

This document is sponsored by The Science Foundation College Kiwanga- Namanve Uganda East Africa Senior one to senior six

Brosa Science Based on, best for sciences

Variable acceleration

This occurs when the rate of change of velocity is not constant.

Differential calculus

Let r = displacement, v = velocity and a = acceleration and are functions of time, t.

velocity,
$$v = \frac{dr}{dt}$$
 while acceleration, $a = \frac{dv}{dt} = \frac{d^2r}{dt^2}$

Differentiation; displacement => velocity => acceleration

Example 1

A particle moves along a straight line such that after t seconds, its displacement from a fixed point is r metres where $r = 8t^2i - t^4j$. Find

(a) velocity after t seconds

(b) velocity after 1s

(c) speed after 1 s

Solution

$$v_{(t=t)} = \frac{dr}{dt} = \frac{d(8t^2i - t^4j)}{dt}$$

$$= (16ti - 4t^3j)ms^{-1}$$
(b) when t = 1
$$v_{(t=1)} = (16i - 4j)ms^{-1}$$

$$= (16i - 4j)ms^{-1}$$

$$= (16i - 4j)ms^{-1}$$

$$= (16i - 4j)ms^{-1}$$

$$= (16i - 4j)ms^{-1}$$

Example 2

A particle move along a straight line such that after t seconds its displacement from a fixed point is s in metres where s = 2sinti + 3costj. Find

(a) acceleration after t seconds (b) acceleration after $\frac{\pi}{2}s$ (c) magnitude of acceleration after $\frac{\pi}{2}s$

(a)
$$v_{(t=t)} = \frac{dr}{dt} = \frac{d(2 \sin t i + 3 \cos t j)}{dt}$$
 (b) when $t = \frac{\pi}{2} s$
$$= (2 \cos t i - 3 \sin t j) m s^{-1}$$

$$a_{(t=t)} = \frac{dv}{dt} = \frac{d(2 \cos t i - 3 \sin t j)}{dt}$$
 (c) $\left| a_{(t=\frac{\pi}{2})} \right| = \sqrt{(-2)^2 - 0^2} = 2 m s^{-2}$
$$= (-2 \sin t i - 3 \cos t j) m s^{-2}$$

A particle moves along a straight line such that after t seconds its displacement from a fixed point is

s where
$$s = \begin{pmatrix} \sin 2t \\ t+1 \\ \cos t + \sin t \end{pmatrix}$$
. Find

(a) velocity when $t = \frac{\pi}{2}s$ (b) speed when $t = \frac{\pi}{2}s$ (c) acceleration when $t = \frac{\pi}{2}s$

Solution

Solution
$$v_{(t=t)} = \frac{dr}{dt} = \frac{d[\sin 2ti + (t+1)j + (\cos t + \sin t)k]}{dt}$$

$$= 2\cos 2ti + j + (\sin t - \cos t)k$$

When $t = \frac{\pi}{2}s$

$$v_{(t=\frac{\pi}{2})} = 2\cos\left(\frac{2\pi}{2}\right)i + j + (\sin\frac{\pi}{2} - \cos\frac{\pi}{2})k$$

$$= (-2i + j - k)ms^{-1}$$
(b) $\left|v_{(t=\frac{\pi}{2})}\right| = \sqrt{(-2)^2 + 1^2 + (-1)^2}$

$$= 2.45ms^{-1}$$
(c) $a_{(t=t)} = \frac{dv}{dt} = \frac{d[2\cos 2ti + j + (\sin t - \cos t)k]}{dt}$

$$= -4\sin 2ti + (\cos t + \sin t)k$$

$$a_{(t=\frac{\pi}{2})} = -4\sin 2\left(\frac{\pi}{2}\right)i + [\cos\frac{\pi}{2} + \sin\frac{\pi}{2}]k$$

$$a = kms^{-2}$$

Example 4

A particle moves in x-y plane such that its position at any time t is given by $r = (3t^2-1)i + (4t^3 + t - 1)j$. (b) magnitude of acceleration after t = 2s Find (a) speed after time t = 2

