Sponsored by

Nurture your dreams/7

Centre of gravity

This is the point where the resultant force due to attraction acts

General formula for the centre of gravity

Consider a system of particles of weight, $\mathrm{w}_{1}, \mathrm{w}_{2} \ldots . \mathrm{w}_{\mathrm{n}}$ located at points with coordinates $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots . .\left(x_{n}, y_{n}\right)$ in the $x-y$ plane

The resultant of weight $\mathrm{w}_{1}+\mathrm{w}_{2}+\ldots .+\mathrm{w}_{\mathrm{n}}$ have a C.O.G at point (\bar{x}, \bar{y})
Taking moments along the y-axis
$\left(\mathrm{w}_{1}+\mathrm{w}_{2}+\ldots .+\mathrm{w}_{\mathrm{n}}\right) \bar{x}=\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\ldots .+\mathrm{w}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}$
$\bar{x}=\frac{\sum w_{1} x_{i}}{\sum w_{i}}$
Similarly taking moments along the x-axis
$\bar{y}=\frac{\sum w_{1} x_{i}}{\sum w_{i}}$
Alternatively:

Or
$\binom{\bar{x}}{\bar{y}}=\frac{\left[m_{1} g\binom{x_{1}}{y_{1}}+m_{2} g\binom{x_{2}}{y_{2}}+\cdots+m_{n} g\binom{x_{n}}{y_{n}}\right]}{\left(m_{1} g+m_{2} g+\cdots+w_{n} g\right)}$

Example 1

Find the position of the centre of gravity of three particles of masses $1 \mathrm{~kg}, 5 \mathrm{~kg}$, and 2 g which lie on the y-axis at points $(0,2),(0,4)$ and $(0,5)$ respectively

$$
\binom{\bar{x}}{\bar{y}}=\frac{\left[m_{1 g}\binom{x_{1}}{y_{1}}+m_{2 g}\binom{x_{2}}{y_{2}}+\cdots+m_{n} g\binom{x_{n}}{y_{n}}\right]}{\left(m_{1} g+m_{2} g+\cdots+w_{n} g\right)} \quad\binom{\bar{x}}{\bar{y}}=\frac{\binom{0}{32}}{8}=\binom{0}{4}
$$

$\binom{\bar{x}}{\bar{y}}=\frac{\left[1 g\binom{0}{2}+5 g\binom{0}{4}+2 g\binom{0}{5}\right]}{(1 g+5 g+2 g)}$

Example 2

Find the coordinates of the centre of gravity of four particles of masses $5 \mathrm{~kg}, 2 \mathrm{~kg}, 2 \mathrm{~kg}$ and 3 kg which are situated at $(3,1),(4,3),(5,2)$ and $(-3,1)$ respectively

$$
\begin{aligned}
& \binom{\bar{x}}{\bar{y}}=\frac{\left[m_{1} g\binom{x_{1}}{y_{1}}+m_{2 g}\binom{x_{2}}{y_{2}}+\cdots+m_{n} g\binom{x_{n}}{y_{n}}\right]}{\left(m_{1} g+m_{2} g+\cdots+w_{n} g\right)} \\
& \binom{\bar{x}}{\bar{y}}=\frac{\left[5 g\binom{3}{1}+2 g\binom{4}{3}+2 g\binom{5}{2}+3 g\binom{-3}{1}\right]}{(5 g+2 g+2 g+3 g)}
\end{aligned}
$$

$$
\binom{\bar{x}}{\bar{y}}=\frac{\binom{24}{18}}{12}=\binom{2}{1.5}
$$

Example 3

Three particles of masses $2 \mathrm{~kg}, 1 \mathrm{~kg}$ and 3 kg are situated at $(4,3),(1,0)$ and (a, b) respectively. If the centre of gravity of the system lies at $(0,2)$, find the values of a and b.

$$
\begin{array}{l|l|l}
\binom{\bar{x}}{\bar{y}}=\frac{\left[m_{1}\binom{x_{1}}{y_{1}}+m_{2 g} g\binom{x_{2}}{y_{2}}+\cdots+m_{n} g\binom{x_{n}}{y_{n}}\right]}{\left(m_{1} g+m_{2} g+\cdots+w_{n} g\right)} & \binom{0}{2}=\frac{\binom{9+3 a}{6+3 b}}{6} & 2=\frac{6+3 b}{6}, \\
\binom{0}{2}=\frac{\left[2 g\binom{4}{3}+1 g\binom{1}{0}+3 g\binom{a}{b}\right]}{(2 g+1 g+3 g)} & 0=\frac{9+3 a}{6}, \mathrm{a}=-3 & \mathrm{~b}=2
\end{array}
$$

Example 4

Find the coordinates of the centre of gravity of four particles of weight, $6 \mathrm{~N}, 5 \mathrm{~N}, 4 \mathrm{~N}$ and 7 N which are situated at $(\mathrm{i}+2 \mathrm{j}),(2 \mathrm{i}),(3 \mathrm{j})$ and $(4 \mathrm{i}+2 \mathrm{j})$ respectively.

$$
\begin{align*}
& \binom{\bar{x}}{\bar{y}}=\frac{\left[w_{1}\binom{x_{1}}{y_{1}}+w_{2}\binom{x_{2}}{y_{2}}+\cdots+w_{n}\binom{x_{n}}{y_{n}}\right]}{\left(w_{1}+w_{2}+\cdots+w_{n}\right)} \tag{x}\\
& \binom{\bar{x}}{\bar{y}}=\frac{\left[6\binom{1}{2}+5\binom{2}{0}+4\binom{0}{3}+7\binom{4}{2}\right]}{(6+5+4+7)}=\frac{\binom{44}{38}}{22}
\end{align*}
$$

Example 5

The rectangle EFGH has $\mathrm{EF}=3 \mathrm{~m}$ and $\mathrm{EH}=2 \mathrm{~m}$, particles of masses $20 \mathrm{~g}, 30 \mathrm{~g}, 60 \mathrm{~g}$ and 10 g are placed at the mid-point of the sides EF, FG, GH and EH respectively. Find the distance of the centre of gravity of the system from each of the line EF and EH
$\binom{\bar{x}}{\bar{y}}=\frac{\left[0.02\binom{1.5}{0}+0.03\binom{3}{1}+0.06\binom{1.5}{2}+0.01\binom{0}{1}\right]}{(0.02+0.03+0.06+0.01)}=\frac{\binom{0.21}{0.16}}{0.12}$
$(\bar{x}, \bar{y})=(1.75,1.33)$

Revision exercise 1

1. Find the coordinates of the centre of gravity of four particles of masses $60 \mathrm{~g}, 30 \mathrm{~g}, 70 \mathrm{~g}$ and 40 g which are situated at $(4 i+3 j),(6 i+5 j),(-6 i+5 j)$ and $(-5 i-2 j)$ respectively. [-1, 3]
2. The rectangle $A B C D$ has $A B=4 \mathrm{~cm}$ and $A D=2 \mathrm{~cm}$, particles og masses $3 \mathrm{~kg}, 5 \mathrm{~kg}, 1 \mathrm{~kg}$ and 7 kg are placed at point points A, B, C and D respectively. Find the distance of the centre of gravity of the system from each line $A B$ and $A D$. [$1 \mathrm{~cm}, 1.5 \mathrm{~cm}$]
3. Find the position of the centre of gravity of four particles of masses $5 \mathrm{~kg}, 6 \mathrm{~kg}, 2 \mathrm{~kg}$ and 2 kg which are situated at $(5 i-7 j),(-3 i+2 j),(3 i-5 j)$ and $(i-6 j)$ respectively. [(i-3j)]
4. Particles of weight $1 \mathrm{~N}, 2 \mathrm{~N}, 3 \mathrm{~N}$ and 4 N are situated at $(6 \mathrm{i}),(\mathrm{i}-5 \mathrm{j}),(3 \mathrm{i}+2 \mathrm{j})$ and (ai +bi$)$ respectively. If the centre of gravity of the system lies at the points with position vector $(2.5 i-2 j)$, find the values of a and $b .[2,-4]$
5. Find the position of the centre of gravity of four particles of weight $2 \mathrm{~N}, 1 \mathrm{~N}, 5 \mathrm{~N}$ and 2 N which are situated at $(4,-5),(1,2),(3,-6)$ and $(0,3)$ respectively. $[2.4,-3.2$]
6. Particles of mass $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and mkg are situated at $(5,2),(1,5)$ and $(1,-2)$ respectively. If the centre of gravity of this system lies at ($2, \bar{y}$), find the value of m and \bar{y}. $m=1 \mathrm{~kg}, \bar{y}=2.5$]
7. Particles of masses $2 \mathrm{~kg}, 1 \mathrm{~kg}$ and 3 kg are situated on y -axis at $(0,7),(0,4)$, and $(0,-2)$ respectively. Where must a 6 kg mass be placed to ensure that the centre of gravity of this system lies at the origin. [(0, -2)]
8. Particles of weight $5 \mathrm{~N}, 4 \mathrm{~N}$ and 3 N are situated at $(-5,0),(4,0.5),(-4,-3)$ respectively. Where must a 7 N particles be placed to ensure that the centre of gravity of this system lies at the origin $(3,1)$

