Work, energy and power

Work done by constant force

Work is said to be done when energy is transferred from one system to another
When a block of mass $m(k g)$ rests on a smooth horizontal surface. When a constant force $F(N)$ acts on the block and displace it by a distance $s(m)$, then the work done by F is given by
$W=F s$

Example 1

Find the work done against gravity when a body of mass 5 kg is moved through a vertical distance of 2 m .

Solution
$\mathrm{W}=\mathrm{Fs}=\mathrm{mgs}$

$$
W=5 \times 9.8 \times 2=98
$$

Example 2

A man building a wall lifts 50 bricks through a vertical distance of 3 m . If each brick has a mass 4 kg . how much does the man do against gravity

Solution
$\mathrm{W}=\mathrm{Fs}=\mathrm{mgs}$

$$
W=50 \times 4 \times 9.8 \times 3=5880 \mathrm{~J}
$$

Example 3

A body of mass 2 kg is moved vertically upwards at constant speed of $5 \mathrm{~ms}^{-1}$. Find how much work is done against gravity in each second.

Solution
$\mathrm{W}=\mathrm{Fs}=\mathrm{mgs}$

$$
W=2 \times 9.8 \times 5 \times 1=98 \mathrm{~J}
$$

Example 4

A horizontal force pulls a body of mass 5 kg a distance of 8 m across a rough horizontal surface, coefficient of friction 0.25 . The body moves with uniform velocity, find the work done against friction.

Solution
$W=F s=m g s$

$$
W=0.25 \times 5 \times 9.8 \times 8=98 \mathrm{~J}
$$

Example 5

A rough surface is inclined at $\tan ^{-1}\left(\frac{7}{24}\right)$ to the horizontal. A body of mass 5 kg lies on the surface and is pulled at uniform speed of $75 \mathrm{cms}^{-1}$ up the surface by a force acting along a line of greatest slope. The coefficient of friction between the body and the surface is $\frac{5}{15}$. Find
(a) work done against gravity
(b) work done against friction

Solution

$\theta=\tan ^{-1}\left(\frac{7}{24}\right)=16.3^{0}$
(a) work against gravity

$$
\begin{aligned}
\mathrm{W} & =\mathrm{mg} \sin \theta \mathrm{~d} \\
& =5 \times 9.8 \sin 16.3^{\circ} \times \frac{75}{100}=10.35 \mathrm{~J}
\end{aligned}
$$

(b) work against friction

$$
\begin{aligned}
W & =\mu R d \text { but } R=m g \cos \theta \\
& =\frac{5}{12} \times 5 \times 9.8 \cos 16.3^{\circ} \times \frac{75}{100}=14.71 \mathrm{~J}
\end{aligned}
$$

Example 6

A particle of mass 15 kg is pulled up a smooth slope by a light inextensible string parallel to the slope. The slope is 10.5 m long and inclined at $\sin ^{-1}\left(\frac{4}{7}\right)$ to the horizontal. The acceleration of the particle is $0.98 \mathrm{~ms}^{-2}$. Determine the
(a) Tension in the string (03marks)

(b) Work done against gravity when the particle reached the end of the slope. (02marks)

Work = force x distance

$$
\begin{aligned}
& =15 \mathrm{gd} \sin \theta \\
& =15 \times 9.8 \times 10.5 \times \frac{4}{7} \\
& =882 \mathrm{~J}
\end{aligned}
$$

Revision exercise

1. Find the work done against gravity when a body of mass 1 kg is raised through a vertical distance of 3 m . [29.4J]
2. Find the work done against gravity when a person of mass 80 kg climbs a vertical distance of 25m. [19600J]
3. A body of mass 200 g is moved vertically upwards at a constant speed of $2 \mathrm{~ms}^{-1}$. Find how much work is done against gravity in each second. [3.92J]
4. A body of mass 10 kg is pulled a distance of 20 m across a horizontal surface against resistance totalling 40 N . If the body moves with a uniform velocity, find the work done against the resistance. [800J]
5. A horizontal force pulls a body of mass 3 kg a distance of 20 m across a rough horizontal surface, coefficient of friction $\frac{2}{7}$. The body moves with a uniform velocity and the only resistance is that due to friction. Find the work done.[168J]
6. A horizontal force drags a body of mass 4 kg a distance of 10 m across a rough horizontal floor at a constant speed. The work done against friction is 49J. Find the coefficient of friction between the body and the surface. [0.125]
7. A block of mass 15 kg rests on a smooth plane inclined at an angle of 30° to the horizontal. The block is pulled at a uniform speed a distance of 10 m up the line of greatest slope. Find the work done against gravitation force. [735J]
8. A surface inclined at $\tan ^{-1}\left(\frac{3}{4}\right)$ to the horizontal. A body of mass 50 kg lies on the surface and pulled at uniform speed a distance of 5 m to the line of greatest slope against a resistance to totalling 50N. Find
(a) work done against gravity [1470J]
(b) work done against friction [250J]
9. A rough surface inclined at $\tan ^{-1}\left(\frac{5}{12}\right)$ to the horizontal. A body of mass 130 kg lies on the surface and is pulled at uniform speed a distance of 50 m up the surface by a force acting along a line of greatest slope. The coefficient of friction between the body and the surface if $\frac{2}{7}$. Find
(a) the frictional force acting [336N]
(b) work done against friction[16800J]
(c) work done against gravity [24500J]
10. A rough surface is inclined at 30° to the horizontal. A body of mass 100 kg lies on the surface and is pulled at a uniform speed a distance of 20 m up the surface by a force acting along a line of greatest slope. The coefficient of friction between the body and the surface is 0.1 . Find
(a) work done against friction [1700J]
(b) work done against gravity. [9800J]
11. A rough surface is inclined at $\tan ^{-1}\left(\frac{3}{4}\right)$ to the horizontal. A body of mass 50 kg lies on the surface and is pulled at a uniform speed a distance of 15 m up the surface by a force acting along a line of greatest slope. The coefficient of friction between the body and the surface is $\frac{1}{3}$. Find the total work done on the body. [6370J]
12. A rough surface is inclined at an angle θ to the horizontal. A body of mass mkg lie on the surface and is pulled at a uniform speed by a force acting along a lines of greatest slope. The coefficient of friction between the body and the surface is μ. show that the total work done on the body is $m g x(\sin \theta+\mu \cos \theta)$