$$v_{(t=t)} = \frac{dr}{dt} = \frac{d[(3t^2-1)i+(4t^3+t-1)]}{dt}$$

$$= 6ti + (12t^2 + 1)j \text{ ms}^{-1}$$

$$= (6i + 24tj)\text{ms}^{-2}$$

$$when t = 2s$$

$$v_{(t=2)=[6 \times 2i+(12 \times 2^2+1)j]ms^{-1}}$$

$$= [12i + 49j] ms^{-1}$$

$$speed = |v_{(t=2)}| = \sqrt{12^2 + 49^2} = 50.45 \text{ms}^{-1}$$

$$(b) a_{(t=t)} = \frac{dv}{dt} = \frac{d[6ti+(12t^2+1)j]}{dt}$$

$$= (6i + 24tj)\text{ms}^{-2}$$

$$a_{(t=2)} = 6i = + (24 \times 2)j = (6i + 48i)\text{ms}^{-2}$$

$$|a_{(t=2)}| = \sqrt{6^2 + 48^2} = 48 \text{ms}^{-2}$$

Revision exercise 1

- 1. The position vector of a particle at any time (t) is given by $r(t) = [(t^2 + 4t)I + (3t t^3)j]m$. Find the speed of the particle at t =3seconds. [26ms⁻¹]
- 2. The displacement of a particles after t seconds is given by $r = t^3i + 9tj$. Find the speed when t = 12s. [15ms⁻¹]
- 3. The displacement of a particle after t seconds is given by $s = 2\sqrt{3}$ sinti + 8costj. find the speed when $t = \frac{\pi}{6} s$. [5ms⁻¹]
- The displacement of a particle after t seconds is given by $r = 8t^3i + 2t^2j$. Find
 - acceleration when $t = 1s [(6i + 4j)ms^{-2}]$
 - (ii) magnitude of the acceleration when $t = 1s [7.21ms^{-2}]$

- 5. The velocity of a particle after t seconds is given by $v = \sin 2ti \cos tj$. Find
 - (i) acceleration when $t = \frac{\pi}{6}s [(-2i + j)ms^{-2}]$
 - (ii) magnitude of acceleration when $t = \frac{\pi}{6} s$ [2.24ms⁻²]
- 6. The velocity of a particle after t seconds is given by $v = 2t^2i + 6j$. find the magnitude of acceleration when t = 3. [12ms⁻²]
- 7. A particle of mass 6kg moves such that its displacement $s = {t^2 5 \choose t^2 3t + 2} m$. Find the
 - (a) velocity after time t $[2ti + (2t 3)j \text{ ms}^{-1}]$
 - (b) speed of the particle at t = 2s [15ms⁻¹]
 - (c) acceleration and hence determine the force acting on the particle [2i + 2j)ms⁻², (12i + 12j)N]
- 8. A particle of mass 2kg moves such that its displacement s = $\binom{t^2 4t 5}{t^2 4t + 3}$ m. Find
 - (a) speed of the particle at t= 2s [0ms⁻¹]
 - (b) force acting on the particle [(4i + 4j)N]
- 9. A particle of mass 4kg moves such that its displacement $s = (t^3 t^2 4t + 3)I + (t^3 2t^2 + 3t 7)j$. Find the
 - (i) the speed of the particle at $t = 4s [50.21 \text{ms}^{-1}]$
 - (ii) magnitude of the force acting on the particle when $t = \frac{2}{3}s$ [8N]
- 10. A particle of mass 0.5kgmoves such that its displacement $r = \begin{pmatrix} 4sin2t \\ 2cost 1 \end{pmatrix}$ m. Find the
 - (a) velocity of the particle after $t = \frac{\pi}{6} s [(4i j)ms^{-1}]$
 - (b) force acting on the particle at any time t [(-8sin2ti -costj)N]
- 11. A particle of mass 2kg moves such that its displacement $r = (2 \cos 3t)I + (6\sin 2t)j$. Find the
 - (a) velocity of the particle at $t = \frac{\pi}{6}s[(3i + 6j)ms^{-1}]$
 - (b) force acting on the particle at $t = \pi s[-18N]$
- 12. A particle moves such that its displacement s = (2sint +sin2t)I + (4cost + cos2t)j. Find the
 - (a) velocity of the particle at $t = \frac{\pi}{3}s$ [-3 $\sqrt{3}jms^{-1}$]
 - (b) acceleration of the particle at $t = \frac{\pi}{2} s \left[(-2i + 4j) ms^{-2} \right]$

Integral calculus

If r, v or a are function of time t;

velocity, $v = \int adt + c$ and displacement, $r = \int vdt + c$

integration; acceleration => velocity => displacement

Example 5

The velocity of the particle $v = 3t^2i + 10tj$. Given that the displacement is 4i - 4j at t = 0. Find the distance of the body from the origin when t = 2s.

$$\begin{aligned} \mathbf{r} &= \int v dt + c \\ r_{(t=t)} &= \int (3t^2i + 10tj) dt + C \\ r_{(t=t)} &= t^3i + 5t^2j + C \\ At & t &= 0, r = 4i - 4j \end{aligned} \qquad \begin{aligned} r_{(t=t)} &= \left[(t^3 + 4)i + (5t^2 - 4)j \right] \\ \text{when } t &= 2s \\ r_{(t=2)} &= \left[(2^3 + 4)i + (5x2^2 - 4)j \right] = (12i + 16j)m \\ r_{(t=2)} &= \sqrt{12^2 + 16^2} = 20m \end{aligned}$$

A particle is accelerated from rest at the origin with an acceleration of (2t + 4)ms⁻². Find