Centre of gravity of Iamina

1. C.O. G of a rectangle

$$
\mathrm{G}=\left(\frac{A B}{2}, \frac{A D}{2}\right)
$$

2. C.O. G of an isosceles triangle

C.O.G lies along the line of symmetry a distance $\frac{h}{3}$
3. C.O. G of a circle

C.O.G lies along the centre
$G=(r, r)$
4. C.O.G of a sector of a circle subtending an angle 2α at the centre line along the line of symmetry at a distance $\frac{2 r \sin \alpha}{3 \alpha}$ from the centre.
5. C.O.G of a circular arc subtending an angle 2α at the centre line along the line of symmetry at a distance $\frac{r \sin \alpha}{\alpha}$ from the centre.
C.O.G a semi-circular arc of radius r is at a distance $\frac{2 r}{\pi}$ from the centre.

Example 6

Find the position of the centre of gravity of a uniform lamina in form of a triangle whose coordinates are
(i) $(0,0),(2,6)$ and $(4,0)$

$$
\binom{\bar{x}}{\bar{y}}=\frac{1}{3}(0+2+4,0+6+0)=[(2,2)]
$$

(ii) $(0,3),(3,0)$ and $(6,3)[3,2]$
(iii) $(0,0),(0,6)$ and $(6,0)[2,2]$
(iv) $(0,0),(0,6)$ and $(3,0)[1,2]$
(v) $(1,0),(5,0)$ and $(0,6)[2,2]$
(vi) $(3,0),(6,0)$ and $(0,6)[3,2]$

Example 7

The figure below shows a lamina formed by joining together a rectangular solid and triangular solid. Find the C.O.G of the composite lamina from $A E$ and $A B$.

Lamina	Area $\left(\mathrm{cm}^{2}\right)$	Weight	Distance of C.O.G from	
			AE	AB
ABDE	32	32 w	4	2
BCD	12	12 w	10	2
Composite	44	4 w	\bar{x}	\bar{y}

C.O.G from AE
$44 w \bar{x}=32 w \times 4+12 w \times 10$
$\bar{x}=5.64 \mathrm{~cm}$
C.O.G from $A B$
$44 w \bar{y}=32 w \times 2+12 w \times 2$
$\bar{y}=2 \mathrm{~cm}$

Example 8

The figure below shows a lamina formed b joining together a rectangular solid to a semi-circular solid. Find the C.O.G of the composite lamina

Lamina	Area $\left(\mathrm{cm}^{2}\right)$	Weight	Distance of C.O.G from	
		AE	AB	
ABCD	70	70 w	5	3.5
Semi- circle	19.24	19.24 w	$10+\frac{4 x 3.5}{3 \pi}$ $=11.49$	3.5
Composite	89.24	89.24 w	\bar{x}	\bar{y}

C.O.G from AD
$89.24 \mathrm{w} \bar{x}=19.24 \mathrm{w} \times 11.49+70 \mathrm{w} \times 5$

$$
\bar{x}=6.4 \mathrm{~cm}
$$

C.O.G from $A B$
$89.24 w \bar{y}=19.24 \mathrm{w} \times 3.5+70 \mathrm{w} \times 3.5$
$\bar{y}=3.5 \mathrm{~cm}$

Example 9

The figure below shows a uniform lamina consisting of a sector $A B C$ of a circle centre A and of radius 6a and a triangle ADC where angle $\operatorname{ADC}=90^{\circ}$ and $\mathrm{CAB}=60^{\circ}$.

Show that the distance of the centre of gravity of the composite body from Ad is $\frac{27 a \sqrt{3}}{4 \pi+3 \sqrt{3}}$
Solution
$\mathrm{AD}=\sqrt{(6 a)^{2}-(3 a)^{2}}=3 a \sqrt{3}$; let $\mathrm{w}=$ weght per unit area

Portion	Area	Weight	C.O.G from AD
P	$\frac{1}{2} x 3 a x 3 a \sqrt{3}$ $=4.5 \sqrt{3 a^{2}}$	$4.5 \sqrt{3 a^{2}} \mathrm{w}$	$\frac{3 a}{3}=a$
	$\frac{60^{0}}{360^{0}} \pi(6 a)^{2}=6 \pi a^{2}$	$6 \pi a^{2} w$	$\frac{2 x 6 a x \sin 30^{0}}{3 \times \frac{30^{0} \pi}{180^{0}}} \cos 30^{0}=\frac{6 a \sqrt{3}}{\pi}$
Composite	$\left(4.5 \sqrt{3 a^{2}}+6 \pi a^{2}\right)$	$\left(4.5 \sqrt{3 a^{2}}+6 \pi a^{2}\right) \mathrm{w}$	\bar{x}

$\bar{x}\left(\frac{9}{2} \sqrt{3}+6 \pi\right) a^{2} w=6 \pi a^{2} w \times \frac{6 a \sqrt{3}}{\pi}+\frac{9}{2} \sqrt{3 a^{2}} w \times a$
$\bar{x}(9 \sqrt{3}+12 \pi)=81 a \sqrt{3}$
$\bar{x}=\frac{81 a \sqrt{3}}{12 \pi+9 \sqrt{3}}=\frac{27 a \sqrt{3}}{4 \pi+3 \sqrt{3}}$

Example 10

Find the position of the centre of gravity of a uniform lamina in form of a triangle whose coordinates are $(2,2),(4,6)$ and $(0,3)$ respectively

$$
\binom{\bar{x}}{\bar{y}}=\frac{1}{3}(2+4+0,2+6+3)=\left(2, \frac{11}{3}\right)
$$

Example 11

Find the coordinates of the centre of the mass of the lamina shown below. Take A as the origin and $A D, A B$ as the x - and y - axes respectively

Solution

Let $\mathrm{m}=$ mass per cm^{2}
Let $(\bar{x}, \bar{y})=$ coordinates of C.O.G of composite

Portion	Area $\left(\mathrm{cm}^{2}\right)$	Mass	C.O.G from AB (cm)	C.O.G from AD (cm)
ABFE	9	9 m	1.5	1.5
BFC	4.5	4.5 m	2	4
EDC	24	24 m	$\left(3+\frac{8}{3}\right)=\frac{17}{3}$	2
ADCB	37.5	37.5 m	\bar{x}	\bar{y}

$\binom{\bar{x}}{\bar{y}} 37.5 m=9 m\binom{1.5}{1.5}+4.5 m\binom{2}{4}+24 m\binom{\frac{17}{3}}{2}$
$\bar{x}=4.227 \mathrm{~cm}$ and $\bar{y}=2.12 \mathrm{~cm}$

Example 12

The figure below is a lamina formed by welding together a rectangular metal sheet and a semicircular meal sheet.

Find the position of the centre of gravity from the side $O A$ and $A B$
Let $\mathrm{w}=$ weight per cm^{2}

Lamina	Weight	Distance of C.O.G from		
		OA	AB	
ABDO	800 w	20	10	
Semi-circle	39.27 w	$20+\frac{3 \times 5}{8}=21.875$	15	
Composite	839.27 w	\bar{x}	\bar{y}	

$839.27 \mathrm{w} \bar{x}=800 \mathrm{w} \times 20+39.27 \mathrm{w} \times 21.875 ; \bar{x}=20.088 \mathrm{~cm}$
$839.27 \mathrm{w} \bar{y}=800 \mathrm{w} \times 10+39.27 \mathrm{w} \times 15 ; \bar{y}=10.234 \mathrm{~cm}$
\therefore Position of C.O.G from OA and $A B$ is 20.088 cm and 10.234 cm respectively

Example 13

The figure OPQR below shows a metal sheet of uniform material cut in a shape of a trapezium; OP= $a, R Q=3 a$ and the vertical height of P from $R Q=a$.