Work - energy theorem

It state that the work done by the net force acting on a body is equal to the change in its energy. Consider a body of mass m accelerated from velocity, u by a constant force, F so that in a distance, s it gains velocity, v.
$\mathrm{a}=\frac{v^{2}-u^{2}}{2 s}$
resultant force $=\mathrm{ma}=\frac{m\left(v^{2}-u^{2}\right)}{2 s}$

$$
\begin{aligned}
& \mathrm{W}=\frac{m\left(v^{2}-u^{2}\right)}{2 s} x s=\frac{m\left(v^{2}-u^{2}\right)}{2} \\
& \mathrm{~W}=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2} \text { work - energy theorem }
\end{aligned}
$$

But work done $=\mathrm{Fxs}$

Example 7

A constant force pushes a mass of 4 kg in a straight line across a smooth horizontal surface. The body passes a point A with speed of $5 \mathrm{~ms}^{-1}$ and then through a point B with a speed of $8 \mathrm{~ms}^{-1}$. B is 6 m from A. Find the magnitude of force acting on the mass.
$\mathrm{a}=\frac{v^{2}-u^{2}}{2 s}=\frac{8^{2}-5^{2}}{2 \times 6 s}=3.25 \mathrm{~ms}^{-2}$
$\mathrm{F}=\mathrm{ma}=4 \times 3.25=13 \mathrm{~N}$
Alternatively
$\mathrm{W}=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$
$\mathrm{F} \times 6=\frac{1}{2} \times 4\left(8^{2}-5^{2}\right)$
$F=13 N$

Example 8

A car of mass 1000 kg moving at $50 \mathrm{~ms}^{-1}$ skids to rest in 4 s under a constant retardation. Calculate the magnitude of the work done by the force of friction

Using $v=u+a t$
$0=50+4 a$
$a=-12.5 \mathrm{~ms}^{-2}$
Frictional force $=\mathrm{ma}$
$=1000 \mathrm{x}-12.5=1250 \mathrm{~N}$

$$
\begin{aligned}
s & =u t+1 / 2 \text { at2 } \\
s & =50 \times 4+1 / 2 \times-12.5 \times 4^{2} \\
& =100 \mathrm{~m} \\
W & =F \times s=1250 \times 100 \\
& =125000 \mathrm{~J}
\end{aligned}
$$

Example 9

A body of mass 4 kg is moving with an initial velocity of $4 \mathrm{~ms}-1$ on a plane. The kinetic energy of the body is reduced by 16 J in a distance of 40 m . Find the deceleration of the body
$\mathrm{W}=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$
$16=\frac{1}{2} \times 4\left(5^{2}-v^{2}\right)$

$$
\begin{aligned}
& \mathrm{v}^{2}=17 \\
& \mathrm{a}=\frac{v^{2}-u^{2}}{2 s}=\frac{17-5^{2}}{2 \times 40}=-0.1 \mathrm{~ms}^{-2}
\end{aligned}
$$

Example 10

A body of mass 5 kg moves in a straight line across a horizontal surface against a constant resistance of magnitude 10 N . The body passes through point A and then comes to rest at point $B, 9 m$ from A. Find the speed of the body when it is at A.

$\mathrm{F}=\mathrm{ma}$	$0^{2}=\mathrm{u}^{2}+2 \times-2 \times 9$	u
$-10=5 \mathrm{a}$	$\mathrm{u}=6 \mathrm{~ms}^{-2}$	$10 \times 9=\frac{1}{2} \times 5\left(u^{2}-0^{2}\right)$
$\mathrm{a}=-2 \mathrm{~ms}^{-2}$	Or	
$\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{a}=6 \mathrm{~ms}^{-2}$		
	$\mathrm{~W}=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$	

Example 11

A body of mass 5 kg slides over a rough horizontal surface. in sliding 5 m , the speed of the body decreases from $8 \mathrm{~ms}-1$ to 6 ms -1, find
(a) Frictional force

$\mathrm{W}=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$	$\mathrm{~F}=\mu \mathrm{R}$	$\mathrm{a}=\frac{v^{2}-u^{2}}{2 s}=\frac{6^{2}-8^{2}}{2 \times 5}$
$\mathrm{~F} \times 5=\frac{1}{2} \times 5\left(8^{2}-6^{2}\right)$	$\mu=\frac{14}{5 \times 9.8}=0.286$	$=-2.8 \mathrm{~ms}^{-2}$
$\mathrm{~F}=14 \mathrm{~N}$	Alternatively; $\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$	$\mathrm{F}=\mathrm{ma}=5 \times 2.8=14 \mathrm{~N}$

Example 12

A bullet of mass 15 g is fired towards a fixed wooden block and enters the block when travelling horizontally at $400 \mathrm{~ms}^{-1}$. It comes to rest after penetrating a distance of 25 cm . Find the
(i) work done against resistance of the wood

$$
\mathrm{W}=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}=\frac{1}{2} x 0.015\left(400^{2}-0^{2}\right)=1200 \mathrm{~J}
$$

(ii) magnitude of resistance

$$
\begin{aligned}
& W=F \times s \\
& 1200=F \times 0.25
\end{aligned}
$$

$$
F=4800 \mathrm{~N}
$$

Example 13

A particle of mass 5 kg falls vertically against a constant resistance. The particle passes through two point A and $B 2.5 \mathrm{~m}$ apart with A above B. Its speed is $2 \mathrm{~ms}^{-1}$ when passing through A and $6 \mathrm{~ms}^{-1}$ when passing through B. Find the magnitude of the resistance.
$\mathrm{W}=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$

$$
(5 g-R) \times 2.5=\frac{1}{2} \times 5\left(6^{2}-2^{2}\right)
$$

$$
R=17 N
$$

Inclined Planes

Example 14

A rough slope of length 5 m is inclined at angle 30° to the horizontal. A body of mass 2 kg is released from rest at the top of the slope and travels down the slope against a constant resistance. The body reaches the bottom of the slope with speed of $2 \mathrm{~ms}^{-1}$, find the magnitude of the resistance.

$$
\begin{aligned}
& \mathrm{W}=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2} \\
& \left(2 \mathrm{~g} \sin 30-\mathrm{R}_{1}\right) \times 5=\frac{1}{2} \times 2\left(2^{2}-0^{2}\right) \\
& \mathrm{R}_{1}=9 \mathrm{~N}
\end{aligned}
$$

Example 15

A car of mass 1600 kg slides down a hill of slope 1 in 25 . When the car descends 200 m along the hill its speed increases from $3 \mathrm{~ms}^{-1}$ to $10 \mathrm{~ms}^{-1}$. Calculate
$\Delta K . E=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$

$$
=\frac{1}{2} \times 1600\left(10^{2}-3^{2}\right)=72800 \mathrm{~J}
$$

$$
a=\frac{v^{2}-u^{2}}{2 \times s}=\frac{10^{2}-3^{2}}{2 \times 200}=0.228 \mathrm{~ms}^{-2}
$$