(a) velocity attained after t = 2s

(b) distance travelled at t = 1s

Solution

Solution
$$v = \int adt + c \qquad v_{(t=t)} = 2t^2 + 4t \qquad 0 = \frac{0^3}{3} + 2x \ 0^2 + c$$

$$v = \int (2t + 4)dt + c \qquad v_{(t=2)} = 2x2^2 + 4x2 = 12\text{ms}^{-1} \qquad c = 0$$

$$v_{(t=t)} = 2t^2 + 4t + c \qquad r = \int vdt + c \qquad r_{(t=t)} = \int (2t^2 + 4t)dt + c$$

$$O = 2(0)^2 + 4(0) + c \qquad r_{(t=t)} = \frac{t^3}{3} + 2t^2 + c$$

$$O = 2(0)^2 + 4(0) + c \qquad r_{(t=t)} = \frac{t^3}{3} + 2t^2 + c$$

$$O = \frac{0^3}{3} + 2x \ 0^2 + c \qquad c = 0$$

$$r_{(t=t)} = \int vdt + c \qquad r_{(t=t)} = \frac{t^3}{3} + 2t^2$$

$$r_{(t=t)} = \frac{t^3}{3} + 2t^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{0}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O = \frac{1}{3} + 2x \ 0^2 + c$$

$$O$$

Example 7

A particle is accelerated from rest at the origin with acceleration of (4t + 2)I - 3j. Find

velocity attained after t = 3s

(ii) speed after 3s

Solution

$$v = \int adt + c$$

$$v = \int \{(4t + 2)i - 3j\}dt + c$$

$$v_{(t=t)} = (2t^2 + 2t)i - 3tj + c$$

$$t = 0, v = 0$$

$$0 = (2 \times 0^2 + 2 \times 0)i - 3 \times 0j + c$$

c = 0
$$v_{(t=t)} = (2t^2 + 2t)i - 3tj$$

$$v_{(t=3)} = (2 x 3^2 + 2 x 3)i - 3x 3j$$

$$= 24i - 9j$$

$$\text{Speed} = \left|v_{(t=3)}\right| = \sqrt{24^2 + (-9)^2} = 25.63 \text{ms}^{-1}$$

Example 8

A particle starts from origin (0, 0). Its acceleration in ms⁻² at time t seconds is given by a = 6ti -4j.

Find its speed after t =2s

$$v = \int adt + c$$

$$v = \int (6ti - 4j)dt + c$$

$$v_{(t=t)} = 3t^{2}i - 4tj$$

$$v_{(t=t)} = 3t^{2}i - 4tj + c$$

$$v_{(t=t)} = 3 \times 2^{2}i - 4 \times 2tj$$

$$= 12i - 8j$$

$$v_{(t=2)} = \sqrt{12^{2} + (-8)^{2}} = 14.42ms^{-2}$$
Example 9

Example 9

An object of mass 5kg is initially at rest at a point whose position vector is -2i+ j. If it is acted on by a force F = 2i + 3j - 4k. Find

(i) acceleration

$$F = ma$$

$$a_{(k+1)} = \frac{1}{2}(2i + 3i - 4k)ms$$

(ii) speed after t= 3s

$$v = \int adt + c$$

$$v_{(t=t)} = \frac{1}{5} \int (2i + 3j - 4k) + c$$
$$= \frac{1}{5} (2ti + 3tj - 4tk) + c$$

At
$$t = 0$$
, $v = 0$

(i) acceleration
$$F = ma$$

$$a_{(t=t)} = \frac{1}{5}(2i + 3j - 4k)ms^{-2}$$
(ii) speed after t = 3s
$$v = \int adt + c$$

$$v_{(t=t)} = \frac{1}{5}\int(2i + 3j - 4k) + c$$

$$= \frac{1}{5}(2ti + 3tj - 4tk) + c$$

$$= \frac{1}{5}(2ti + 3tj - 4tk) + c$$

$$At t = 0, v = 0$$
(iii) its distance from the origin after 3 seconds
$$r = \int vdt + c$$

$$v = \int vdt + c$$

$$r = \int v dt + c$$

$$r_{(t=t)} = \frac{1}{5} \int (2ti + 3tj - 4tk) + c$$

$$r_{(t=t)} = \frac{1}{5} (t^2i + 1.5t^2j - 2t^2k) + c$$

$$At t = 0, r = -2i + j$$

$$c = -2i + j$$

$$r_{(t=t)} = \frac{1}{5} \{ (t^2 - 10)i + (1.5t^2 + 5)j - 2t^2k \}$$

$$r_{(t=3)} = \frac{1}{5} ((3^2 - 10)i + (1.5 \times 3^2 + 5)j - 18k)$$

$$r_{(t=3)} = \frac{1}{5} (-i + 18.5j - 2 \times 3^2k)$$

$$|r_{(t=3)}| = \sqrt{(-1)^2 + (18.5)^2 + 18^2} = 5.166m$$

$$r_{(t=t)} = \frac{1}{5} \{ (t^2 - 10)i + (1.5t^2 + 5)j - 2t^2k \}$$

$$r_{(t=3)} = \frac{1}{5} ((3^2 - 10)i + (1.5 \times 3^2 + 5)j - 18k \}$$

$$= \frac{1}{5} (-i + 18.5j - 2 \times 3^2k)$$

$$|r_{(t=3)}| = \sqrt{(-1)^2 + (18.5)^2 + 18^2} = 5.166m$$

Example 10

A particle starts from rest at point (2, 0, 0) and moves such that its acceleration in ms-2 at time t seconds is given by a = [16cos4ti + 8sin2tj + (sint -2sin2t)k]ms⁻². Find the