Calculate the centre of gravity of the mass from R and $R Q$
Let $w=$ weight per cm^{2}

Lamina	Weight	Distance of C.O.G from	
		R	RQ
ROF	$\frac{1}{2} a^{2} \mathrm{w}$	$\frac{2 a}{3}$	$\frac{a}{3}$
OPFE	$a^{2} \mathrm{w}$	$\frac{2 a}{3}+\frac{a}{2}=\frac{7 a}{6}$	$\frac{a}{2}$
PEQ	$\frac{1}{2} a^{2} \mathrm{w}$	$\frac{7 a}{6}+\frac{a}{3}=\frac{9 a}{6}$	$\frac{a}{3}$
Composite	$2 a^{2} \mathrm{w}$	\bar{x}	\bar{y}

$2 a^{2} \mathrm{w} \bar{x}=\frac{1}{2} a^{2} \mathrm{w} \times \frac{2 a}{3}+a^{2} \mathrm{w} \times \frac{7 a}{6}+\frac{1}{2} a^{2} w x \frac{9 a}{6}=\left(\frac{2 a^{3}}{6}+\frac{7 a^{3}}{6}+\frac{9 a^{3}}{6}\right) w=\frac{18 a^{3}}{6} w ;$
$\bar{x}=\frac{18 a^{3}}{12 a^{2}}=\frac{3 a}{2}$
$2 a^{2} \mathrm{w} \bar{y}=\frac{1}{2} a^{2} \mathrm{wx} \frac{a}{3}+a^{2} \mathrm{wx} \frac{a}{2}+\frac{1}{2} a^{2} w x \frac{a}{3}=\left(\frac{a^{3}}{6}+\frac{a^{3}}{2}+\frac{a^{3}}{6}\right) w=\frac{5 a^{3}}{6} w$
$\bar{x}=\frac{5 a^{3}}{12 a^{2}}=\frac{5 a}{12}$
\therefore Centre of gravity is $\left(\frac{3 a}{2}, \frac{5 a}{12}\right)$

Centre of gravity of solids

1. C.O.G of a solid cone, Pyramid and tetrahedron

C.O.G lies along the line of symmetry at a distance $\frac{h}{4}$ from $A B$
$\mathrm{G}=\left(\frac{h}{4}, r\right)$
2. C.O.G of solid cylinder

C.O.G lies along the line of symmetry at a distance $\frac{h}{2}$ from $A B$
$\mathrm{G}=\left(\frac{h}{2}, r\right)$
3. C.O.G of solid hemisphere
C.O.G lies along the line of symmetry at a distance $\frac{3 r}{8}$ from $A B$
$\mathrm{G}=\left(\frac{3 r}{8}, r\right)$

4. C.O.G of a hollow(thin) hemisphere of radius r is at a distance $\frac{h}{3}$ from the base
5. C.O.G of a hollow (thin) cone, pyramid of tetrahedron of height h is at a distance $\frac{h}{3}$ from the base

Example 14

The figure below shows a lamina formed by joining together a cylindrical solid to a conical solid. Find the centre of gravity of the composite from $A E$ and $A B$

Solution

Let $w=$ weight per volume

Solid	Volume (cm^{3})	Weight	Distance of C.O.G from	
			AE	AB
Cylinder	339.29	339.29w	6	3
Cone	75.4	75.4w	$12+\frac{8}{4}=14$	3
Composite	414.69	414.69w	\bar{x}	\bar{y}

C.O.G from $\mathrm{AE}=414.69 \mathrm{w} \bar{x}=339.29 \times 6+75.4 \times 14$
$\bar{x}=7.45$
C.O.G from $\mathrm{AB}=414.69 \mathrm{w} \bar{y}=339.29 \times 3+75.4 \times 3$
$\bar{y}=3 \mathrm{~cm}$

Example 15

A body consists of a solid hemisphere of radius r joined to a solid right angled circular cone of base radius r and perpendicular height h. The pane surface of the cone and hemisphere coincide and both solids are made of the same uniform material. Show that the C.O.G of the body lies on the axis of symmetry at a distance $\frac{3 r^{2}-h^{2}}{4(h+2 r)}$ from the base of the cone.

Let $\mathrm{w}=$ weight per volume

Solid	Weight	C.O.G from y-axis
Cone	$\frac{1}{3} \pi r^{2} h w$	$\frac{3 h}{4}$
Hemisphere	$\frac{2}{3} \pi r^{3} w$	$h+\frac{3 r}{8}$
Composite	$\frac{1}{3} \pi r^{2}(h+2 r) w$	\bar{x}

$$
\begin{aligned}
& \frac{1}{3} \pi r^{2}(h+2 r) w \bar{x} \\
& \quad=\frac{1}{3} \pi r^{2} h w \times \frac{3 h}{4}+\frac{2}{3} \pi r^{3} w x\left(h+\frac{3 r}{8}\right)
\end{aligned}
$$

$$
(\mathrm{h}+2 \mathrm{r}) \bar{x}=\frac{3 h^{2}}{4}+2 r\left(h+\frac{3 r}{8}\right)
$$

$$
\bar{x}=\frac{3 h^{2}+8 h r+3 r^{2}}{4(h+2 r)}
$$

$$
\text { C.O.G from the base }=\frac{3 h^{2}+8 h r+3 r^{2}}{4(h+2 r)}-h
$$

$$
=\frac{3 r^{2}-h^{2}}{4(h+2 r)}
$$

Revision exercise 2

1. $A B C D$ is a trapezium in which $A B$ and $C D$ are parallel and length a and b respectively

Prove that the distance of the centre of gravity of the centre of mass from AB is $\frac{1}{3} h\left(\frac{a+2 b}{a+b}\right)$, where h is the distance between $A B$ and $C D$
2. The figure $A B C D$ below shows a metal sheet of uniform material cut in a shape of a trapezium: $A B=x, C D=y, A F=a, E B=b$ and h is the vertical distance between $A B$ and $C D$

Prove that the distance of the centre of gravity of the centre of mass from AB is $\frac{1}{3} h\left(\frac{3 y+a+b}{x+y}\right)$.
3. The figure below shows a sheet of metal in form of a square $A B C D$ of side 12 cm and an isosceles triangle BCE of height 9 cm

Find the distance of centre of gravity from line $A B$ and $A D[6 \mathrm{~cm}, 8.45 \mathrm{~cm}$]
4. The figure below shows a sheet of a metal in form of a square $A B C D$ of side $2 a$ and an equilateral triangle $B C E$.

Find the distance of centre of gravity from line $A B$ and $A D[a, 1.896 a]$
5. The diagram shows two uniform squares $A B F G$ and $B C D E$ joined together. The mass per unit area of BCDE is twice that ABFG.

Find the distance of the centre of gravity of the composite from AB and AG. $\left[1 \frac{2}{3} m, 3 m\right]$
6. Two uniform square lamina, each of side $3 m$ are joined together to form a rectangular lamina $6 \mathrm{~m} \times 3 \mathrm{~m}$. The weight per unit area of one square is twice the weight per unit mass of the other. Find the distance of the centre of gravity from the edge of the square [0.5 m]
7. Two solid cubes one of side 4 cm and the other of side 2 cm are made of the same uniform material. The smaller cube is glued centrally to the one of the faces of the larger cube as shown below

Find how far the centre of gravity of the composite body is from the common surface of the cube $\left[1 \frac{2}{3} \mathrm{~cm}\right]$
8. A uniform semi-circular lamina of radius 6 cm is joined to another uniform semi-circular lamina of radius 3 cm . The centre of the straight edges of each lamina coincides, but the laminas do not overlap. If the two laminas are made of the same material, find the centre of gravity of the composite lamina formed. [On the axis of symmetry, $\frac{28}{5 \pi} \mathrm{~cm}$ into the larger semicircle from the common diameter]
9. A uniform semi-circular lamina of radius 6 cm is joined to another uniform semi-circular lamina of radius 3 cm . The centre of the straight edges of each lamina coincides, but the laminas do not overlap. If the smaller semi-circle is made of a material having mass per unit area equal to twice that of the larger semi-circular lamina, find the position of the centre of gravity of the composite lamina formed. [On the axis of symmetry, $\frac{4}{\pi} \mathrm{~cm}$ into the larger semicircle from the common diameter]
10. A solid right circular cylinder has a base of radius 3 cm and height of 6 cm . The cylinder's circular top form the base of a solid right circular cone of base radius 3 cm and perpendicular height 4 cm . The cylinder and the cone are made of the same uniform material. Find the position of the centre of gravity of the composite. [On the axis of symmetry, $3 \frac{8}{11} \mathrm{~cm}$ above the base of the cylinder]
11. A body consists of a solid hemisphere of radius 4 cm joined to a solid circular cone of radius 4 cm and perpendicular height 12 cm . The plane surface of the cane and the hemisphere coincides and both solids are made of the same uniform material. Find the centre of gravity of the composite [On the axis of symmetry, 10.8 cm from the tip of the cone]

Centre of gravity of a remainder.