$F=m a$
$1600 g \sin \theta-R_{1}=1600 a$
$\mathrm{R} 1=1600 \times 9.8 \times \frac{1}{25}-1600 \times 0.228$
$=262.4 \mathrm{~N}$
$\mathrm{OR} ; \mathrm{W}=\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}$
$\left(1600 g \sin \theta-\mathrm{R}_{1}\right) \times 200=\frac{1}{2} \times 1600\left(10^{2}-3^{2}\right)$
$R=262.4 \mathrm{~N}$

Revision exercise 2

1. A carton of mass 0.4 kg is thrown across a table with velocity of $25 \mathrm{~ms}-1$. The resistance of the table to its motion is 50 N . How far will it travel before coming to rest? What must the resistance be if it travels only 2 m ? [$2.5 \mathrm{~m}, 62.5 \mathrm{~N}$]
2. A and B are two points 4 m apart on a smooth horizontal surface. A body of mass 2 kg is initially at rest at A and is pushed by a force of constant magnitude acting in direction from a to B. The body reaches B with speed of $4 \mathrm{~ms}^{-1}$. Find the magnitude of force [4N]
3. A and B are two points 3 m apart on a smooth horizontal surface. A body of mass 6 kg is initially at rest at A and is pushed towards B with a constant force of 9 N . Find the speed of the body when it reaches B. [$3 \mathrm{~ms}^{-1}$]
4. A constant force of magnitude 8 N pushes a body of mass 4 kg in a straight line across a smooth horizontal surface. The body passes through a point a with speed of $4 \mathrm{~ms}^{-1}$ and then through appoint B 5 m from A. Find the speed of the body at B. [6ms ${ }^{-2}$]
5. A particle of mass 100 g moves in a straight line across a horizontal surface against of constant magnitude. The particle passes through a point A with a speed of $7 \mathrm{~ms}^{-1}$ and then through B with speed of $3 \mathrm{~ms}^{-1}$, B being 2 m from A . Find the magnitude of resistance. [1N]
6. A and B are two points 15 m apart in the same vertical line, with A above B. A body of mass 5 kg is released from rest at A and falls vertically against constant resistance of 25 N . Find the speed of the body when it passes B. [$12 \mathrm{~ms}^{-1}$]
7. A particle of mass 6 kg is released from rest and falls freely under gravity. Find its speed when it has fallen a distance of 90 m . [42ms-1]
8. A particle of mass 6 kg is released from rest and falls freely under gravity. Find the distance it has fallen when its speed is $7 \mathrm{~ms}^{-1}$. [2.5 m]
9. A body of mass 3 kg is projected vertically upwards from a point A with speed $4 \mathrm{~ms}^{-1}$. The body passes through a point $B 5 \mathrm{~m}$ below A. Find the speed at B. [10.7 ms^{-1}]
10. A particle of mass 2 kg falls vertically against a constant resistance of 14 N . The particle passes through two points A and B with a speed of $3 \mathrm{~ms}^{-1}$ and $10 \mathrm{~ms}^{-1}$ respectively. The distance $A B$. [16.25m]
11. A bullet of mass 8 g is fired towards a fixed wooden block and enters the block when travelling horizontally at $300 \mathrm{~ms}^{-1}$. How far does the bullet penetrate if the wood provide a constant resistance of 1800 N . [20 cm]
12. A bullet of mass 50 g travelling horizontally at $100 \mathrm{~ms}^{-1}$ strikes a stationary block of wood and coming to rest through a distance of 5 m . Calculate the average resistance of the block to the motion of the bullet. [50N]
13. A bullet of mass 50 g travelling horizontally at $500 \mathrm{~ms}^{-1}$ strikes a stationary block of wood and after travelling 10 cm , it emerges from the block travelling at $100 \mathrm{~ms}^{-1}$. Calculate the average resistance of the block to the motion of the bullet. [60000N]
14. A bullet of mass 20 g travelling horizontally at $210 \mathrm{~ms}^{-1}$ strikes a stationary block of wood of thickness 0.1 m and emerges from the block travelling at $50 \mathrm{~ms}^{-1}$. Calculate the average resistance of the block to the motion of the bullet.[4160N]
15. A smooth slope is inclined at $\tan ^{-1}\left(\frac{3}{4}\right)$ to the horizontal. A block of mass 4 kg is released from rest at the top of the slope and travels down the slope, reaching the bottom of the slope with speed of $7 \mathrm{~ms}^{-1}$, find the length of the slope. [4.17 m]
16. A point A is situated at the bottom of a smooth slope inclined at an angle of $\tan ^{-1}\left(\frac{5}{12}\right)$ to the horizontal. A body is projected from A with a speed of $14 \mathrm{~ms}-1$ along and up a line of greatest slope and the body comes to rest at a point B. Find distance AB. [26cm]
17. A rough slope of length 10 m is inclined at an angle of $\tan ^{-1}\left(\frac{3}{4}\right)$ to the horizontal. A block of mass 50kgis released from rest at the top of the slope and travels down the slope, reaching the bottom of the slope with speed of $8 \mathrm{~ms}^{-1}$, find the
(i) magnitude of the friction force. [134N]
(ii) work done by friction force. [1340J]
(iii) coefficient of friction [0.342]
18. Point A is situated at the bottom of a rough slope of length 10 m is inclined at angle of $\tan ^{-1}\left(\frac{3}{4}\right)$ to the horizontal. A body is projected from A with a speed of $14 \mathrm{~ms}-1$ along and up a line of greatest slope. The coefficient of friction between the body and the plane is 0.25 . The body first comes to rest at point B. Find the distance. [12.5m]

Power

Power is the rate of doing work

$$
\begin{array}{l|l|l}
\text { Power }=\frac{\text { work done }}{\text { time }} & \mathrm{P}=F \times \frac{d}{t} \\
\mathrm{P}=\frac{F x d}{t} & \mathrm{P}=\mathrm{Fxv}
\end{array} \quad \mathrm{~F}=\frac{P}{v}
$$

Example 16

What is the average rate at which work must be done in lifting a mass of 100 kg a vertical distance of 5 m in 7 s .

$$
\mathrm{P}=\frac{F \times d}{t}=\frac{100 \times 9.8 \times 5}{5}=700 \mathrm{~W}
$$

Example 17

What is the rate at which work must be done lifting mass of 500 kg at constant speed of $3 \mathrm{~ms}^{-1}$? $P=F \times v=500 \times 9.8 \times 3=14700 W$

Motion of cars

Consider a car being driven along a road, the forward or tractive force F_{T} moves the car is supplied by the engine working at constant rate of P watts.