(a) speed when
$$t = \frac{\pi}{4}$$
.
 $a = [16\cos 4ti + 8\sin 2tj + (\sin t - 2\sin 2t)k]ms^{-2}$
 $v = \int adt$
 $= \int [16\cos 4ti + 8\sin 2tj + (\sin t - 2\sin 2t)k]dt$
 $= [4\sin 4ti - 4\cos 2tj + (-\cos t + \cos 2t)k] + c$
At $t = 0$
 $0 = [4\sin 0i - 4\cos 0j + (-\cos 0 + \cos 0)k] + c$
 $0 = -4j + c$
 $c = 4j$
 $\Rightarrow v = [4\sin 4ti + (-4\cos 2t + 4)j + (-\cos t + \cos 2t)k]$
At $t = \frac{\pi}{4}$
 $\Rightarrow v = [4\sin \pi i + (-4\cos \frac{\pi}{2} + 4)j + (-\cos \frac{\pi}{4} + \cos \frac{\pi}{2})k]$
 $= 4j - \cos \frac{\pi}{4}k$
 $|v| = \sqrt{4^2 + (-\cos \frac{\pi}{4})^2} = \sqrt{16 + \frac{2}{4}} = \sqrt{16.5} = 4.062ms^{-1}$
(b) distance from the origin when $t = \frac{\pi}{4}$
 $s = \int vdt$

 $=\int [4\sin 4ti + (-4\cos 2t + 4)j + (-\cos t + \cos 2t)k]$

digitalteachers.co.ug

=-cos4ti +(-2sin2t + 4t)j + (-sint +
$$\frac{1}{2}sin2t$$
)k + c
At t = 0, s = 2i
By substitution
2i = -cos0 i +(-2sin0 + 4(0))j + (-sin0 + $\frac{1}{2}sin2$ (0))k + c
2i = -l + c
c = 3i
 \Rightarrow s = (-cos4t + 3)i +(-2sin2t + 4t)j + (-sint + $\frac{1}{2}sin2t$)k
At t = $\frac{\pi}{4}$
 \Rightarrow s = (-cos π + 3)i +(-2sin $\frac{\pi}{2}$ t + π)j + (-sin $\frac{\pi}{4}$ + $\frac{1}{2}sin\frac{\pi}{2}$)k
= 4i + (π -2)j + ($-\frac{\sqrt{2}}{2}$ + $\frac{1}{2}$)k
= 4i + 1.416j - 0.207k
|s|= $\sqrt{4^2$ + (1.416)² + (-0.207)²
= 4.24828
= 4.248 (3D)

Vector approach of finding work and power

Work done by a variable force is a dot product

W= F.d or
$$W_{(t=t)} = \int Fvdt$$

Since power, P = F.v

Example 11

A particle of mass 4kg starts frm rest at the origin. It is acted on by a force $F = (2ti + 3t^2j + 5k)N$ Find the work done by the force after 3 second

Solution

$$\begin{split} \mathbf{F} &= \mathbf{ma} \\ a_{(t=t)} &= \frac{1}{4}(2\mathbf{t}\mathbf{i} \ + \ 3\mathbf{t}^2\mathbf{j} \ + \ 5\mathbf{k}) \\ \mathbf{v} &= \int a dt + \mathbf{c} \\ v_{(t=t)} &= \frac{1}{4}\int(2\mathbf{t}\mathbf{i} \ + \ 3\mathbf{t}^2\mathbf{j} \ + \ 5\mathbf{k}) \, dt + c \\ v_{(t=t)} &= \frac{1}{4}(\mathbf{t}^2\mathbf{i} \ + \ \mathbf{t}^3\mathbf{j} \ + \ 5\mathbf{t}\mathbf{k}) + c \\ \mathbf{A}\mathbf{t} &= \mathbf{0}, \mathbf{v} &= \mathbf{0} \\ \mathbf{0} &= \frac{1}{4}(\mathbf{0}^2\mathbf{i} \ + \ \mathbf{0}^3\mathbf{j} \ + \ \mathbf{5} \ \mathbf{x} \ \mathbf{0}\mathbf{k}) + c \\ \mathbf{c} &= \mathbf{0} \end{split}$$

$$\begin{aligned} v_{(t=t)} &= \frac{1}{4} (t^2 i + t^3 j + 5 t k) \\ v_{(t=3)} &= \frac{1}{4} (3^2 i + 3^3 j + 5 x 3 k) \\ v_{(t=t)} &= \frac{1}{4} (9 i + 27 j + 15 k) \\ |v_{(t=t)}| &= \frac{1}{4} \sqrt{9^2 + 27^2 + 15^2} \\ &= \frac{1}{4} \sqrt{1,025} m s^{-1} \\ W_{(t=0 \ and \ t=3)} &= \frac{1}{2} m (v_{t=3}^2 - v_{t=0}^2) \\ &= \frac{1}{2} x 4 \left(\frac{1}{16} x 1,025 - 0 \right) = 129.375 J \end{aligned}$$