Example 16

Find the centre of gravity of the remainder of the rectangle $A B C D$ if a square PQRS is removed as shown below

Let $w=$ weight per cm^{2}

Portions	Area $\left(\mathrm{cm}^{2}\right)$	weight	Distance of C.O.G from	
			$A D$	$A B$
ABCD	96	$96 w$	6	4
PQRS	9	$9 w$	2.5	4.5
remainder	87	$87 w$	\bar{x}	\bar{y}

C.O.G from AD
$87 w \bar{x}=96 w \times 6-9 w \times 2.5$
$\bar{x}=6.362 \mathrm{~cm}$
C.O.G from $A B$
$87 w \bar{y}=96 w \times 4-9 w \times 4.6$
$\bar{y}=3.95 \mathrm{~cm}$

Example 17

Find the centre of gravity of the remainder of the square $A B C D$ offside 10 cm if a circle of radius $r=$ 3 cm is removed as shown below

Let $\mathrm{w}=$ weight $\mathrm{per} \mathrm{cm}^{2}$

Portions	Area $\left(\mathrm{cm}^{2}\right)$	weight	Distance of C.O.G from	
			$A D$	$A B$
ABCD	100	100 w	5	5
PQRS	28.27	28.27 w	4	6
remainder	71.73	71.73 w	\bar{x}	\bar{y}

C.O.G from AD: 71.73w $\bar{x}=100 \mathrm{w} \times 5-28.27 \mathrm{w} \times 5 ; \bar{x}=5.39 \mathrm{~cm}$
C.O.G from AB: $71.73 \mathrm{w} \bar{y}=100 \mathrm{w} \times 5-28.27 \mathrm{w} \times 6 ; \bar{x}=4.61 \mathrm{~cm}$

Example 18

A rectangle $A B C D$ is of $A B=15 \mathrm{~cm}$ and $A D=10 \mathrm{~cm}$. If a semi-circle is removed as shown below. Find the centre of gravity of the remainder solid

Let $\mathrm{w}=$ weight per cm^{2}				
Portions	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{cm}^{2}\right) \end{aligned}$	weight	Distance of C.O.G from	
			AD	AB
ABCD	150	150w	7.5	5
Semi-circle	14.14	14.14w	$5+\frac{4 \times 3}{3 \pi}=6.27$	4
remainder	135.8	135.86w	\bar{x}	\bar{y}
	6			

C.O.G from AD: $135.86 \mathrm{w} \bar{x}=150 \mathrm{w} \times 7.5-14.14 \mathrm{w} \times 6.27 ; \bar{x}=7.63 \mathrm{~cm}$
C.O.G from AB: $135.86 \mathrm{w} \bar{y}=150 \mathrm{w} \times 5-14.14 \mathrm{w} \times 4 ; \bar{x}=5.1 \mathrm{~cm}$

Example 19

A solid cube of 4 cm is made from a uniform material. From this a smaller cube is removed as shown

Find the centre of gravity of the remaining body
Let $\mathrm{w}=$ weight $\operatorname{per} \mathrm{cm}^{3}$

Portions	volume $\left(\mathrm{cm}^{3}\right)$	weight	Distance of C.O.G from	
			AD	AB
Big cube	64	64 w	2	2
Small cube	8	8 w	3	3
remainder	56	56 w	\bar{y}	\bar{y}

C.O.G from AD: $56 \mathrm{w} \bar{x}=64 \mathrm{w} \times 2-8 \mathrm{w} \times 2 ; \bar{x}=2 \mathrm{~cm}$
C.O.G from AB: $56 \mathrm{w} \bar{y}=64 \mathrm{w} \times 2-8 \mathrm{w} \times 3 ; \bar{y}=1.86 \mathrm{~cm}$

Example 20

$A B C D$ is a uniform rectangular sheet of cardboard of length 8 cm and width 6 cm . a square and a circular hole are cut off from the cardboard as shown below. Calculate the position of the centre of gravity of the remaining sheet

Let $\mathrm{w}=$ weight $\mathrm{per} \mathrm{cm}^{3}$

Portions	volume $\left(\mathrm{cm}^{3}\right)$	weight		Distance of C.O.G from	
			BC		
ABCD	48	64 w	4	3	
square	4	4 w	3	4	
Circle	3.14	3.142 w	6	4	
remainder	40.86	40.86 w	\bar{x}	\bar{y}	

C.O.G from AB: $40.86 \mathrm{w} \bar{x}=48 \mathrm{w} \times 4-(4 \mathrm{w} \times 3+3.14 \mathrm{w} \times 6) ; \bar{x}=3.944 \mathrm{~cm}$
C.O.G from BC: $40.86 \mathrm{w} \bar{y}=48 \mathrm{w} \times 3-(4 \mathrm{w} \times 4+3.14 \mathrm{w} \times 4) ; \bar{y}=2.825 \mathrm{~cm}$

Revision exercise 3

1. A circular lamina made of uniform material has its centre at the origin and radius 6 cm . Two smaller circles are cut from this circle, one of radius 1 cm and centre $(-1,-3)$ and another of radius 3 cm and centre $(1,2)$. Find the coordinates of the centre of gravity of the remaining shape. $\left[\frac{-4}{3}, \frac{-15}{26}\right]$
2. The diagram shows a uniform semi-circular lamina of radius 6 m with a semi-circular portion of radius 3 m missing.

Find the distance of the centre of gravity of the remaining shape from $A B$ as shown above $\left[\frac{28}{\pi}\right]$
3. A conical hole is made in one end of a right circular cylinder, The axis of symmetry of the cone is the same as that of the cylinder

The cylinder is of radius 2 cm and length 6 cm . The conical hole penetrates 4 cm into the cylinder and the circular hole at the end of the cylinder is of radius 1.5 cm . Find the position of the centre of gravity of the remaining body. [on axis of symmetry, $2 \frac{5}{17} \mathrm{~cm}$ from undrilled end]
4. The diagram below shows a uniform cylinder of radius 2 a and height 2 h with a cylindrical hole of radius a and height h drilled centrally at one plane end.

Show that the centre of gravity of the remaining solid is $\frac{13}{14} h$ from base $A B$
5. The figure below shows a uniform rectangular lamina $A B C D$ with a square GHIJ of side 3 cm and a quarter circular section AFE of radius 4.5 cm cut off

Find the coordinates of the centre of gravity from sides $A B$ and $A D$ taken as the x and y axes respectively [$6.149 \mathrm{~cm}, 4.874 \mathrm{~cm}$]

Toppling

Consider a body which is resting on a slope which is rough to prevent slipping. When the angle of the slope is such that the weight acts through X the will be on the point of toppling.

$$
\text { Where, } \theta=\tan ^{-1}\left(\frac{a}{b}\right)
$$

Example 21
The figure shows a uniform hemispherical solid of radius 30 cm with cylindrical hole of radius 5 cm and height 10 cm centrally drilled in it.

(a) Find the distance of centre of gravity from the flat surface
(b) If the figure is placed on an inclined plane with the flat surface in contact with the plane, calculate the angle that should be inclined, before toppling occurs assuming that sliding does not occur.

