2} \times 3^{4}+\frac{1}{2} \times 3^{6}+\frac{25}{2} \times 3^{2}\right)-0\right\} \\
& =129.375 \mathrm{~J}
\end{aligned}
$$

Example 12

A particle of mass 3 kg moves along a straight line such that after t seconds its position vector is s metres where $s=\left(\begin{array}{c}25 t+4 t^{2} \\ 50+2 t^{2} \\ 15+3 t^{2}\end{array}\right)$. Find

$$
\begin{aligned}
& \text { (a) Magnitude of force } \\
& v_{(t=t)}=\frac{d s}{d t}=\frac{d}{d t}\left(\begin{array}{c}
25 t+4 t^{2} \\
50+2 t^{2} \\
15+3 t^{2}
\end{array}\right)=\left(\begin{array}{c}
25+8 t \\
4 t \\
6 t
\end{array}\right) m s^{-1} \\
& a_{(t=t)}=\frac{d v}{d t}=\frac{d}{d t}\left(\begin{array}{c}
25+8 t \\
4 t \\
6 t
\end{array}\right)=\left(\begin{array}{l}
8 \\
4 \\
6
\end{array}\right) m s^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& F=3\left(\begin{array}{l}
8 \\
4 \\
6
\end{array}\right)=\left(\begin{array}{l}
24 \\
12 \\
18
\end{array}\right) \\
& \begin{aligned}
|F| & =\sqrt{12^{2}+12^{2}+18^{2}} \\
& =32.31 \mathrm{~N}
\end{aligned}
\end{aligned}
$$

(b) Power when $t=2 \mathrm{~s}$
$P_{(t=t)}=F . v$
$v_{t=2}=\binom{25+8 \times}{ 4 \times} 2.2\left(\begin{array}{c}41 \\ 6 \\ 6\end{array}\right) m s^{-1}$
$P_{(t=2)}=\left(\begin{array}{l}24 \\ 12 \\ 18\end{array}\right) \cdot\left(\begin{array}{c}41 \\ 8 \\ 12\end{array}\right)=1,296 m s^{2}$
(c) Work done on the particle between $t=1 \mathrm{~s}$ and $\mathrm{t}=2 \mathrm{~s}$
$W_{(t=1 \text { and } t=2)}=\frac{1}{2} m\left(v_{t=2}^{2}-v_{t=1}{ }^{2}\right)$
$v_{(t=1)}=\left(\begin{array}{c}25+8 \\ 4\end{array} x \times 1\right.$
$\left|v_{(t=1)}\right|=\sqrt{33^{2}+4^{2}+6^{2}}=\sqrt{1141} \mathrm{~ms}^{-1}$
$\left|v_{(t=1)}\right|=\sqrt{41^{2}+8^{2}+12^{2}}=\sqrt{1889} \mathrm{~ms}^{-1}$
$W_{(t=1 \text { and } t=2)}=\frac{1}{2} m\left(v_{t=2}{ }^{2}-v_{t=1}{ }^{2}\right)$
$=\frac{1}{2} \times 3(1889-1141)=1122 \mathrm{~J}$

$$
\begin{aligned}
&=\left(\begin{array}{l}
24 \\
12 \\
18
\end{array}\right) \cdot\left(\begin{array}{c}
25+8 t \\
4 t \\
6 t
\end{array}\right)=(600+348 t) \\
& W_{(t=1 \text { and } t=2)}=\int_{1}^{2} F \cdot v d t \\
&=\int_{1}^{2}(600+348 t) d t
\end{aligned}
$$

$$
\begin{aligned}
& {\left[600 t+174 t^{2}\right]_{1}^{2}} \\
& \quad=(12000+696)-(6000+174) \\
& \quad=1122 \mathrm{~J}
\end{aligned}
$$