Alternatively

$$P_{(t=t)} = F.v$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{(t=t)}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{0}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{0}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{0}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{0}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{0}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{0}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{0}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{0}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{0}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{0}^{2} \left[\int_{0}^{2} (2t^{3} + 3t^{5} + 5t^{2}) dt \right]$$

$$= \int_{0}^{2} \left[\int_{$$

Example 12

A particle of mass 3kg moves along a straight line such that after t seconds its position vector is s

metres where s =
$$\begin{pmatrix} 25t + 4t^2 \\ 50 + 2t^2 \\ 15 + 3t^2 \end{pmatrix}$$
. Find

(a) Magnitude of force

Magnitude of force
$$v_{(t=t)} = \frac{ds}{dt} = \frac{d}{dt} \begin{pmatrix} 25t + 4t^2 \\ 50 + 2t^2 \\ 15 + 3t^2 \end{pmatrix} = \begin{pmatrix} 25 + 8t \\ 4t \\ 6t \end{pmatrix} ms^{-1}$$

$$a_{(t=t)} = \frac{dv}{dt} = \frac{d}{dt} \begin{pmatrix} 25 + 8t \\ 4t \\ 6t \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 6t \end{pmatrix} ms^{-2}$$

$$F = 3 \begin{pmatrix} 8 \\ 4 \\ 6 \end{pmatrix} = \begin{pmatrix} 24 \\ 12 \\ 18 \end{pmatrix}$$

$$|F| = \sqrt{12^2 + 12^2 + 18^2}$$

$$= 32.31N$$

(b) Power when t = 2s

$$\begin{split} P_{(t=t)} &= F. \, v \\ v_{t=2} &= \begin{pmatrix} 25 + 8 \, x \, 2 \\ 4 \, x \, 2 \\ 6 \, x \, 2 \end{pmatrix} = \begin{pmatrix} 41 \\ 8 \\ 12 \end{pmatrix} m s^{-1} \\ P_{(t=2)} &= \begin{pmatrix} 24 \\ 12 \\ 18 \end{pmatrix} \cdot \begin{pmatrix} 41 \\ 8 \\ 12 \end{pmatrix} = 1,296 m s^2 \end{split}$$

(c) Work done on the particle between t = 1s and t=2s

$$\begin{aligned} W_{(t=1 \text{ and } t=2)} &= \frac{1}{2} m(v_{t=2}{}^2 - v_{t=1}{}^2) \\ v_{(t=1)} &= \begin{pmatrix} 25 + 8 \text{ x1} \\ 4 \text{ x 1} \\ 6 \text{ x 1} \end{pmatrix} = \begin{pmatrix} 33 \\ 4 \\ 6 \text{ ms}^{-1} \\ 6 \text{ x 1} \end{pmatrix} = \begin{pmatrix} 33 \\ 4 \\ 6 \text{ ms}^{-1} \\ 6 \text{ ms}^{-1} \\ |v_{(t=1)}| &= \sqrt{33^2 + 4^2 + 6^2} = \sqrt{1141} \text{ms}^{-1} \\ |v_{(t=1)}| &= \sqrt{41^2 + 8^2 + 12^2} = \sqrt{1889} \text{ms}^{-1} \\ W_{(t=1 \text{ and } t=2)} &= \frac{1}{2} m(v_{t=2}{}^2 - v_{t=1}{}^2) \\ &= \frac{1}{2} \text{x 3 } (1889 - 1141) = 1122 \text{J} \end{aligned}$$

$$\text{Alternatively}$$

$$= \begin{pmatrix} 24 \\ 12 \\ 18 \end{pmatrix} \cdot \begin{pmatrix} 25 + 8t \\ 4t \\ 6t \end{pmatrix} = (600 + 348t) \\ W_{(t=1 \text{ and } t=2)} &= \int_{1}^{2} F. \ vdt \\ &= \int_{1}^{2} (600 + 348t) dt \\ &= (12000 + 696) - (6000 + 174) \\ &= 1122 \text{J} \end{aligned}$$

 $P_{(t=1)} = F.v$

A particle of mass 10kg starts from rest at a point A with position vector (4i + 3j + 2k)m. It is acted on by a constant force, F = (8i + 4j + 6k)N causing it to accelerate to B after 4s. Find the

(a) Magnitude of acceleration

F= ma
$$a_{(t=t)} = \frac{1}{10} ((8i + 4j + 6k))ms^{-2}$$

(b) velocity at any time t

$$\begin{split} v_{(t=t)} &= \int a dt + c \\ &= \frac{1}{10} \int (8\mathrm{i} + 4\mathrm{j} + 6\mathrm{k}) \, dt \\ v_{(t=t)} &= \frac{1}{10} (8ti + 4tj + 6tk) + c \\ \mathrm{At} \, t &= 0; \, \mathrm{v=0} \end{split}$$