Solution

Let $\mathrm{w}=$ weight $\mathrm{per} \mathrm{cm}^{3}$

Portion	Volume $\left(\mathrm{cm}^{3}\right)$	Weight	C.O.G from	
			Flat face (cm)	y-axis (cm)
Hemisphere	$\frac{2}{3} \pi r^{3}=5648.668$	5648.668 w	$\frac{3 x 30}{8}=11.25$	30
Cylinder	$\pi r^{2} h=785.398$	785.398 w	5	30
remainder	4863.270	4863.270 w	\bar{y}	\bar{x}

C.O.G from flat face
$4863.270 \mathrm{w} \bar{y}=5648.668 \mathrm{w} \times 11.25-785.398 \mathrm{w} \times 5 ; \bar{y}=12.26$
C.O.G from y-axis
$4863.270 \mathrm{w} \bar{x}=5648.668 \mathrm{w} \times 30-785.398 \mathrm{w} \times 30 ; \bar{x}=30$

$$
\theta=\tan ^{-1}\left(\frac{30}{12.26}\right)=67.77^{0}
$$

Example 22

A body consists of a uniform solid cylinder of mass $6 m$, base radius r and height $2 r$, attached to a plane face of a uniform solid cone of mass 4 m base radius r and height r.

(a) Find the position of the centre of gravity of the body
(b) The body is now placed with its plane face AE in contact with a horizontal table. The surface of the table is rough enough to prevent slipping as the table is slowly tilted. Find the angle through which the table has to be tilted when the body is on the point of toppling.

Let $\mathrm{w}=$ weight $\operatorname{per} \mathrm{cm}^{3}$

Portion	Weight	C.O.G from		
		$\mathrm{AE}(\mathrm{cm})$	$\mathrm{AB}(\mathrm{cm})$	
Cylinder	6 mg	r	r	
cone	4 mg	$2 r+\frac{r}{4}=\frac{9 r}{4}$	r	
composite	10 mg	\bar{x}	\bar{y}	

C.O.G from AE

$10 \mathrm{mg} \bar{x}=4 \mathrm{mg} \times \frac{9 r}{4}+6 \mathrm{mg} \times \mathrm{r} ; \bar{x}=1.5 \mathrm{r}$
C.O.G from $A B$
$10 \mathrm{mg} \bar{y}=4 \mathrm{mg} \times r+6 \mathrm{mg} \times \mathrm{r} ; \bar{x}=\mathrm{r}$

$$
\theta=\tan ^{-1}\left(\frac{r}{1.5 r}\right)=33.69^{\circ}
$$

Equilibrium of suspended Iamina

Consider a lamina freely suspended from point A. The centre of gravity passes through the point of suspension

$$
\theta=\tan ^{-1}\left(\frac{B C}{A B}\right)
$$

Example 23

The uniform laminas below freely suspended from point A. In each case find the angle that line $A B$ makes with the vertical.

(ii)

(i) Solution

Let $w=$ weight $p e r \mathrm{~cm}^{2}$

Lamina	Area$\left(\mathrm{cm}^{2}\right)$	Weight	C.O.G from	
			AF	AB
AFEH	4	4w	1	2
HBCD	2	2w	$1+1=2$	0.5
Composite	6	6w	\bar{x}	\bar{y}

(ii)
digitalteachers.co.ug

Let $w=$ weight $\operatorname{per} \mathrm{cm}^{2}$

Lamina	Area $\left(\mathrm{cm}^{2}\right)$	Weight	C.O.G from		
	6		1	AD	
ADCE	6	9 w	$2+\frac{6}{3}=4$	1.5	
EBC	9	15 w	\bar{x}	\bar{y}	
Composite	15				

C.O.G from AD: $15 \mathrm{w} \bar{x}=6 \mathrm{w} \times 1+9 \mathrm{w} \times 4 ; \bar{x}=2.8 \mathrm{~cm}$
C.O.G from $A B: 15 w \bar{y}=6 \mathrm{w} \times 1.5+9 \mathrm{w} \times 1 ; \bar{y}=1.2 \mathrm{~cm}$

$\theta=\tan ^{-1}\left(\frac{1.2}{2.8}\right)=23.2^{0}$

Example 24

The figure below shows a uniform lamina PQRS of side 2 L with semi-circular lamina cut off as show below

(a) Show that the distance of the centre of gravity of the from PQ is $\frac{20 L}{3(8-\pi)}$.
(b) The figure is freely suspended from point R. Find the angle RS makes with the vertical.

Let $w=$ weight per cm^{2}

Lamina	Area $\left(\mathrm{cm}^{2}\right)$	Weight	C.O.G from PQ
PQRS	$4 \mathrm{~L}^{2}$	$4 \mathrm{~L}^{2} \mathrm{w}$	L
Semi-circle	$\frac{1}{2} \pi L^{2}$	$\frac{1}{2} \pi L^{2} \mathrm{w}$	$\frac{4 L}{3 \pi}$
Composite	$\left(4-\frac{\pi}{2}\right) L^{2}$	$\left(4-\frac{\pi}{2}\right) L^{2} \mathrm{w}$	\bar{y}

C.O.G from PQ:
$\left(4-\frac{\pi}{2}\right) L^{2} \mathrm{w} \bar{y}=4 \mathrm{~L}^{2} \mathrm{w} \times \mathrm{L}+\frac{1}{2} \pi L^{2} \mathrm{w} \times \frac{4 L}{3 \pi} ;$
$\left(\frac{8-\pi}{2}\right) \bar{y}=4 L-\frac{2 L}{3}$
$\left(\frac{8-\pi}{2}\right) \bar{y}=\frac{10 L}{3}$
$\bar{y}=\frac{20 L}{3(8-\pi)}$

C.O.G from RS
$2 L-\frac{20 L}{3(8-\pi)}=\frac{28 L-6 L \pi}{3(8-\pi)}$
$\theta=\tan ^{-1}\left(\frac{28 L-6 L \pi}{3(8-\pi)} / L\right)=32.12^{0}$

Example 25

$A B C D$ is a uniform square lamina of side a from which a triangle $A D E$ is removed, E being a point of distance t from C
(i) Show that the centre of gravity of the remaining lamina is at a distance $\frac{a^{2}+a t+t^{2}}{3(a+t)}$ from BC
(ii) If the lamina is placed in a vertical plane with CE resting on a horizontal table show equilibrium will not be possible if $t<\frac{a(\sqrt{3}-1)}{2}$

Let $\mathrm{w}=$ weight $\mathrm{per} \mathrm{cm}^{2}$

Lamina	Area $\left(\mathrm{cm}^{2}\right)$	Weight	C.O.G from BC
ABCD	a^{2}	$\frac{\mathrm{a}^{2} \mathrm{w}}{}$	$\frac{a}{2}$
DAE	$\frac{1}{2} a(a-t)$	$\frac{1}{2} a(a-t) \mathrm{w}$	$a-\frac{1}{3}(a-t)=\frac{2 a-t}{3}$
remainder	$\frac{1}{2} a(a+t)$	$\frac{1}{2} a(a+t) w$	\bar{x}
$\frac{1}{2} a(a+t) w \bar{x}=a^{2} w x \frac{a}{2}-\frac{1}{2} a(a-t) \mathrm{w} \times \frac{2 a-t}{3}$			
$\bar{x}(a+t)=\frac{3 a^{2}-(a-t)(2 a+t)}{3}$			
$\bar{x}=\frac{a^{2}+a t+t^{2}}{3(a+t)}$			

(ii) $\mathrm{t}<\bar{x}$
$t<\frac{a^{2}+a t+t^{2}}{3(a+t)}$
$3 a t+3 t^{2}<a^{2}+a t+t^{2}$

$$
t<\frac{a(-1-\sqrt{3})}{2} \text { or } t<\frac{a(\sqrt{3}-1)}{2}
$$

$2 t^{2}+2$ at $-a^{2}<0$
$t<\frac{-2 a \pm \sqrt{(2 a)^{2}-4 \times 2 x-a^{2}}}{2 \times 2}$

$$
t<\frac{-a \pm a \sqrt{3}}{2}
$$

Since $\frac{a(-1-\sqrt{3})}{2}$ give a-t <0 then

$$
t<\frac{a(\sqrt{3}-1)}{2}
$$

Example 26

$A B C D$ is a uniform square lamina of side 2 cm from which a triangle EDC is removed. E being a point on $A D$ such that $E D=x \mathrm{~cm}$
(i) Show that the centre of gravity of the remaining lamina is at a distance $\frac{12-6 x+x^{2}}{3(4-x)}$ from $A B$
(ii) If the lamina is placed in a vertical plane with $A E$ resting on a rough horizontal table, show that it will topple if $x>3-\sqrt{3}$