$$
\begin{array}{l|l|l}
\text { Power }=\frac{\text { work done }}{\text { time }} & \mathrm{P}=F_{T} x \frac{d}{t} \\
\mathrm{P}=\frac{F_{T} x d}{t} & \mathrm{P}=\mathrm{F}_{\mathrm{T}} \times \mathrm{v}
\end{array} \quad \mathrm{~F}_{\mathrm{T}}=\frac{P}{v}
$$

Example 18

A cyclist travels along a road at constant speed of $8 \mathrm{~ms}^{-1}$. If the resistance to motion is 50 N , find the rate at which the cyclist is working.
Solution
$\mathrm{F}=\mathrm{ma}$ at constant speed $\mathrm{a}=0 \mathrm{~ms}-2$
$\mathrm{F}-\mathrm{R}=\mathrm{m} \times 0$

$$
\begin{aligned}
& \frac{P}{8}-50=0 \\
& P=400 W
\end{aligned}
$$

Example 19

A car of mass 800 kg is driven along a level road against a constant resistance to motion of 200 N . With the engine working at a steady rate of 14 kW , find
(i) acceleration of the car when its speed is $10 \mathrm{~ms}-1$
(ii) maximum speed at which the car can move

Solution
(i) $\begin{aligned} & \mathrm{F}=\mathrm{ma} \\ & \\ & \mathrm{F}_{\mathrm{T}}-\mathrm{R}=\mathrm{m} \times a\end{aligned}$

$$
\begin{aligned}
& \frac{14000}{10}-200=800 a \\
& a=1.5 \mathrm{~ms}^{-1}
\end{aligned}
$$

(ii) $\quad \mathrm{F}=\mathrm{ma}$ at maximum speed $\mathrm{a}=0$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{T}}-\mathrm{R}=\mathrm{m} \times \mathrm{a} \\
& \frac{14000}{v}-200=800 \times 0 \\
& v=70 \mathrm{~ms}^{-1}
\end{aligned}
$$

Example 20

A car of mass 500 kghas an engine of maximum power 2.5 kW
(a) Calculate the force resisting the motion of the car when it is travelling at its maximum speed of $72 \mathrm{kmh}^{-1}$ on a level road.
$72 \mathrm{kmh}^{-1}=\frac{72 \times 1000}{3600}=20 \mathrm{~ms}^{-1}$
$\mathrm{F}=\mathrm{ma}$
$\mathrm{F}_{\mathrm{T}}-\mathrm{R}=\mathrm{m} \times \mathrm{a}$

$$
\begin{aligned}
& \text { at maximum speed } \mathrm{a}=0 \\
& \frac{2500}{20}-R=500 \times 0 \\
& \mathrm{R}=125 \mathrm{~N}
\end{aligned}
$$

(b) If the resistance remains unaltered, find the acceleration of the car when travelling at $36 \mathrm{kmh}^{-1}$ on a level road with the engine working at the same rate.
$\mathrm{F}_{\mathrm{T}}-\mathrm{R}=\mathrm{m} \times \mathrm{a}$
$\frac{2500}{10}-125=500 \times a$
$\mathrm{a}=0.25 \mathrm{~ms}^{-2}$

Example 21

A force on a particle of mass 15 kg moves it along a straight line with velocity of $10 \mathrm{~ms}-1$. The rate at which work is done by the force is 50 W . If the particle starts from rest, determine the time it takes to move a distance of 100 m .
$F=m a$
$\frac{50}{10}=15 a$
$\mathrm{a}=0.33 \mathrm{~ms}^{-2}$
$s=u t+1 / 2 a t^{2}$

$$
100=0 \times t+\frac{1}{2} x 0.33 x t^{2}
$$

$\mathrm{t}=24.51 \mathrm{~s}$

Example 22

A car of mass 10 tonnes tows a trailer of mass 40 tonnes along a level road. The car exerts experience a resistance of 100 N and the trailer a resistance of 2000 N , if the car engine working at constant rate of $4,000 \mathrm{~kW}$. Find the acceleration produced and the tension in the two bar at the instant the speed is $72 \mathrm{kmh}^{-1}$.

Solution

$72 \mathrm{kmh}^{-1}=\frac{72,000}{3600}=20 \mathrm{~ms}^{-1}$
$\mathrm{F}=\frac{P}{v}=\frac{4,000,000}{20}=20,000 \mathrm{~N}$
10,000kg: 20000- $(\mathrm{T}+100)=10000 \mathrm{a}$
19,900-T = 10000a \qquad
40,000kg; T-2000 = 40000a
(i) + (ii): $a=0.358 \mathrm{~ms}^{-2}$

Alternatively
50000kg: 20,000-200-100 = 5000a
$17,900=50000 a$
$\mathrm{a}=0.358 \mathrm{~ms}^{-2}$
$T-2000=40,000 \mathrm{a}$
$T=40000 \times 0.358+2000$
$=16,320 \mathrm{~N}$

Inclined planes

Example 23

A train of mass $20,000 \mathrm{~kg}$ moves at constant speed of $72 \mathrm{kmh}^{-1}$ up a straight inclined plane against a frictional force of 128 N . The incline is such that the train rise vertically 1 m for every 100 m travelled along the incline. Calculate the necessary power developed by the train

$72 \mathrm{kmh}^{-1}=\frac{72 \times 1000}{3600}=20 \mathrm{~ms}^{-1}$
$\sin \theta=\frac{1}{100}$
at constant speed, $\mathrm{a}=0$
Force, $\mathrm{F}_{\mathrm{T}}=\frac{P}{v}-\left(m g \sin \theta+R_{1}\right)=\mathrm{ma}$
$\frac{P}{20}-\left(20000 \times 9.8 \times \frac{1}{100}+128\right)=20000 \times 0$
$P=41760 W$

Example 24

A car of mass 1.5 metric tonnes moves at constant speed of $6 \mathrm{~ms}^{-1}$ up a slope inclined at $\sin ^{-1} \frac{1}{7}$. Given that the engine of the car is working at constant rate of 18 kW . Find the resistance to the motion.