Alternatively
$P_{(t=1)}=F . v$

Example 13

A particle of mass 10 kg starts from rest at a point A with position vector $(4 i+3 j+2 k) \mathrm{m}$. It is acted on by a constant force, $F=(8 i+4 j+6 k) N$ causing it to accelerate to B after $4 s$. Find the
(a) Magnitude of acceleration

$$
\begin{aligned}
& \mathrm{F}=\mathrm{ma} \\
& a_{(t=t)}=\frac{1}{10}((8 \mathrm{i}+4 \mathrm{j}+6 \mathrm{k})) m s^{-2}
\end{aligned}
$$

$$
\begin{aligned}
\left|a_{(t=t)}\right| & =\frac{1}{10} \sqrt{8^{2}+4^{2}+6^{2}} \\
& =1.077 \mathrm{~ms}^{-2}
\end{aligned}
$$

(b) velocity at any time t

$$
\begin{array}{r|r}
v_{(t=t)}=\int a d t+c & \begin{array}{l}
0=\frac{1}{10}(8 x 0 i+4 x 0 j+6 x 0 k)+c \\
\\
=\frac{1}{10} \int(8 \mathrm{i}+4 \mathrm{j}+6 \mathrm{k}) d t \\
v_{(t=t)}
\end{array}=\frac{1}{10}(8 t i+4 t j+6 t k)+c
\end{array} \quad \begin{aligned}
& \mathrm{c}=0
\end{aligned}
$$

(c) position vector point B

$$
\begin{aligned}
& r_{(t=t)}=\int v d t+c \\
& r_{(t=t)}=\frac{1}{10} \int(8 t i+4 t j+6 t k) d t+c \\
& r_{(t=t)}=\frac{1}{10}\left(4 t^{2} i+2 t^{2} j+3 t^{2} k\right)+c \\
& \text { At } \mathrm{t}=0, \mathrm{OA}=(4 \mathrm{i}+3 \mathrm{j}+2 \mathrm{k}) \\
& (2 \mathrm{i}+3 \mathrm{j}+2 \mathrm{k})=\frac{1}{10}\left(4 \times 0^{2} i+2 x 0^{2} j+3 \times 0^{2} k\right)+c \\
& \mathrm{c}=(4 \mathrm{i}+3 \mathrm{j}+2 \mathrm{k}) \\
& r_{(t=t)}=\frac{1}{10}\left(4 t^{2} i+2 t^{2} j+3 t^{2} k\right)+(4 \mathrm{i}+3 \mathrm{j}+2 \mathrm{k}) \\
& r_{(t=t)}=\frac{1}{10}\left\{\left(4 t^{2}+40\right) i+\left(2 t^{2}+30\right) j+\left(3 t^{2}+2\right) k\right\}
\end{aligned}
$$

(d) the displacement vector $A B$

$$
\begin{aligned}
& O B_{(t=4)}=\frac{1}{10}\left(\begin{array}{lll}
4 & x & 4^{2}+40 \\
2 & x & 4^{2}+30 \\
3 & x & 4^{2}+20
\end{array}\right)=\left(\begin{array}{c}
10.4 \\
3.2 \\
6.8
\end{array}\right) m \\
& \overline{A B}=O B-O A=\left(\begin{array}{c}
10.4 \\
3.2 \\
6.8
\end{array}\right)-\left(\begin{array}{l}
4 \\
3 \\
2
\end{array}\right)=\left(\begin{array}{l}
6.4 \\
3.2 \\
4.8
\end{array}\right) m
\end{aligned}
$$

(e) work done by the force F after 4 s .

$$
W_{(t=4)}=F \cdot r=\left(\begin{array}{l}
8 \\
4 \\
6
\end{array}\right) \cdot\left(\begin{array}{l}
6.4 \\
3.2 \\
4.8
\end{array}\right)=92.8 \mathrm{~J}
$$

Alternative 1

$$
\begin{aligned}
& v_{(t=4)}=\frac{1}{10}\left(\begin{array}{lll}
8 & x & 4 \\
4 & x & 4 \\
6 & x & 4
\end{array}\right)=\left(\begin{array}{l}
3.2 \\
1.6 \\
2.4
\end{array}\right) m s^{-1} \\
& v_{(t=4)}=\sqrt{3.2^{2}+1.6^{2}+2.4^{2}}=\sqrt{18.56} \mathrm{~ms}^{-1} \\
& W_{(t=0 \text { and } t=4)}=\frac{1}{2} m\left(v_{(t=4)}^{2}-v_{(t=0)}^{2}\right) \\
& =\frac{1}{2} \times 10(18.56-0)=92.8 \mathrm{~J}
\end{aligned}
$$