Lamina	Area $\left(\mathrm{cm}^{2}\right)$	Weight	C.O.G from BC
ABCD	4	4 w	1
DAE	$\frac{1}{2}(2 x)=\mathrm{x}$	$x \mathrm{w}$	$2-\frac{1}{3} x=\frac{6-x}{3}$
remainder	$(4-x)$	$(4-x) w$	\bar{x}

Let $w=$ weight per cm^{2}
$\bar{x}(4-x) w=4 w x 1-\frac{(6-x) w x}{3}$
$\bar{x}(4-x)=\frac{12-6 x+x^{2}}{3}$
$\bar{x}=\frac{12-6 x+x^{2}}{3(4-x)}$
(ii) $2-x>\bar{x}$
$2-x>\frac{12-6 x+x^{2}}{3(4-x)}$
$24-18 x+3 x^{2}>12-6 x+x^{2}$
$x^{2}-6 x+6>0$
$x>\frac{6 \pm \sqrt{6^{2}-4 \times 1 \times 6}}{2 x 1} ; x>\frac{6 \pm \sqrt{12}}{2}$
$x>3-\sqrt{3}$ or $x>3+\sqrt{3}$
Since $3+\sqrt{3}$ then $x>3-\sqrt{3}$

Example 26

A uniform solid hemisphere is in equilibrium in space by two inelastic strings $A B$ which is horizontal and $C D$ which makes an angle θ with the horizontal. The strings and the diameter $B C$ lie in the same vertical plane.

Given that the weight of the hemisphere is 24 N , show that
(i) $\tan \theta=\frac{48}{55}$
(ii) Tension in strings $A D$ and $A B$ are 36.5 N and 27.5 N respectively

Solution

$\tan \alpha=\frac{3 r}{8} / r=\frac{3}{8}$ and $\tan \beta^{\frac{3 r}{8}} / r=\frac{3}{8}$
$\theta=\alpha+\beta$
$\tan \theta=\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}$
$\tan \theta=\frac{\frac{3}{8}+\frac{3}{8}}{1-\frac{3}{8} x^{\frac{3}{8}}}=\frac{48}{55}$

$$
\begin{align*}
& (\rightarrow) \mathrm{T}_{2} \cos \theta=\mathrm{T}_{1} \ldots \ldots . \text { (i) } \\
& (\uparrow) \mathrm{T}_{2} \sin \theta=24 \ldots \ldots . . \text { (ii) } \tag{ii}\\
& \frac{T_{2} \sin \theta}{T_{2} \cos \theta}=\frac{24}{T_{1}} \\
& \tan \theta=\frac{24}{T_{1}} \\
& T_{1}=\frac{24}{\tan \left(\frac{48}{55}\right)}=27.5 \mathrm{~N} \\
& T_{2}=\frac{24}{\sin \theta}=\frac{24}{\sin \left(\tan ^{-1} \frac{48}{55}\right)} 36.5 \mathrm{~N}
\end{align*}
$$

Example 27

Prove that the centre of mass of a solid cone is $\frac{1}{4}$ of the vertical height from the base
By subdividing the cone into small discs

Let $w=$ weight per unit volume
Volume of a disc $=\pi r^{2} h=\pi b^{2} d x$
By using similarity of figures
$\frac{b}{r}=\frac{h-x}{h} ; b=\frac{(h-x)}{h} r$
By substitution
Volume of disc $=\pi\left(\frac{(h-x)}{h}\right)^{2} r^{2} d x$
Volume of a cone $=\frac{1}{3} \pi r^{2} h$

Weight of a cone $=\frac{1}{3} \pi r^{2} h w$
Moment of the whole cone about the y-axis $=\frac{1}{3} \pi r^{2} h w x$

Equating moments of the whole solid with the sum of moments of discs about y-axis

$$
\begin{aligned}
& \frac{1}{3} \pi r^{2} h w \bar{x}=\pi \int_{0}^{h}\left(\frac{(h-x)}{h}\right)^{2} r^{2} w x d x \\
& \frac{1}{3} \pi r^{2} h w \bar{x}=\frac{\pi}{h^{2}} \int_{0}^{h}\left(h^{2}-2 h x+x^{2}\right) r^{2} w x d x \\
& \frac{1}{3} h^{3} \bar{x}=\int_{0}^{h}\left(h^{2} x-2 h x^{2}+x^{3}\right) d x \\
& \frac{h^{3} \bar{x}}{3}=\left[\frac{h^{2} x^{2}}{2}-\frac{2 h x^{3}}{3}+\frac{x^{4}}{4}\right]_{0}^{h} \\
& \frac{h^{3} \bar{x}}{3}=\frac{h^{4}}{12} \\
& \bar{x}=\frac{h}{4}
\end{aligned}
$$

Example 28

The figure ABCDE below shows a solid cone of radius r, height, h joined to solid cylinder of the same material with the same radius and height, H.

(i) If the centre of gravity of the whole solid lies in the plane of the cone where the two solids are joined, find H .
Let $w=$ weight per unit volume

Lamina	volume	Weight	C.O.G from BC
cone	$\frac{1}{3} \pi r^{2} h$	$\frac{1}{3} \pi r^{2} h w$	$H+\frac{h}{4}$
cylinder	$\pi r^{2} H$	$\pi r^{2} H w$	$\frac{1}{2} H$
composite	$\pi r^{2}\left(H+\frac{h}{3}\right)$	$\pi r^{2}\left(H+\frac{h}{3}\right) w$	H

Equating moments
$\pi r^{2}\left(H+\frac{h}{3}\right) w H=\frac{1}{3} \pi r^{2} h w x\left(H+\frac{h}{4}\right)+\pi r^{2} H w x \frac{H}{2}$
$\left(H+\frac{h}{3}\right) H=\frac{1}{3} h\left(H+\frac{h}{4}\right)+\frac{H^{2}}{2}$
$H^{2}+\frac{H h}{3}=\frac{H h}{3}+\frac{h^{2}}{12}+\frac{H^{2}}{2}$
$\frac{H^{2}}{2}=\frac{h^{2}}{12}$
$\mathrm{H}=\frac{h}{\sqrt{6}}$
(ii) If instead $\mathrm{H}=\mathrm{h}$ and $\mathrm{r}=1 / 2 \mathrm{r}$, find the angle AB makes with the horizontal, if the body is hanged from A.

Let distance from $B C$ to the centre of gravity be \bar{y} and substituting H and r
$\pi\left(\frac{r}{2}\right)^{2}\left(h+\frac{h}{3}\right) w \bar{y}=\pi\left(\frac{r}{2}\right)^{2} h w x \frac{1}{2} h+\frac{1}{3} \pi\left(\frac{r}{2}\right)^{2} h w x\left(h+\frac{h}{4}\right)$
$\frac{4 h}{3} \bar{y}=\frac{h^{2}}{2}+\frac{5 h^{2}}{12}=\frac{11 h^{2}}{12}$
$\bar{y}=\frac{11 h}{16}$
If the body is hang from A

$$
\tan \theta=\left(\frac{1}{2} h\right) \div\left(\frac{5 h}{16}\right)
$$

$$
\theta=57.99^{\circ}
$$

Therefore AB makes an angle $90-57.99^{\circ}=32.01^{\circ}$
with horizontal

Revision exercise 4

1. The uniform laminas below are freely suspended from point A. In each case find the angle that line $A B$ makes with the vertical.

2. The figure $A B C D E F G H I J$ shows a symmetrical composite lamina made up of a semi-circle of radius 3 cm . a rectangle CDEF 2 cm by 8 cm and another rectangle $G H I J 6 \mathrm{~cm}$ by 4 cm .