$\sin \theta=\frac{1}{7}$
at constant speed, $\mathrm{a}=0$
Force, $\mathrm{F}_{\mathrm{T}}=\frac{P}{v}-\left(m g \sin \theta+R_{1}\right)=\mathrm{ma}$ $\frac{P}{6}-\left(1500 \times 9.8 \times \frac{1}{7}+R_{1}\right)=1500 \times 0$
$R_{1}=900 \mathrm{~N}$

Example 25

A car of mass 800 kg with engine working at constant rate of 15 kW climbs a hill of inclination 1 in 98 against a constant resistance to motion of 420 N . Find the
(i) the acceleration when the speed is $10 \mathrm{~ms}^{-1}$
(ii) maximum speed of the car up the hill

(ii) at constant speed, $\mathrm{a}=0$

Force, $\mathrm{F}_{\mathrm{T}}=\frac{P}{v}-\left(m g \sin \theta+R_{1}\right)=\mathrm{ma}$ $\frac{P}{10}-\left(800 \times 9.8 \times \frac{1}{98}+420\right)=800 \times \mathrm{a}$ $\mathrm{a}=1.25 \mathrm{~ms}^{-2}$
$\frac{15000}{v}-\left(8000 \times 9.8 \times \frac{1}{98}+420\right)=800 \times 0 \quad v=30 \mathrm{~ms}^{-1}$

Example 26

A car of mass 1000kg has a maximum speed of $40 \mathrm{~ms}^{-1}$ on a level road and the engine s working at 32kW against constant resistance
(i) find the resistance to motion
$F_{T}-\mathrm{R}_{1}=\mathrm{ma}$; at constant speed $\mathrm{a}=0$
$\frac{32000}{40}-R_{1}=1000 \times 0$
$R_{1}=800 N$
(ii) Given that the resistance in both cases varies as the speed, find the rate at which the engine must work for the car to ascend a slope of 1 in 98 at constant speed of $20 \mathrm{~ms}^{-1}$.

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{kv} \\
& \mathrm{k}=\frac{800}{40}=20
\end{aligned}
$$

Force, $\mathrm{F}_{\mathrm{T}}=\frac{P}{v}-\left(m g \sin \theta+R_{1}\right)=\mathrm{ma}$
at constant speed $\mathrm{a}=0$
$\frac{P}{20}-\left(1000 \times 9.8 \times \frac{1}{98}+20 \times 20\right)=1000 \times 0$
$P=10,000 W$

Example 27

A car of mass 1000 kg has maximum speed of $150 \mathrm{kmh}^{-1}$ on a level road and working at 60 kW
(i) find the coefficient of friction between the car and the road if all resistance is due to friction
$150 \mathrm{kmh}-1=\frac{150000}{3600}=41.67 \mathrm{~ms}^{-1}$
$\mathrm{F}=\mathrm{ma}$
$F_{T}-\mu \mathrm{R}=\mathrm{ma}$
At constant speed, $\mathrm{a}=0$
$\frac{60000}{41.67}-\mu(1000 \times 9.8)=1000 \times 0$
$\mu=0.147$
(ii) Given that the tractive force remains unaltered and the non-gravitation resistance in both cases varies as square of the speed, find the greatest slope on which a speed of $120 \mathrm{kmh}^{-1}$ could be maintained.

$\mu \mathrm{R}=\mathrm{k} v^{2}$
$\mathrm{k}=\frac{0.147 \times 1000 \times 9.8}{(41.67)^{2}}=0.8297$
$120 \mathrm{kmh}^{-1}=\frac{120 \times 1000}{3600}=33.33 \mathrm{~ms}^{-1}$

Force, $\mathrm{F}_{\mathrm{T}}=\frac{P}{v}-\left(m g \sin \theta+R_{1}\right)=\mathrm{ma}$
at constant speed $\mathrm{a}=0$

$$
\begin{aligned}
& \frac{60000}{41.67}-\left(1000 \times 9.8 \sin \theta+0.8297(33.33)^{2}\right. \\
& \quad=1000 \times 0
\end{aligned}
$$

$$
\theta=3.04^{\circ}
$$

Example 28

A car of mass 900 kg with the engine working at a constant rate of 7.35 kW climbs a hill of inclination 1 in 63 against constant resistance to motion. Find the
(i) resistance to motion when the car is travelling with a constant speed of $15 \mathrm{~ms}^{-1}$
(ii) maximum speed of the car when travelling down the same slope with the engine working at the same rate as before and the resistance to motion unchanged.

Solution

$\mathrm{F}_{\mathrm{T}}=\frac{P}{v}-\left(m g \sin \theta+R_{1}\right)=\mathrm{ma}$
$\frac{7350}{15}-\left(900 \times 9.8 \times \frac{1}{63}+R_{1}\right)=900 \times 0$
$\mathrm{R}_{1}=350 \mathrm{~N}$
(ii) $\mathrm{F}_{\mathrm{T}}=\frac{P}{v}+\left(m g \sin \theta-R_{1}\right)=\mathrm{ma}$
$\frac{7350}{v}-\left(900 \times 9.8 \times \frac{1}{63}-350\right)=900 \times 0$
$\mathrm{v}=35 \mathrm{~ms}^{-1}$

Example 28

A car of mass 1200 kg is pulling a trailer of mass 300 kg up a slope 1 in 10 , the resistance to motion for car and trailer is $0.2 \mathrm{Nkg}^{-1}$. Given that the car moved at a constant speed of $1.5 \mathrm{~s}^{-1}$ for 5 minutes, find the
(i) Tension in coupling between the car and the trailer
(ii) work done by the engine of the car during this time
(iii) total resistance, if the engine develops a power of 15 kW at maximum speed of $120 \mathrm{kmh}^{-1}$ on level road.

At constant speed, $a=0 ; \sin \theta=\frac{1}{10}$
$300 \mathrm{~kg}: T-\left(m_{1} g \sin \theta+0.2 m_{1}\right)=m_{1} \times 0$
$\mathrm{T}=300 \times 9.8 \times \frac{1}{10}+0.2 \times 300=354 \mathrm{~N}$
$1200 \mathrm{~kg}: \mathrm{F}_{\mathrm{T}}-\left(\mathrm{T}+\mathrm{m}_{2} \mathrm{~g} \sin \theta+0.2 \mathrm{~m}_{2}\right)=1200 \times 0$
$\mathrm{FT}=\left(354+1200 \times 9.8 \times \frac{1}{10}+0.2 \times 1200\right)$

$$
=1770 \mathrm{~N}
$$

$$
W=F T \times d=1770 \times 1.5 \times 5 \times 60=796,500 J
$$

(iii)

$120 \mathrm{kmh}^{-1}=\frac{120 \times 1000}{3600}=33.33 \mathrm{~ms}^{-1}$
$\mathrm{F}_{\mathrm{T}}=\frac{P}{v}=\frac{15000}{33.33}=450 \mathrm{~N}$
1500kg: $450-(\mathrm{M}+\mathrm{N})=1500 \times 0$
$(M+N)=450$