Alternative 2

$$
\begin{aligned}
& P_{(t=t)}=F . v \\
& P_{(t=t)}=\left(\begin{array}{l}
8 \\
4 \\
6
\end{array}\right) \cdot \frac{1}{10}\left(\begin{array}{l}
8 t \\
4 t \\
6 t
\end{array}\right)=11.6 t \\
& W_{(t=0 \text { and } t=4)}=\int F . v d t=\int_{0}^{4} 11.6 t d t \\
& =\left[5.8 t^{2}\right]_{0}^{4} \\
& =\left[5.8 \times 4^{2}-0\right] \\
& =92.8 \mathrm{~J}
\end{aligned}
$$

Example 14

A particle move along a curve such that after t seconds its position vector is r where $r=\left(\begin{array}{c}t+1 \\ \frac{10}{3} t^{3}-6 \\ 4-\frac{3}{2} t^{2}\end{array}\right)$. The particle is acted on by a force $F=\left(2 t i+t^{2} j-2 t k\right) N$. Find
(a) Power at any time t .

$$
\begin{aligned}
& v_{(t=t)}=\frac{d r}{d t}=\frac{d}{d t}\left(\begin{array}{c}
t+1 \\
\frac{10}{3} t^{3}-6 \\
4-\frac{3}{2} t^{2}
\end{array}\right)=\left(\begin{array}{c}
1 \\
10 t^{2} \\
-3 t
\end{array}\right) m s^{-1} \\
& P_{(t=t)}=F \cdot v=\left(\begin{array}{c}
2 t \\
t^{2} \\
-2 t
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
10 t^{2} \\
-3 t
\end{array}\right)=2 t+10 t^{4}+6 t^{2}
\end{aligned}
$$

(b) work done by the force in the interval $t=1 \mathrm{~s}$ and $\mathrm{t}=3 \mathrm{~s}$

$$
\begin{aligned}
& \begin{aligned}
W_{(t=1 \text { and } t=3)} & =\int_{1}^{3} F . v d t=\int_{1}^{3} 2 t+10 t^{4}+6 t^{2} d t \\
& =\left[t^{2}+2 t^{3}+2 t^{5}\right]_{1}^{3}
\end{aligned} \\
& W=(9+54+486)-(1+2+2)=544 \mathrm{~J}
\end{aligned}
$$

Example 15

A particle of mass 2 kg has a displacement vector $\mathrm{s}=\left(\begin{array}{c}2 t^{2} \\ 4 t \\ 8 t^{3}\end{array}\right) \mathrm{m}$ and a force $\mathrm{F}=\left(\begin{array}{c}3 t \\ 4 t^{3} \\ 5 t\end{array}\right) N$. Find
(a) work done at $t=2 \mathrm{~s}$

W = F.v

$$
\begin{aligned}
& W_{(t=t)}=\left(\begin{array}{c}
3 t \\
4 t^{3} \\
5 t
\end{array}\right) \cdot\left(\begin{array}{c}
2 t^{2} \\
4 t \\
8 t^{3}
\end{array}\right)=\left(6 t^{3}+56 t^{4}\right) J \\
& W_{(t=2)}=\left(\begin{array}{lll}
6 & \left.x 2^{3}+56 \times 2^{4}\right)=944 \mathrm{~J}
\end{array}\right.
\end{aligned}
$$