(c) position vector point B

$$\begin{split} r_{(t=t)} &= \int v dt + c \\ r_{(t=t)} &= \frac{1}{10} \int (8ti + 4tj + 6tk) \, dt + c \\ r_{(t=t)} &= \frac{1}{10} \left(4t^2i + 2t^2j + 3t^2k \right) + c \\ \text{At } t &= 0 \text{, OA} = (4i + 3j + 2k) \\ (2i + 3j + 2k) &= \frac{1}{10} \left(4 \times 0^2i + 2 \times 0^2j + 3 \times 0^2k \right) + c \\ \text{c} &= (4i + 3j + 2k) \\ r_{(t=t)} &= \frac{1}{10} \left(4t^2i + 2t^2j + 3t^2k \right) + (4i + 3j + 2k) \\ r_{(t=t)} &= \frac{1}{10} \left\{ (4t^2 + 40)i + (2t^2 + 30)j + (3t^2 + 2)k \right\} \end{split}$$

(d) the displacement vector AB

$$OB_{(t=4)} = \frac{1}{10} \begin{pmatrix} 4 & x & 4^2 + 40 \\ 2 & x & 4^2 + 30 \\ 3 & x & 4^2 + 20 \end{pmatrix} = \begin{pmatrix} 10.4 \\ 3.2 \\ 6.8 \end{pmatrix} m$$

$$\overline{AB} = OB - OA = \begin{pmatrix} 10.4 \\ 3.2 \\ 6.8 \end{pmatrix} - \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 6.4 \\ 3.2 \\ 4.8 \end{pmatrix} m$$

(e) work done by the force F after 4s

$$W_{(t=4)} = F.r = \begin{pmatrix} 8 \\ 4 \\ 6 \end{pmatrix}. \begin{pmatrix} 6.4 \\ 3.2 \\ 4.8 \end{pmatrix} = 92.8J$$

Alternative 1

$$v_{(t=4)} = \frac{1}{10} {8 \times 4 \choose 4 \times 4} = {3.2 \choose 1.6 \choose 2.4} ms^{-1}$$

$$v_{(t=4)} = \sqrt{3.2^2 + 1.6^2 + 2.4^2} = \sqrt{18.56} ms^{-1}$$

$$W_{(t=0 \text{ and } t=4)} = \frac{1}{2} m (v_{(t=4)}^2 - v_{(t=0)}^2)$$

$$= \frac{1}{2} x \cdot 10(18.56 - 0) = 92.8 J$$

$$|a_{(t=t)}| = \frac{1}{10}\sqrt{8^2 + 4^2 + 6^2}$$

= 1.077ms⁻²

$$0 = \frac{1}{10} (8 \times 0i + 4 \times 0j + 6 \times 0k) + c$$

$$c = 0$$

$$v_{(t=t)} = \frac{1}{10} (8ti + 4tj + 6tk)$$

Alternative 2

 $P_{(t=t)} = F.v$

$$P_{(t=t)} = \begin{pmatrix} 8 \\ 4 \\ 6 \end{pmatrix} \cdot \frac{1}{10} \begin{pmatrix} 8t \\ 4t \\ 6t \end{pmatrix} = 11.6t$$

$$W_{(t=0 \text{ and } t=4)} = \int F \cdot v dt = \int_0^4 11.6t dt$$

$$= [5.8t^2]_0^4$$

$$= [5.8 \times 4^2 - 0]$$

= 92.8J

A particle move along a curve such that after t seconds its position vector is r where $\mathbf{r} = \begin{pmatrix} t+1 \\ \frac{10}{3}t^3 - 6 \\ 4 - \frac{3}{2}t^2 \end{pmatrix}$.

The particle is acted on by a force $F = (2ti + t^2j - 2tk)N$. Find

(a) Power at any time t.

$$v_{(t=t)} = \frac{dr}{dt} = \frac{d}{dt} \begin{pmatrix} t+1\\ \frac{10}{3}t^3 - 6\\ 4 - \frac{3}{2}t^2 \end{pmatrix} = \begin{pmatrix} 1\\ 10t^2\\ -3t \end{pmatrix} ms^{-1}$$

$$P_{(t=t)} = F.v = \begin{pmatrix} 2t \\ t^2 \\ -2t \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 10t^2 \\ -3t \end{pmatrix} = 2t + 10t^4 + 6t^2$$

(b) work done by the force in the interval t = 1s and t = 3s

$$W_{(t=1 \text{ and } t=3)} = \int_{1}^{3} F. v dt = \int_{1}^{3} 2t + 10t^{4} + 6t^{2} dt$$
$$= [t^{2} + 2t^{3} + 2t^{5}]_{1}^{3}$$

$$W = (9 + 54 + 486) - (1 + 2 + 2) = 544J$$

Example 15

A particle of mass 2kg has a displacement vector $\mathbf{s} = \begin{pmatrix} 2t^2 \\ 4t \\ 8t^3 \end{pmatrix}$ m and a force $\mathbf{F} = \begin{pmatrix} 3t \\ 4t^3 \\ 5t \end{pmatrix} N$. Find