Example 30

A car of mass mag has an engine which works at a constant rate of 2 H kW . The car has constant speed of $\mathrm{V} \mathrm{ms}^{-1}$ a long a horizontal road.
(a) Find in terms of $\mathrm{m}, \mathrm{H}, \mathrm{V}$ and θ the acceleration of the car when travelling
(i) up a road of inclination θ with a speed of $\frac{3}{4} V \mathrm{~ms}^{-1}$.
(ii) down the same road with a speed of $\frac{3}{5} V \mathrm{~ms}^{-1}$, the resistance to the motion of the car apart from gravitational force, being constant
(b) If an acceleration in (a)(ii) above is 3 times that of (a)(i) above, find the angle of inclination θ of the road.
(c) If the car continues directly up the road, in case (a)(i) above, show that its maximum speed is $\frac{12}{13} \mathrm{Vms}^{-1}$

Solution
(a) When the car moves along a horizontal road

With constant speed, $F=R_{1}$
(i) When ascending with velocity $\frac{3 v}{4} m s^{-1}$

Power $=\mathrm{Fv}$
$2000 \mathrm{H}=\frac{3 v}{4} F$
$\mathrm{F}=\frac{8000 \mathrm{H}}{3 v}$
Let $\mathrm{a}=$ acceleration

(ii) When descending with velocity $\frac{3 v}{5} m s^{-1}$

Power $=$ Fo
$2000 \mathrm{H}=\frac{3 v}{5} F$
$\mathrm{F}=\frac{10000 \mathrm{H}}{3 v}$
Let $\mathrm{a}_{1}=$ acceleration
Net accelerating force $\left.=F+m g \sin \theta-R_{1}\right)=m a_{1}$

But power, $\mathrm{P}=\mathrm{Fv}=\mathrm{R}_{1} \mathrm{~V}$

$$
\begin{aligned}
\Rightarrow & 2000 \mathrm{H}=\mathrm{Fv}=\mathrm{R}_{1} \mathrm{v} \\
& \mathrm{R}_{1} \mathrm{v}=2000 \mathrm{H} \\
& R_{1}=\frac{2000 \mathrm{H}}{v}
\end{aligned}
$$

Net accelerating force $=F-\left(m g \sin \theta+R_{1}\right)$
$\mathrm{ma}=\frac{8000 H}{3 v}-\left(m g \sin \theta+\frac{2000 H}{v}\right)$
$\mathrm{ma}=\frac{2000 H}{3 v}-\mathrm{mgsin} \theta$
$\mathrm{a}=\frac{2000 \mathrm{H}-3 \mathrm{mvg} \sin \theta}{3 \mathrm{mv}}$

$\mathrm{ma}_{1}=\frac{10000 H}{3 v}+m g \sin \theta-\frac{2000 H}{v}$
$\mathrm{a}_{1}=\frac{4000 \mathrm{H}+3 \mathrm{mvg} \sin \theta}{3 \mathrm{mv}}$
(b) Given $\mathrm{a}_{1}=3 \mathrm{a}$

$$
\begin{aligned}
& \frac{4000 H+3 m v g \sin \theta}{3 m v}=3\left(\frac{2000 H-3 m v g \sin \theta}{3 m v}\right) \\
& \frac{4000 H+3 m v g \sin \theta}{3 m v}=\frac{2000 H-3 m v g \sin \theta}{m v}
\end{aligned}
$$

$4000 H+3 m v g \sin \theta=6000 H-9 m v g \sin \theta$
$2000 \mathrm{H}=12 m v g \sin \theta$
(c) With maximum speed, $\mathrm{a}=0$

Net accelerating force $=F-\left(m g \sin \theta+R_{1}\right)$
$m \times 0=F-\left(m g \sin \theta+R_{1}\right)$
$\mathrm{F}=\mathrm{R}_{1}+\mathrm{mg} \sin \theta$
Let v1 be maximum velocity
Power, $\mathrm{P}=\mathrm{Fv}_{1}$
$2000 \mathrm{H}=\mathrm{Fv}_{1}$
$\sin \theta=\frac{2000 H}{12 m v g}$
$\theta=\sin ^{-1}\left(\frac{2000 H}{12 m v g}\right)$
$2000 \mathrm{H}=\left(\mathrm{R}_{1}+\mathrm{mgsin} \theta\right) \mathrm{v}_{1}$
Substituting for R and $\sin \theta$
$2000 \mathrm{H}=\left(\frac{2000 \mathrm{H}}{v}+m g\left[\frac{2000 \mathrm{H}}{12 \mathrm{mvg}}\right]\right) v_{1}$
$2000 \mathrm{H}=\left(\frac{2000 \mathrm{H}}{v}+\frac{2000 \mathrm{H}}{12 v}\right) v_{1}$
$1=\left(\frac{1}{v}+\frac{1}{12 v}\right) v_{1}$
$1=\left(\frac{13}{12 v}\right) v_{1}$
$v_{1}=\frac{12 v}{13}$

Example 31

The engine of a lorry of mass $5,000 \mathrm{~kg}$ is working at a steady rate of 350 kW against a constant resistance force of $1,000 \mathrm{~N}$. The lorry ascends a slope of inclination θ to the horizontal. If the maximum speed of the lorry is $20 \mathrm{~ms}^{-1}$, find the value of θ (05 marks)

Resultant force $=17500-(1000+5000 \sin \theta)$
$5000 a=17500-(1000+5000 \sin \theta)$

At maximum speed $\mathrm{a}=0$

$$
\begin{aligned}
\Rightarrow & 0=17500-(1000+ \\
& 5000 \sin \theta) \\
& 16500=5000 \sin \theta \\
& \theta=19.7^{\circ}
\end{aligned}
$$

Example 32

A car is working at 5 kW and is travelling at constant speed of $72 \mathrm{kmh}^{-1}$. Find the resistance to motion

Power $=5 \mathrm{~kW}=5000 \mathrm{w}$
$\mathrm{V}=72 \mathrm{kmh}^{-1}=\frac{72 \times 1000}{3600}=20 \mathrm{~ms}^{-1}$
At constant speed, $\mathrm{F}=\mathrm{R}$
power $=\mathrm{Fv}=\mathrm{Rv}$
$\mathrm{R}=\frac{5000}{20}=250 \mathrm{~N}$