(b) Power when $t=4 \mathrm{~s}$

$$
\begin{gathered}
v_{(t=t)}=\frac{d s}{d t}=\frac{d}{d t}\left(\begin{array}{c}
2 t^{2} \\
4 t \\
8 t^{3}
\end{array}\right)=\left(\begin{array}{c}
4 t \\
4 \\
24 t^{2}
\end{array}\right) m s^{-1} \\
P_{(t=t)}=F \cdot v=\left(\begin{array}{c}
3 t \\
4 t^{3} \\
5 t
\end{array}\right) \cdot\left(\begin{array}{c}
4 t \\
4 \\
24 t^{2}
\end{array}\right)=\left(12 t^{2}+136 t^{3}\right) W \\
P_{(t=4)}=\left(12 x 4^{2}+136 x 4^{3}\right) W=8,896 \mathrm{~W}
\end{gathered}
$$

Example 16

1. A force $F=(2 t i+j-3 t k) N$ acts on a particle of mass $2 k g$. The particle is initially at a point $(0,0,0)$ and moving with a velocity ($\mathrm{i}+2 \mathrm{j}-\mathrm{k}$) ms^{-1}. Determine the:
(a) Magnitude of the acceleration of the particle after 2 seconds (04marks)

$$
F=(2 t i+j-3 t k)=\left(\begin{array}{c}
2 t \\
1 \\
-3 t
\end{array}\right) N
$$

$$
\begin{aligned}
& \mathrm{a}=\frac{F}{m}=\frac{1}{2}\left(\begin{array}{c}
2 t \\
1 \\
-3 t
\end{array}\right)=\left(\begin{array}{c}
t \\
0.5 \\
-1.5 t
\end{array}\right) m s^{-1} \\
& \text { At } \mathrm{t}=2 \mathrm{~s} \\
& \underline{a}=2 \mathrm{i}+0.5 \mathrm{j}-3 \mathrm{k} \\
& |\underline{a}|=\sqrt{2^{2}+0.5^{2}+(-3)^{2}}=3.64 \mathrm{~ms}^{-2}
\end{aligned}
$$

(b) Velocity of the particle after 2 seconds (04 marks)
$\underline{v}=\int \underline{a} d t=\int\left(\begin{array}{c}t \\ 0.5 \\ -1.5 t\end{array}\right) d t=\left(\begin{array}{c}0.5 t^{2} \\ 0.5 t \\ -7.5 t^{2}\end{array}\right)+\mathrm{C}$
At $t=0$ initial velocity $=(i+2 j-k)$

$$
\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)+C \Rightarrow C=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)
$$

$$
\begin{aligned}
& \therefore \underline{v}=\left(\begin{array}{c}
0.5 t^{2}+1 \\
0.5 t+2 \\
-7.5 t^{2}-1
\end{array}\right) \\
& \text { At } \mathrm{t}=2 \mathrm{~s} \\
& \underline{v}=\left(\begin{array}{c}
0.5(2)^{2}+1 \\
0.5(2)+2 \\
-7.5(2)^{2}-1
\end{array}\right)=\left(\begin{array}{c}
3 \\
3 \\
-4
\end{array}\right) m s^{-1}
\end{aligned}
$$

(c) Displacement of the particle after 2 seconds (04marks)

$$
\underline{r}=\int \underline{v} d t \int\left(\begin{array}{c}
0.5 t^{2}+1 \\
0.5 t+2 \\
-7.5 t^{2}-1
\end{array}\right) d t=\left(\begin{array}{c}
\frac{t^{3}}{6}+t \\
\frac{t^{2}}{4}+2 t \\
-t-\frac{t^{3}}{4}
\end{array}\right)+\mathrm{C} \quad \underline{r}=\left(\begin{array}{c}
t^{3}+t \\
\frac{t^{2}}{4}+2 t \\
-t-\frac{t^{3}}{4}
\end{array}\right)
$$

At t $=0 ;\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+C$
$C=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

At $t=2 s$
$\underline{r}=\left(\begin{array}{c}\frac{2^{3}}{6}+2 \\ \frac{2^{2}}{4}+2 x 2 \\ -2-\frac{2^{3}}{4}\end{array}\right)=\left(\begin{array}{c}\frac{10}{3} \\ 5 \\ -4\end{array}\right) m$

