

Sponsored by

Coplanar forces (Rigid bodies)

A rigid body is one in which distances between its various parts remain fixed.

Equilibrium of a rigid body

(i) Sum of forces acting in one direction is equal to the sum of force acting in opposite direction
(ii) Sum of clockwise moments about a point is equal to sum of anticlockwise moments about the same point.

Points to note

- When a rigid body rests in contact with a smooth wall and a string tied at the base the reaction on the body is perpendicular the surface

- When a rigid body rests in contact with a Rough wall and ground

- A rigid body resting against a smooth peg or bar, the reaction on the rigid body is perpendicular

- When a rod is hinged, the reaction at the hinge acts at an angle to either the horizontal or vertical

Smooth contacts at a ladder

Example 1

A uniform ladder $A B$ of mass 30 kg rests with its upper end A against a smooth vertical wall and the lower end B on a smooth horizontal ground. A light inextensible string, which has one end attached to B and the other end attached to the wall, keeps the ladder in equilibrium inclined at 60° to the horizontal. The vertical plane containing the ladder and the string is at right angles to the wall. Find
(ii) Normal reaction at point A and B
(i) Tension in the string
Let the length of the ladder $=2 \mathrm{~L}$

(个) $R_{B}=30 g=30 \times 9.8=294$
$(\rightarrow) R A=T$ \qquad (i)

$$
\begin{gather*}
B \overline{W_{A}} \times 2 L \sin \theta=30 g \times L \cos \theta \ldots \ldots . \tag{ii}\\
R_{A} \times 2 L \sin 60=30 g \times L \cos 60 \\
R A=84.87 \mathrm{~N} \\
T=84.87 \mathrm{~N}
\end{gather*}
$$

Example 2

A uniform ladder $A B$ of mass 10kgand length $4 m$ rests with its upper end A against a smooth vertical wall and lower end B on smooth horizontal ground. A light horizontal string, which has one end attached to B and the other end attached to the wall, keeps the ladder in equilibrium at an angle $\tan ^{-1} 2$ to the horizontal. The vertical plane containing the ladder and the string is at right angles to the wall. A man of mass 100 kg ascends the ladder.
(i) If the string will break when the tension exceeds 490 N , find how far up the ladder the man can go before this occurs
(ii) What tension must the string be capable of withstanding if the man is to reach the top of the ladder

Let the distance a man ascends be y
$(\rightarrow) R_{A}=490 \mathrm{~N}$
B) $R_{A} \times 4 \sin \theta=10 g \times 2 \cos \theta+100 g y \cos \theta$
$R_{A} \times 4 \tan \theta=20 g+100 g y$
$490 \times 4 \tan \theta=20 \mathrm{~g}+100 \mathrm{gy}$
$\mathrm{y}=\frac{490 \times 4 \times 2-29 \times 9.8}{100 \times 9.8}=3.8 \mathrm{~m}$
(ii)
B) $R_{A} \times 4 \sin \theta=10 g \times 2 \cos \theta+100 g \times 4 \cos \theta$
$R_{A} \times 4 \tan \theta=20 g+400 g$
$R A=514.5 \mathrm{~N}$
$\mathrm{T}=514.5 \mathrm{~N}$

Example 3

A uniform ladder $A B$ of weight W and length $4 m$ rests with its upper end A against a smooth vertical wall and the lower end B on a smooth horizontal ground. The ladder is kept in equilibrium inclined at an angle θ to the ground by a light horizontal string attached to the wall and point C on the ladder. The vertical plane containing the ladder and the string is at right angle to the wall.

If $\tan \theta=2$, find the tension in the string when $B C$ is of length $3 m$

(个) $R_{B}=W$ \qquad (i)
$(\rightarrow) \mathrm{R}_{\mathrm{A}}=\mathrm{T}$ \qquad (ii)

$$
\begin{aligned}
& \text { B } \mathrm{R}_{\mathrm{A}} \times 4 \sin \theta=\mathrm{w} \times 2 \cos \theta+\mathrm{T} \times 3 \sin \theta \\
& \mathrm{R}_{\mathrm{A}} \times 4 \tan \theta=2 \mathrm{w}+\mathrm{T} \times 3 \tan \theta \\
& R_{A}=\frac{2 w+T \times 3 \times 2}{4 \times 2}=\frac{w+3 T}{4} \\
& \frac{w+3 T}{4}=T ; \mathrm{T}=\mathrm{w}
\end{aligned}
$$

Example 4

The diagram below shows a uniform rod $A B$ of weight w and length L resting at an angle θ against a smooth vertical wall at A. The other end B rests at a smooth horizontal table. The rod is prevented from slipping by an inelastic string $O C$. C being a point on $A B$ such that $A C$ is perpendicular to $A B$ and O is the point of intersection of the wall and the table. Angle $A O B$ is 90°.