Revision exercise 3

1. A car is drive along a level road against a constant resistance to motion of 400 N . Find the maximum speed at which the car can move when its engine works at steady rate of 8.8 kW . [22 ms^{-1}]
2. What is the maximum speed which a car can travel along road when its engine is developing 24 kW and there is a resistance to motion of 800 N . [30 ms^{-1}]
3. A car is driven along a level road against a constant resistance to motion of 400 N . Find the maximum speed at which the car can move when its engine works at a steady rate of 4 kW . [10 ms^{-1}]
4. A car is working at 14 kW and is travelling at constant speed of $75 \mathrm{kms}^{-1}$ along a level road. Find the resistance to motion. [187N]
5. A car of mass 1000 kg is driven along a level road against constant resistance to motion of 200 N . With the engine of car when working at steady rate of 8 kW , find
(i) acceleration of the car when its speed is $5 \mathrm{~ms}^{-1}\left[1.4 \mathrm{~ms}^{-2}\right]$
(ii) the maximum speed of the car. [40 ms^{-1}]
6. A car of mass 900 kg is driven along a level road against a constant resistance to motion of 300 N . With the engine working at steady rate of 12 kW , find
(i) acceleration of the car when its speed is $10 \mathrm{~ms}^{-1}\left[1 \mathrm{~ms}^{-2}\right]$
(ii) the maximum speed of the car. $\left[40 \mathrm{~ms}^{-1}\right]$
7. A car of mass 1600 kg is freewheeling down a hill of slope 1 in 25 . When the car descends 200 m along a hill, its speed increases from $3 \mathrm{~ms}^{-1}$ to $10 \mathrm{~ms}^{-1}$, find the average resistance to motion [263.2N]
8. A train of mass 100 tonnes has an engine of maximum power 60 kW .
(i) Calculate the force resisting the motion of the car when it is travelling at its maximum speed of $108 \mathrm{kmh}^{-1}$ on a level road. [2000N]
(ii) If the resistance remains unaltered, find the acceleration of the car when travelling at $54 \mathrm{kmh}^{-1}$ on a level road with the engine working at the same rate.[0.02 ms^{-2}]
9. A cyclist of mass 75 kg moves on a level road and working at a rate of 210 W against a constant resistance of 21 N
(i) find the maximum speed that a cyclist can attain. [10 $\left.\mathrm{ms}^{-1}\right]$
(ii) with the resistance and the rate of working unchanged, find the maximum speed can ascend a slope of inclination 1 in 15 . [$3 \mathrm{~ms}^{-1}$]
10. A car of mass 900 kg moves on a level road at maximum speed of $48 \mathrm{~ms}^{-1}$ against a constant resistance of 350 N .
(i) find the rate at which the engine is working. [16.8kw]
(ii) with the resistance and rate of working unchanged, find the maximum speed the car ascends a slope of inclination 1 in 18 [20ms-1]
11. A car of mass 900 kg working at a rate of 19.2 kW moves on a level road at maximum speed of $20 \mathrm{~ms}^{-1}$ against a constant resistance of $\left(160+a v^{2}\right) \mathrm{N}$, where a is a constant and v is the speed of the car in ms^{-1}.
(i) find the value of a [$\mathrm{a}=2$]
(ii) with the resistance and the rate of working unchanged, find the maximum speed of the car can ascend a slope of inclination of 1 in 30 . [1.40667 ms^{-1}]
12. A car of mass 100 metric tonnes moves with a constant speed of $654 \mathrm{kmh}^{-1}$ up a slope of inclinationsin ${ }^{-1}\left(\frac{1}{59}\right)$. Given that the engine of the car is working at constant rate of 369 kW . Find the resistance to motion. [5000N]
13. A man of mass 70 kg rides a bicycle of mass 15 kg at steady speed of $4.0 \mathrm{~ms}-1$ up a road which rises 1.0 m for every 20 m of its length. What is his power if resistance to motion is 20 N . [250N]
14. A lorry of mass 2000 kg moving at $10 \mathrm{~ms}^{-1}$ on horizontal surface is brought to rest in a distance of 12.5 m by the brakes being applied.
(i) calculate the average retarding force. [8000N]
(ii) what power must the engine produce if the constant speed of $10 \mathrm{~ms}-1$, frictional resistance being 200N. [22kW]
15. A lorry of mass 2.4 metric tonnes carrying goods of 9.8 metric tonnes ascends a hill of 1 in 8 with an acceleration of $0.45 \mathrm{~ms}^{-2}$.
(i) calculate the tractive force of the engine. [$20,435 \mathrm{~N}$]
(ii) If at a speed of $36 \mathrm{kmh}^{-1}$, the engine develops a power of 235 kW , calculate the resistance of the lorry. 3,065N]
16. A car of mass 2 tonnes moves from rest down a road of inclination $\sin ^{-1}\left(\frac{1}{20}\right)$ to the horizontal. Given that the engine develops a power of 64.8 kW when travelling at a speed of $54 \mathrm{kmh}^{-1}$ and the resistance to motion is 500 N , find the acceleration. [$2.4 \mathrm{~ms}^{-2}$]
17. The force opposing the motion of $a \operatorname{car}$ is $\left(a+b v^{2}\right) N$, where a and b are constants and v is the speed of the car in ms^{-1}. the power required to maintain a steady speed of $20 \mathrm{~ms}^{-1}$ and at $30 \mathrm{~ms}^{-1}$ is 15.3 kW .
(a) Find the values of a and $b .[a=150, b=0.4]$
(b) power developed for a steady speed of $40 \mathrm{~m}^{-1}$ [31.6kW]
18. A car is driven at uniform speed of $48 \mathrm{kmh}^{-1}$ up a smooth incline of 1 in 8 . If the total mass of the car is 800 kg and the resistance are neglected, calculate the power at which the car is working. [13076W]
19. A truck of mass 2000 kg moving at constant speed of $10 \mathrm{~ms}^{-1}$ up a hill which is inclined at an angle α, where $\sin \alpha=0.25$. There is a constant force of 400 N opposing the motion.
(i) calculate the power used[53kW]
(ii) If the power is instantaneously increased to 75 kW , calculate the rate at which the truck begins to accelerate. [1.1 ms^{-2}]
20. With its engine working at a constant rate of 9.8 kW , a car of mass 800 kg can descend a slope of 1 in 56 at twice the steady speed that it can ascend the same slope, the resistance to motion remaining the same throughout. Find the magnitude of the resistance and the speed of ascent. [420N, $17.5 \mathrm{~ms}^{-1}$]
21. The frictional resistance to motion is (kv)N where k is a constant and v is the speed of a car in $\mathrm{ms}-1$. The car ascends a hill of inclination 1 in 10 at a steady speed of $8 \mathrm{~ms}^{-1}$. The power exerted by the engine is 9.76 kW .
(i) find the value of $\mathrm{k}[\mathrm{k}=30]$
(ii) Find the steady speed at which the car ascends the hill if the power exerted by the engine is 12.8 kW . When the car is travelling at this speed, the power exerted by the engine is increased by 2 kW , find the immediate acceleration of the car. [$10 \mathrm{~ms}^{-1}, 0.2 \mathrm{~ms}^{-1}$]

Pump raising and ejecting water

Consider a pump which is used to raise water from the source and then eject it at a given speed. The work done per second gives the rate (power) at which the pump is working.