Example 17

1. A particle of mass 4 kg starts from rest at point $(2 i-3 j+k) \mathrm{m}$. it moves with acceleration $a=(4 i$ $+2 \mathrm{j}-3 \mathrm{k}) \mathrm{ms}^{-2}$ when a constant force F acts on it.
Find the:
(a) Force F (02marks)

$$
\begin{aligned}
& F=m a \\
&=4\left(\begin{array}{c}
4 \\
2 \\
-3
\end{array}\right)=\left(\begin{array}{c}
16 \\
8 \\
-12
\end{array}\right) N \text { or } F=(16 i+8 j-12 k) N
\end{aligned}
$$

(b) Velocity at any time t. (04marks)

$$
\begin{aligned}
v & =\int a d t \\
v & =a t+c \\
& =\left(\begin{array}{c}
4 \\
2 \\
-3
\end{array}\right) t+c
\end{aligned}
$$

At time $\mathrm{t}=0, \mathrm{v}=\mathrm{u}=\mathrm{c}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
Substituting for c

$$
\mathrm{v}=\left(\begin{array}{c}
4 \\
2 \\
-3
\end{array}\right) t=\left(\begin{array}{c}
4 t \\
2 t \\
-3 t
\end{array}\right) m s^{-1}
$$

$$
\text { or } v=(4 t i+2 t j-3 t ~ k) \mathrm{ms}^{-1}
$$

(c) Work done by the force F after 6 seconds (06 marks)

Work done $=$ force $(F) \times$ distance (\underline{r})

$$
\begin{array}{l|}
\underline{r}=\int v d t=\int\left(\begin{array}{c}
4 t \\
2 t \\
-3 t
\end{array}\right) d t=\left(\begin{array}{c}
2 t^{2} \\
t^{2} \\
-1.5 t^{2}
\end{array}\right)+c \\
\text { At } t=0, \underline{r}=c=\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right) \\
\text { Hence } \underline{r}=\left(\begin{array}{c}
2 t^{2} \\
t^{2} \\
-1.5 t^{2}
\end{array}\right)+\left(\begin{array}{c}
2(6)^{2} \\
-3 \\
(6)^{2} \\
-1.5(6)^{2}
\end{array}\right)+\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{c}
74 \\
33 \\
-53
\end{array}\right) \\
\text { Work done }=\text { force (F) x distance (} \underline{r}) \\
\text { After time } t=6 \text { seconds }
\end{array} \quad=\left(\begin{array}{c}
16 \\
8 \\
-12
\end{array}\right) x\left(\begin{array}{c}
74 \\
33 \\
-53
\end{array}\right) .
$$