(a) work done at t = 2s

W = F.v

$$W_{(t=t)} = \begin{pmatrix} 3t \\ 4t^3 \\ 5t \end{pmatrix} \cdot \begin{pmatrix} 2t^2 \\ 4t \\ 8t^3 \end{pmatrix} = (6t^3 + 56t^4)J$$

$$W_{(t=2)} = (6 \times 2^3 + 56 \times 2^4) = 944J$$

(b) Power when t = 4s

$$v_{(t=t)} = \frac{ds}{dt} = \frac{d}{dt} {2t^2 \choose 4t} = {4t \choose 4} ms^{-1}$$

$$P_{(t=t)} = F. v = {3t \choose 4t^3}. {4t \choose 4} = (12t^2 + 136t^3)W$$

$$P_{(t=4)} = (12x 4^2 + 136x 4^3)W = 8,896W$$

Example 16

- 1. A force F = (2t i + j 3t k)N acts on a particle of mass 2kg. The particle is initially at a point (0,0,0) and moving with a velocity $(i + 2j-k)ms^{-1}$. Determine the:
 - (a) Magnitude of the acceleration of the particle after 2 seconds (04marks)

$$F = (2t i + j - 3t k) = \begin{pmatrix} 2t \\ 1 \\ -3t \end{pmatrix} N$$

$$a = \frac{F}{m} = \frac{1}{2} {2t \choose 1} = {t \choose 0.5 \choose -1.5t} ms^{-1}$$
At t = 2s
$$\underline{a} = 2i + 0.5j - 3k$$

$$|\underline{a}| = \sqrt{2^2 + 0.5^2 + (-3)^2} = 3.64 ms^{-2}$$

(b) Velocity of the particle after 2seconds (04marks)

Velocity of the particle after 2seconds (04marks)
$$\underline{v} = \int \underline{a}dt = \int \begin{pmatrix} t \\ 0.5 \\ -1.5t \end{pmatrix} dt = \begin{pmatrix} 0.5t^2 \\ 0.5t \\ -7.5t^2 \end{pmatrix} + C$$
At t = 0 initial velocity = (i + 2j -k)
$$\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + C \Rightarrow C = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
At t = 2s
$$\frac{v}{v} = \begin{pmatrix} 0.5t^2 + 1 \\ 0.5t + 2 \\ -7.5t^2 - 1 \end{pmatrix}$$
At t = 2s
$$\frac{v}{v} = \begin{pmatrix} 0.5(2)^2 + 1 \\ 0.5(2) + 2 \\ -7.5(2)^2 - 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix} ms^{-1}$$

(c) Displacement of the particle after 2 seconds (04marks)

$$\underline{r} = \int \underline{v} dt \int \begin{pmatrix} 0.5t^2 + 1 \\ 0.5t + 2 \\ -7.5t^2 - 1 \end{pmatrix} dt = \begin{pmatrix} \frac{t^3}{6} + t \\ \frac{t^2}{4} + 2t \\ -t - \frac{t^3}{4} \end{pmatrix} + C$$

$$C = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + C$$

$$\underline{r} = \begin{pmatrix} \frac{t^3 + t}{t^2 + 2t} \\ -t - \frac{t^3}{4} \end{pmatrix}$$

$$\underline{r} = \begin{pmatrix} \frac{t^3 + t}{t^2 + 2t} \\ -t - \frac{t^3}{4} \end{pmatrix}$$

$$\underline{r} = \begin{pmatrix} \frac{2^3}{6} + 2 \\ \frac{2^2}{4} + 2x2 \\ -2 - \frac{2^3}{4} \end{pmatrix} = \begin{pmatrix} \frac{10}{3} \\ 5 \\ -4 \end{pmatrix} m$$

Example 17

1. A particle of mass 4kg starts from rest at point (2i- 3j + k)m. it moves with acceleration a= (4i + 2j -3k)ms⁻² when a constant force F acts on it. Find the:

(a) Force F (02marks)

$$= 4 \begin{pmatrix} 4 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 16 \\ 8 \\ -12 \end{pmatrix}$$
N or F = (16i + 8j -12k)N

(b) Velocity at any time t. (04marks)

$$v = \int adt$$

$$v = at + c$$

$$= \begin{pmatrix} 4 \\ 2 \\ -3 \end{pmatrix} t + c$$

$$At time t = 0, v = u = c = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
Substituting for c
$$v = \begin{pmatrix} 4 \\ 2 \\ -3 \end{pmatrix} t = \begin{pmatrix} 4t \\ 2t \\ -3t \end{pmatrix} ms^{-1}$$
or $v = (4t i + 2t j - 3t k)ms^{-1}$