Find the distance of the centre of gravity of this lamina from HI. If the lamina is suspended from H by means of a peg through a hole, calculate the angle of inclination of HG to the vertical [$6.72 \mathrm{~cm}, 24.1^{\circ}$]
3. A, B, C and D are points $(0,0),(10,0),(7,4)$ and $(3,3)$ respectively. If $A B, B C, C D$ and $D A$ are made of a thin wire of uniform mass, find the coordinates of the centre of gravity.[5, 1.5]
4. A body consists of a uniform solid cylinder of base radius r and height h, attached to a plane face of a uniform solid cone of base radius r and height 4 cm .

Show that the distance of the centre of gravity of the solid from AE is $\frac{3 h^{2}+8 h+8}{6 h+8}$.
5. $A B C D$ is a uniform square lamina of side 2 a from which an isosceles triangle $A B E$ is cutaway. In this triangle $A B=B E$ and the distance of E from $A B=d$.
(i) Show that G, the centre of gravity of the remaining body is a distance $\frac{12 a^{2}-d^{2}}{3(4 a-d)}$ from $A B$.
(ii) If $\mathrm{d}=\frac{a}{2}$ and the remaining body is suspended by the vertical string from A , find the angle which AD makes with the vertical. [41.8 ${ }^{0}$]
6. $A B C D$ is a uniform rectangular lamina in which $A B=p$ and $B C=3 p$. The point E is on $A D$ such that $E D=3 q$.
(i) Show that G the centre of gravity of the trapezium $A B C E$ is a distance $\frac{3 p^{2}-3 p q+q^{2}}{(2 p-q)}$ from $A B$ and find its distance from BC.
(ii) When the trapezium is suspended from E, the edge $B C$ is horizontal, prove that $q=\frac{1}{2} p(3-\sqrt{3})$.
7. A child's toy consists of a solid uniform hemisphere of radius r and a solid right circular cone of base radius r and height h. If the density of the hemisphere is k time that of a cone;
(i) Show that the distance from the vertex of the cone to the centre of gravity of the toy is $\frac{4 r(3 r+8 h)+3 h^{2}}{4(2 k r+h)}$
(ii) If the toy is suspended from a point on the rim of the common base and rests in equilibrium with the axis of the cone inclined at an angle θ to the downward vertical. Show that $\tan \theta=\frac{4 r(2 k r+h)}{h^{2}-3 k r^{2}}$
8. A semi-circular lamina of radius r and bas $A B$ is cut from a large semi-circular lamina of radius $2 r$ with diameter AC.
(i) Determine the centre of gravity of the remainder[2r, 0.99r]
(ii) If the remainder is freely suspended from A, find the inclination of $A B$ to the vertical[26.3 ${ }^{\circ}$]
9. The figure $A B C D E F$ below shows a uniform lamina in form of a rectangle from which a hole in form of a semi-circle was made. The diameter of the semicircle is 6 cm .

(a) Find the centre of gravity from $A C$ and CD if the semicircle is removed.[2.47cm, 4.06 cm]
(b) If the remaining lamina is suspended at D, find the angle CD makes with the vertical (82.56°]
10. The figure below shows a uniform rectangular lamina $A B C D$ with a triangle DFC and quarter circular lamina section BFC all of the same density. F is the centre of the circle from which the quadrant forms part.

(a)Find the coordinates of the centre of gravity from sides $A B$ and $A E$ taken as x and y-axes respectively
(b) If the lamina is suspended about A, find the angle that $A B$ makes with the horizontal.

Centre of gravity of the lamina whose area is bounded.

(i) C.O.G of the area bounded in the first quadrant
(ii)

C.O.G from y -axis: $\mathrm{w} \bar{x} \int y d x=w \int x y d x$
C.O.G from the x -axis: $\mathrm{w} \bar{y} \int y d x=w \int \frac{y}{2} y d x$

Where $\mathrm{w}=$ weight per unit area

Example 28

Find the coordinates of the centre of gravity of the uniform lamina enclosed by the curve x^{2}, the x axis and the line $x=4$

C.O.G from y-axis: $\mathrm{w} \bar{x} \int y d x=w \int x y d x$
$\bar{x} \int_{0}^{4} y d x=\int_{0}^{4} x y d x$
$\bar{x} \int_{0}^{4} x^{2} d x=\int_{0}^{4} x\left(x^{2}\right) d x$

$$
\begin{aligned}
& \bar{x}\left[\frac{x^{3}}{3}\right]_{0}^{4}=\left[\frac{x^{4}}{4}\right]_{0}^{4} \\
& \bar{x}=3 \\
& \mathrm{w} \bar{y} \int y d x=w \int \frac{y^{2}}{2} d x \\
& \bar{y} \int_{0}^{4} x^{2} d x=\frac{1}{2} \int_{0}^{4} x^{4} d x \\
& \bar{y}\left[\frac{x^{3}}{3}\right]_{0}^{4}=\frac{1}{2}\left[\frac{x^{5}}{5}\right]_{0}^{4}
\end{aligned}
$$

$$
\bar{y}=4.8
$$

Example 29

Find the coordinates of the centre of gravity of uniform lamina enclosed by the curve $y^{2}=9 x$, the $x-$ axis and the line $x=1$ and $x=4$ and lying in the first quadrant

$\bar{x} \int_{1}^{4} y d x=\int_{1}^{4} x y d x$

$$
\begin{aligned}
& \bar{x} \int_{1}^{4} 3 x^{\frac{1}{2}} d x=\int_{1}^{4} x\left(3 x^{\frac{1}{2}}\right) d x \\
& 3 \bar{x}\left[\frac{x^{\frac{3}{2}}}{2}\right]_{1}^{4}=5\left[\frac{x^{\frac{5}{2}}}{2}\right]_{1}^{4} \\
& \bar{x}=2.66
\end{aligned}
$$

$\mathrm{w} \bar{y} \int y d x=w \int \frac{y^{2}}{2} d x$
$\bar{y} \int_{1}^{4} 3 x^{\frac{1}{2}} d x=\frac{1}{2} \int_{1}^{4} 9 x d x$

$$
\begin{aligned}
& \bar{y}\left[\frac{x^{\frac{3}{2}}}{2}\right]_{1}^{4}=\frac{3}{2}\left[\frac{x^{2}}{2}\right]_{1}^{4} \\
& \bar{y}=2.41
\end{aligned}
$$

(ii) C.O.G of the area bounded in the first and fourth quadrant

Taking moments about the y -axis: $\mathrm{w} \bar{x} \int 2 y d x=w \int x(2 y) d x$
Where w- weight per unit area

Example 30

Find the coordinates of the centre of gravity of the uniform lamina enclosed by the curve $y^{2}=4 x$ and the line $x=9$

$\mathrm{w} \bar{x} \int_{0}^{9} 2 y d x=\int_{0}^{9} x(2 y) d x$

$$
\begin{aligned}
& \bar{x} \int_{0}^{9} x^{1 / 2} d x=\int_{0}^{9} x \cdot x^{1 / 2} d x \\
& 3 \bar{x}\left[\frac{x^{\frac{3}{2}}}{2}\right]_{0}^{9}=5\left[\frac{x^{\frac{5}{2}}}{2}\right]_{0}^{9} \\
& \bar{x}=5.4 \\
& (\bar{x}, \bar{y})=(5.4,0)
\end{aligned}
$$

Example 30

Show that the position of C.O.G of a uniform semi-circular lamina of radius r is $\frac{4 r}{3 \pi}$ from th straight edge.

Solution

Area of semi-circle $=$ Area of element of semi-circle $\mathrm{W} \frac{1}{2} \pi r^{2} \bar{x}=w \int_{0}^{r} x(2 y) d x$

But a semi-circle is part of a circle of radius r whose Equation is $x^{2}+y^{2}=r^{2}$

$$
\begin{aligned}
& \mathrm{y}=\left(r^{2}-x^{2}\right)^{\frac{1}{2}} \\
& \frac{1}{2} \pi r^{2} \bar{x}=2 \int_{0}^{r} x\left(r^{2}-x^{2}\right)^{\frac{1}{2}} d x \\
& \frac{1}{2} \pi r^{2} \bar{x}=2\left[-\frac{\left(r^{2}-x^{2}\right)^{\frac{3}{2}}}{3}\right]_{0}^{r} \\
& \frac{1}{2} \pi r^{2} \bar{x}=\frac{2 r^{3}}{3} \\
& \bar{x}=\frac{4 r}{3 \pi}
\end{aligned}
$$

Example 31

Show that the centre of gravity of a uniform lamina in shape of a sector of a circle of radius r and subtending an angle 2α at the centre O is given by $\frac{2 r \sin \alpha}{3 \alpha}$ from O.