Revision exercise

1. A particle of mass 3 kg is acted on by a force $\mathrm{F}=(24 \mathrm{t} 3 \mathrm{i}+(36 \mathrm{t}-16) \mathrm{j}+12 \mathrm{k}) \mathrm{N}$ at time t . at time $t=0$, the particle is at the pint with position vector $(3,-1,4)$ and moving with velocity $(16 i+15 j-8 k) \mathrm{ms}^{-1}$. Determine the
(i) acceleration of the particle at time $t=2 \mathrm{~s}$. [28.4253 $\left.\mathrm{ms}^{-2}\right]$
(ii) speed of the particle at $t=2 \mathrm{~s}\left[42.9534 \mathrm{~ms}^{-1}\right]$
(iii) distance of the particle from the origin at $\mathrm{t}=2 \mathrm{~s}$ [56.5155m]
2. A particle of mass 4 kg is acted on by a force $F=\left(6 i-36 t^{2} j+54 t k\right) N$ at time t. At time $t=0$, the particle is the point with position vector $(i-5 j-k)$ and it velocity is $(3 i+3 j) \mathrm{ms}^{-1}$. Determine the
(a) position vector of the particle a time $t=1 \mathrm{~s} \cdot\left(\begin{array}{c}5 \\ -3 \\ 2\end{array}\right) \mathrm{m}$.
(b) Distance of the particle from the origin a time $t=1 \mathrm{~s}[6.1644 \mathrm{~m}]$
3. The acceleration f a particle is $6 \mathrm{ti}+2 \mathrm{j}$. Given that the velocity is $(4 i-j) \mathrm{ms}^{-1}$ and displacement is $(2 i+3 j) m$ when $t=1 s$. Find the displacement when $t=3 s[(30 i+5 j) m]$
4. If the velocity of a particle is $4 \cos 2 t i+2 \sin 2 t j$, given the displacement is $6 i-2 j$ when $t=\frac{\pi}{4} s$. Find the distance of the body from the origin when $t=\pi s$. [5 m]
5. If the acceleration of a particle is $9 \sin 3 t i+2 \operatorname{costj}$ and the body id initially at rest. Find its velocity when $t=\frac{\pi}{6} s .\left[(3 \mathrm{i}+\mathrm{j}) \mathrm{ms}^{-1}\right]$
6. If the acceleration of a particle is $6 \sin 6 t i+9 \cos 3 t j$, given that the velocity is $(i+3 j) \mathrm{ms}^{-1}$ and displacement is $(5 i+2 j) m$ when $t=\frac{\pi}{6} s$. Find the displacement when $t=\frac{\pi}{6} s .[(5 i+3 j) m]$
7. If the acceleration of the particle is $6 \mathrm{ti}+6 \mathrm{j}-2 \mathrm{k}$, given that the velocity is $(3 i+6 j-3 k) \mathrm{ms}^{-1}$ and displacement is $(2 i+5 j-2 k) m$ when $t=1 s$. Find
(a) velocity when $t=2 s\left[(12 i+12 t j-5 k) \mathrm{ms}^{-1}\right]$
(b) displacement when $t=3 s[(28 i+29 j-12 k) m$
8. If the acceleration f a particle is $2 i+6 j+12 t^{2} k$, given that the velocity is $(3 i+k) \mathrm{ms}^{-1}$ and displacement is $(-i+k) m$ when $t=1 \mathrm{~s}$. Find the
(i) velocity when $t=2 s[(-i+3 j+5 k)$
(ii) displacement when $t=2 s[(-3 i+8 j+19 k) m$
9. If the acceleration of a particle is $(6 \mathrm{ti}-2 \mathrm{k}) \mathrm{ms}^{-2}$, given that the velocity is $(i+12 j-4 k) \mathrm{ms}^{-1}$ and the displacement is $(3 i+6 j) m$ when $t=2 s$, Find the
(i) velocity when $t=4 s[37 i+12 j-8 k) \mathrm{ms}^{-1}$
(ii) displacement when $t=3 s[11 i+18 j-5 k) m$
10. The velocity of a particle $v=4 t^{3} i+6 t j-3 t^{2} k$. Given that the displacement is $14 i+6 j-3 k$ at $t=1 s$. Find the
(i) acceleration when $t=5 s\left[(108 i+6 j-18 k) \mathrm{ms}^{-2}\right.$
(ii) displacement when $t=0[(13 i+3 j-2 k) m]$
11. The velocity of a particle $v=\left(3 t^{2} i-10 t\right) i+2 j-6 t k$. Given that the displacement is $-9 i+3 j-13 k$ at $t=2 s$. Find the
(i) acceleration when $t=5 s\left[(20 i-6 k) \mathrm{ms}^{-2}\right]$
(ii) displacement when $t=3 s[15 i+5 j-28 k) m]$
12. The particle starts from rest at the origin moving with velocity of $v=\left(\begin{array}{c}2 \cos 2 t+11 \\ 3 \sin 3 t \\ 4\end{array}\right)$. Find the
(i) speed when $t=\frac{\pi}{6} s .\left[13 \mathrm{~ms}^{-1}\right]$
(ii) displacement when $\mathrm{t}=\frac{\pi}{2} s .[(1.5 \pi \mathrm{i}+\mathrm{j}-2 \pi \mathrm{k}) \mathrm{m}]$
(iii) acceleration when $t=\pi s\left[9 \mathrm{jms}^{-2}\right]$

Thank you
Dr. Bbosa Science