Power of the pump = P.E given to water per second + K.E given to water per second

Example 32

A pump raises water through a height of 3.0 m at a rate of 300 kg per minute and delivers it with a velocity of $8.0 \mathrm{~ms}^{-1}$. Calculate the power output of the pump.
solution
Power of the pump = P.E given to water per second + K.E given to water per second work done per second $=($ mass per second xg xh$)+\left(\frac{1}{2} x\right.$ mass per second $\left.x v^{2}\right)$

$$
=\frac{300}{60} \times 9.8 \times 3+\frac{1}{2} \times \frac{300}{60} \times 8^{2}=310 \mathrm{~W}
$$

Example 33

A pump draws 6 m 3 of water of density $1000 \mathrm{kgm}^{-3}$ from a well 9 m below the ground in every minute and issues it at a speed of $12 \mathrm{~ms}^{-1}$. Find the rate at which the pump is working.

Solution

Power of the pump = P.E given to water per second + K.E given to water per second
work done per second $=($ mass per second xg xh$)+\left(\frac{1}{2} x\right.$ mass per second $\left.x v^{2}\right)$

$$
=\frac{6 \times 1000}{60} \times 9.8 \times 9+\frac{1}{2} \times \frac{6 \times 1000}{60} \times 12^{2}=16020 \mathrm{~W}
$$

Example 34

A pump raises water through a vertical distance of 10 m in one and half minutes, and discharges it at a speed of $25 \mathrm{~ms}-1$. Show that the power developed is approximately 2.25 kW .

Solution

Power of the pump $=$ P.E given to water per second + K.E given to water per second
work done per second $=($ mass per second $\mathrm{xg} \times \mathrm{h})+\left(\frac{1}{2} x\right.$ mass per second $\left.x v^{2}\right)$

$$
=\frac{2 \times 1000}{90} \times 9.8 \times 10+\frac{1}{2} \times \frac{2 \times 1000}{90} \times 25^{2}=2247.22 \mathrm{~W} \approx 2.25 \mathrm{~kW}
$$

Example 35

A pump draws $3.6 \mathrm{~m}^{3}$ of water of density $1000 \mathrm{kgm}^{-3}$ from a well 5 m below the ground in every minute and issues it at ground level through a pipe of cross-section area $40 \mathrm{~cm}^{2}$. Find
(i) the speed with which water leaves the pipe.
(ii) the rate at which the pump is working
(iii) if the pump is only 80% efficient, find the rate at which it must work
(iv) find the power wasted.

Solution
(i) volume per second = area x velocity

$$
\begin{aligned}
& \frac{3.6}{60}=\frac{40}{10000} \mathrm{v} \\
& v=15 \mathrm{~ms}^{-1}
\end{aligned}
$$

(ii) Power of the pump = P.E given to water per second + K.E given to water per second work done per second $=($ mass per second xgxh$)+\left(\frac{1}{2} x\right.$ mass per second $\left.x v^{2}\right)$

$$
=\frac{3.6 \times 1000}{60} \times 9.81 \times 5+\frac{1}{2} \times \frac{3.6 \times 1000}{60} \times 15^{2}=9693 \mathrm{~W}
$$

(iii) efficiency $=\frac{\text { power output }}{\text { power } \text { input }} \times 100 \%$

$$
80 \%=\frac{9693}{\text { power input }} \times 100 \%
$$

$$
\text { power input }=12116.25 \mathrm{~W}
$$

(iv) Power wasted = power input - power output

$$
=12116.25-9693=2423.25 \mathrm{~W}
$$

Revision exercise 4

1. A pump with power output of 600 W raises water from a lake a height of 3.0 m and delivers it with a velocity of $6.0 \mathrm{~ms}^{-1}$. What is the mass of water removed from the lake in one minute? [7500kg]
2. In every minute a machine pumps 300kg of water along a horizontal hose from rest at one end to eject at a speed of $4 \mathrm{~ms}^{-1}$ at the other. Find the average rate at which the machine is working? [40W]
3. In every minute a pump draws $6 \mathrm{~m}^{3}$ of water from a well and issues it at a speed of $5 \mathrm{~ms}^{-1}$ from a nozzle situated 4 m above the level from which the water is drawn. Find the average rate at which the pump is working. [5.17W]
4. In every minute a pump draws $5 \mathrm{~m}^{3}$ of water from a well and issues it at a speed of $6 \mathrm{~ms}^{-1}$ from a nozzle situated 6 m above the level from which water was drawn. Find the average rate at which the pump is working. [6.4 kW]
5. A pump draws water from a tank and issues it at a speed of $8 \mathrm{~ms}^{-1}$ from the end of a pipe of cross-section area of $0.01 \mathrm{~m}^{2}$ situated at 10 m above the level from which the water is drawn. find
(i) the mass of water issued from the pipe in each second. [80kg]
(ii) the rate at which the pump is working. [10.4kW]
6. A pump draws water from a tank and issues it at a speed of $10 \mathrm{~ms}^{-1}$ from the end of the pipe of cross-sectional area $5 \mathrm{~cm}^{2}$ situated at 4 m above the level from which the water is drawn. Find the rate at which the pump is working. [446W]
7. In every minute a pump draws $2.4 \mathrm{~m}^{3}$ of water from a well 5 m below the ground and issues it at ground level through a pipe of cross-sectional area $50 \mathrm{~cm}^{2}$. Find the
(i) speed with which the water leaves the pipe. [8ms ${ }^{-1}$]
(ii) rate at which the pump is working if its only 75% efficient. [3.24 kW]
8. In every minute a pump working at 3.48 kW raises 15 m 3 of water from underground tank and issues it from the end of a pipe situated at ground level. The water leaves the pipe with a speed of $10 \mathrm{~ms}-1$ and the pump is 50% efficient. Find
(i) the cross-sectional area of the pipe. $\left[25 \mathrm{~cm}^{2}\right]$
(ii) the depth below the ground level from which the water is drawn. [2m]
9. In each minute a pump working at 825 W draws $0.3 \mathrm{~m}^{3}$ of water from a well and issues from the nozzle situated 5 m above the level from which the water was drawn. If the pump is 60% efficient, find
(i) the velocity with which water is ejected. [10ms-1]
(ii) the area of a cross-section of the nozzle. [$\left.5 \mathrm{~cm}^{2}\right]$
10. A pump raises 75 kg of water a vertical distance of 20 m in 14 s . Find the average rate at which the pump is working. [1.05kW]

Thank you

Dr. Bbosa Science