The strip OPQ approximates a triangle and its C.OG
is at a distance $\frac{2}{3} r$ from O. The distance of C.O.G
from O is therefore $\frac{2}{3} r \cos \theta$
Area of sector = element of area of sector

$$
\begin{aligned}
& \mathrm{w} \frac{1}{2} r^{2}(2 \alpha) \bar{x}=w \int_{-\alpha}^{\alpha} x y d x \\
& \frac{1}{2} r^{2}(2 \alpha) \bar{x}=\int_{-\alpha}^{\alpha} \frac{2}{3} r \cos \theta\left(\frac{1}{2} r\right) d \theta \\
& \alpha \bar{x}=\frac{1}{3} \int_{-\alpha}^{\alpha} r \cos \theta d \theta \\
& \alpha \bar{x}=\frac{r}{3}[\sin \theta]_{-\alpha}^{+\alpha} \\
& \bar{x}=\frac{2 r \sin \alpha}{3 \alpha}
\end{aligned}
$$

For a complete semi-circle, $\alpha=\frac{\pi}{2}$
$\therefore \bar{x}=\frac{4 r}{3 \pi}$

Centre of gravity of solids of revolution

y-axis

Taking moments about y -axis: $\bar{x} w \pi \int y^{2} d x=w \pi \int x y^{2} d x$; where $\mathrm{w}=$ weight per unit volume

Example 32

Find the centre of gravity of a solid generated by rotating about the x-axis, the area under $y=x$ from $x=0$ and $x=3$.

$\bar{x} w \pi \int y^{2} d x=w \pi \int x y^{2} d x$

$$
\begin{aligned}
& \bar{x} \int_{0}^{3} x^{2} d x=\int_{0}^{3} x\left(x^{2}\right) d x \\
& \bar{x}\left[\frac{x^{3}}{3}\right]_{0}^{3}=\left[\frac{x^{4}}{4}\right]_{0}^{3} \\
& \bar{x}=2.25 \\
& (\bar{x}, \bar{y})=(2.25,0)
\end{aligned}
$$

Example 33

Find the centre of the solid generated by rotating about the x-axis, the area bounded by $y^{2}=5 x$ the x-axis, the lines $x=1$ and $x=3$ and lies in the first quadrant.

$\bar{x} w \pi \int y^{2} d x=w \pi \int x y^{2} d x$

$$
\begin{aligned}
& \bar{x} \int_{1}^{3} 5 x d x=\int_{1}^{3} x(5 x) d x \\
& \bar{x}\left[\frac{x^{2}}{2}\right]_{1}^{3}=\left[\frac{x^{3}}{3}\right]_{1}^{3} \\
& \bar{x}=2.17
\end{aligned}
$$

Example 34

Show that the position of centre of gravity of a uniform solid right circular cone of base radius r and height h is given by $\frac{h}{4}$ from the straight edge.

$\bar{x} w \frac{1}{3} \pi r^{2} h=w \pi \int x y^{2} d x$
$\bar{x} \frac{1}{3} r^{2} h=\int x y^{2} d x$
From similarity $\frac{y}{x}=\frac{r}{h}$

$$
\begin{aligned}
& \mathrm{y}=\frac{r}{h} x \\
& \bar{x} \frac{1}{3} r^{2} h=\int x\left(\frac{r}{h} x\right)^{2} d x \\
& \bar{x} \frac{1}{3} r^{2} h=\left(\frac{r^{2}}{h^{2}}\right)\left[\frac{x^{4}}{4}\right]_{0}^{h} \\
& \bar{x}=\frac{3 h}{4}
\end{aligned}
$$

From the straight edge
$\bar{x}=h-\frac{3 h}{4}=\frac{h}{4}$

Example 35

Show that the position of the centre f gravity of a uniform solid hemisphere of radius r is $\frac{3 r}{8}$ from the straight edge.

$\frac{2}{3} \pi r^{3} \bar{x} w=w \pi \int_{0}^{r} x y^{2} d x$
But $x^{2}+y^{2}=r^{2}=>y^{2}=r^{2}-x^{2}$

$$
\begin{aligned}
& \frac{2}{3} r^{3} \bar{x}=\int_{0}^{r} x\left(r^{2}-x^{2}\right) d x \\
& \frac{2}{3} r^{3} \bar{x}=\left[r^{2} \frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{r} \\
& \frac{2}{3} r^{3} \bar{x}=\frac{r^{4}}{2}-\frac{r^{4}}{4} \\
& \bar{x}=\frac{3 r}{8}
\end{aligned}
$$

Revision exercise 5

1. Find the coordinates of the centre of gravity of the uniform lamina enclosed by the curve $y=x^{2}$, the x-axis and the line $x=2[1.5,1.2]$
2. Find the coordinates of the centre of gravity of the uniform lamina enclosed by the curve $y=2 x-x^{2}$ and the x-axis. [1.0, 0.4]
3. Find the coordinates of the centre of gravity of a uniform lamina enclosed by the curve $y=x^{2}+2$, the x-axis and the lines $x=2$ and $x=2[1.56,2.25]$
4. Find the coordinates of the centre of gravity of the uniform lamina lying in the first quadrant and enclosed by the curve $y^{2}=8 x$, the x-axis and the lines $x=2$ and $x=8[5.31,3.21]$
5. Find the coordinates of the centre of gravity of the uniform lamina lying in the first quadrant and enclosed by the curve $y^{2}=x-8$ and the axes [0.4, 0.375]
6. Find the coordinates of the centre of gravity of the uniform lamina enclosed by the curve $y=x^{2}$ and the line $y=3 x$. [1.5, 3.6]
7. Find the coordinates of the centre of gravity of the uniform lamina lying in the first quadrant and enclosed by the curve $y=4-x^{2}, y=3 x^{2}$ and the y-axis. [0.375, 2.2]
8. Find the coordinates of the centre of gravity of the uniform lamina enclosed by the curve $y=x^{3}$, the x-axis and the line $x=3[2.4,7.14]$
9. The area enclosed by the curve $y^{2}=x$, the x-axis, the line $x=4$ and lying in the first quadrant is rotated about the x-axis through one revolution. Find the coordinates of the centre of gravity of the uniform solid formed. [2.67, 0]
10. The area enclosed by the curve $y^{2}=x$, the x-axis, the line $x=2, x=4$ and lying in the first quadrant is rotated about the x-axis through one revolution. Find the coordinates of the centre of gravity of the uniform solid formed. [3.39, 0]
11. The area enclosed by the curve $y=x^{2}+3$, the x-axis, the y-axis and the line $x=2$ is rotated about the x-axis through one revolution. Find the coordinates of the centre of gravity of the uniform solid formed. [1.3, 0]
12. The area enclosed by the curve $y=x^{3}$, the x-axis and the line $x=3$ is rotated about the x-axis through one revolution. Find the coordinates of the centre of gravity of the uniform solid formed.[2.625, 0]

Surface of revolution

Example 36
Show that the centre of gravity of a uniform thin hemispherical cup of radius r is at a distance $\frac{r}{2}$ from the base

Surface area of = element of surface area a hemisphere
$\mathrm{w} 2 \pi r^{2} \bar{x}=w 2 \pi \int_{0}^{\frac{\pi}{2}} x y d x$
$2 r^{2} \bar{x}=2 \int_{0}^{\frac{\pi}{2}}(r \sin \theta x r \cos \theta) r d \theta$
$2 r^{2} \bar{x}=r^{3} \int_{0}^{\frac{\pi}{2}} 2 \sin \theta x r \cos \theta d \theta$
$\bar{x}=\frac{r}{2} \int_{0}^{\frac{\pi}{2}} \sin 2 \theta d \theta$
$\bar{x}=\frac{r}{2}\left[-\frac{1}{2} \cos 2 \theta\right]_{0}^{\frac{\pi}{2}}$
$\bar{x}=-\frac{r}{4}\left[\cos \left(\frac{\pi}{2}\right)-\cos 2(0)\right]$
$\bar{x}=-\frac{r}{4}(-1-1)=\frac{r}{2}$

Thank you
Dr. Bbosa Science