(c) Work done by the force F after 6 seconds (06marks) Work done = force (F) x distance (r)

$$\underline{r} = \int vdt = \int \begin{pmatrix} 4t \\ 2t \\ -3t \end{pmatrix} dt = \begin{pmatrix} 2t^2 \\ t^2 \\ -1.5t^2 \end{pmatrix} + c$$

$$\underline{r} = \begin{pmatrix} 2(6)^2 \\ (6)^2 \\ -1.5(6)^2 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 74 \\ 33 \\ -53 \end{pmatrix}$$

$$At \ t = 0, \underline{r} = c = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$

$$Hence \ \underline{r} = \begin{pmatrix} 2t^2 \\ t^2 \\ -1.5t^2 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 16 \\ 8 \\ -12 \end{pmatrix} x \begin{pmatrix} 74 \\ 33 \\ -53 \end{pmatrix}$$

After time t= 6seconds

$$\underline{r} = \begin{pmatrix} 2(6)^2 \\ (6)^2 \\ -1.5(6)^2 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 74 \\ 33 \\ -53 \end{pmatrix}$$

$$= \begin{pmatrix} 16\\8\\-12 \end{pmatrix} x \begin{pmatrix} 74\\33\\-53 \end{pmatrix}$$

= 1184 + 264 + 636 = 2,084J

Revision exercise

- 1. A particle of mass 3kg is acted on by a force F = (24t3i + (36t -16)j + 12k)N at time t. at time t = 0, the particle is at the pint with position vector (3, -1, 4) and moving with velocity (16i + 15j -8k)ms⁻¹. Determine the
 - (i) acceleration of the particle at time t= 2s. [28.4253ms⁻²]
 - speed of the particle at t= 2s [42.9534ms⁻¹] (ii)
 - distance of the particle from the origin at t = 2s [56.5155m]
- 2. A particle of mass 4kg is acted on by a force $F = (6i 36t^2j + 54tk)N$ at time t. At time t = 0, the particle is the point with position vector (i -5j -k) and it velocity is (3i + 3j)ms⁻¹. Determine the
 - (a) position vector of the particle a time t = 1s. $\begin{pmatrix} 5 \\ -3 \end{pmatrix}$ m.
 - (b) Distance of the particle from the origin a time t = 1s [6.1644m]
- 3. The acceleration f a particle is 6ti + 2j. Given that the velocity is (4i –j)ms⁻¹ and displacement is (2i + 3j)m when t = 1s. Find the displacement when t = 3s [(30i + 5j)m]
- 4. If the velocity of a particle is $4\cos 2ti + 2\sin 2tj$, given the displacement is 6i 2j when $t = \frac{\pi}{4}s$. Find the distance of the body from the origin when $t = \pi s$. [5m]
- 5. If the acceleration of a particle is 9sin3ti + 2costj and the body id initially at rest. Find its velocity when t = $\frac{\pi}{6}$ s. [(3i +j)ms⁻¹]
- 6. If the acceleration of a particle is 6sin6ti + 9cos3tj, given that the velocity is (i + 3j)ms⁻¹ and displacement is (5i +2j)m when t = $\frac{\pi}{6}$ s. Find the displacement when t = $\frac{\pi}{6}$ s. [(5i +3j)m]
- 7. If the acceleration of the particle is 6ti + 6j -2k, given that the velocity is (3i + 6j -3k)ms⁻¹ and displacement is (2i + 5j -2k)m when t =1s. Find
 - (a) velocity when $t = 2s [(12i + 12tj 5k)ms^{-1}]$
 - (b) displacement when t = 3s [(28i + 29i 12k)m]
- 8. If the acceleration f a particle is 2i +6j + 12t²k, given that the velocity is (3i + k)ms⁻¹ and displacement is (-i + k)m when t = 1s. Find the
 - velocity when t = 2s [(-i + 3j + 5k)]
 - displacement when t = 2s [(-3i + 8j + 19k)m](ii)
- 9. If the acceleration of a particle is (6ti 2k)ms⁻², given that the velocity is (i + 12j -4k)ms⁻¹ and the displacement is (3i + 6j)m when t = 2s, Find the
 - velocity when $t = 4s [37i + 12j -8k)ms^{-1}$ (i)
 - displacement when t = 3s [11i + 18j 5k)m(ii)

- 10. The velocity of a particle $v = 4t^3i + 6tj 3t^2k$. Given that the displacement is 14i + 6j-3k at t = 1s. Find the
 - (i) acceleration when $t = 5s [(108i + 6j 18k)ms^{-2}]$
 - (ii) displacement when t = 0 [(13i + 3j 2k)m]
- 11. The velocity of a particle $v = (3t^2i 10t)i + 2j 6tk$. Given that the displacement is -9i + 3j 13k at t = 2s. Find the
 - (i) acceleration when $t = 5s [(20i 6k)ms^{-2}]$
 - (ii) displacement when t = 3s [15i + 5j -28k]m
- 12. The particle starts from rest at the origin moving with velocity of $v = \begin{pmatrix} 2cos2t + 11 \\ 3sin3t \\ 4 \end{pmatrix}$. Find the
 - (i) speed when $t = \frac{\pi}{6} s$. [13ms⁻¹]
 - (ii) displacement when $t = \frac{\pi}{2} s$. [(1.5 π i + j -2 π k)m]
 - (iii) acceleration when $t = \pi s$ [9jms⁻²]

Thank you

Dr. Bbosa Science