Find (i) tension in the string
(ii) reaction at A and B in terms of θ and w.

Solution

(个) $R_{B}=w+T \sin \theta$ \qquad
$(\rightarrow) R_{A}=T \cos \theta$
Taking moments at O
$\mathrm{R}_{\mathrm{B}} \times \mathrm{L} \sin \theta=\mathrm{w} \frac{L}{2} \sin \theta+\mathrm{R}_{\mathrm{A}} \times L \cos \theta$
$(w+T \sin \theta) L \sin \theta=w \frac{L}{2} \sin \theta+T \sin \theta \times L \cos \theta$
(i) Tension in the string
$\mathrm{T}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\frac{w(2 \sin \theta-\sin \theta)}{2}$

$$
\mathrm{T}=\frac{w \sin \theta}{2\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}=\frac{w}{2} \tan ^{2} \theta
$$

(ii)Reaction at A and B in terms of θ and w

$$
\begin{gathered}
R_{A}=T \cos \theta=\left[\frac{w \sin \theta}{2\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}\right] \cos \theta \\
R_{A}=\frac{w \sin \theta \cos \theta}{2\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}=\frac{w \tan ^{2} \theta}{4} \\
R_{B}=w+T \cos \theta=w+\left[\frac{w \sin \theta}{2\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}\right] \sin \theta \\
R_{B}=\frac{w\left(2 \cos ^{2} \theta-\sin ^{2} \theta\right)}{2\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}=\frac{w}{2} \tan ^{2} \theta
\end{gathered}
$$

Example 5

A uniform rod $A B$ of mass 10 kg is smoothly hinged at B and rests in a vertical plane with the end A against a smooth vertical wall. If the rod makes an angle 40° with the wall, find the reaction on the wall and the magnitude of the reaction at B

Let length of the ladder be 2 L
$\theta=90^{\circ}-40^{\circ}=50^{\circ}$
Taking moments at B
$(\rightarrow) R_{A} \times 2 L \sin \theta=10 g \times L \cos \theta$
$R_{A} \times 2 L \sin \theta=10 \times 9.8 \times L \cos \theta$
$\mathrm{R}_{\mathrm{A}}=41.12 \mathrm{~N}$
(个) $R_{y}=10 \mathrm{gN}=10 \times 9.8=98 \mathrm{~N}$
$(\rightarrow) R_{x}=R_{A}=41.12 \mathrm{~N}$
$R=\sqrt{\left(R_{x}\right)^{2}+\left(R_{y}\right)^{2}}$
$R=\sqrt{(41.12)^{2}+98^{2}}=106.28 \mathrm{~N}$
$\alpha=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)=\tan ^{-1}\left(\frac{98}{41.12}\right)=67.24^{0}$
Reaction at B is 106.24 at 67.24° to the beam

Revision exercise A

1. A uniform ladder $A B$ of mass 10 kg and length 4 m rests with its upper end A against a smooth vertical wall and lower end B on a smooth horizontal ground. A light horizontal string, which has one end attached to B and the other end attached to the wall, keeps the ladder in equilibrium inclined at 40° to the horizontal. The vertical plan containing the ladder and the string is at the right angles to the wall. Find
(i) Tension in the string [58.4]
(ii) Normal reaction at points A and $B\left[R_{A}=58.4 N, R_{B}=98 N\right]$
2. A uniform ladder $A B$ of mass 30 kg and length 6 m rests with its upper end A against a smooth vertical wall and lower end B on a smooth horizontal ground. A light horizontal string, which has one end attached to B and the other end attached to the wall, keeps the ladder in equilibrium inclined at 70° to the horizontal. The vertical plan containing the ladder and the string is at the right angles to the wall. Find
(i) Tension in the string [53.3N]
(ii) Normal reaction at points A and $B\left[R_{A}=53.3, R_{B}=294 N\right]$
3. A uniform ladder $A B$ of mass 30 kg rests with its upper end A against a smooth vertical wall and lower end B on a smooth horizontal ground. A light horizontal string, which has one end attached to B and the other end attached to the wall, keeps the ladder in equilibrium inclined at 80° to the horizontal. The vertical plan containing the ladder and the string is at the right angles to the wall. Find
(i) Tension in the string [25.92N]
(ii) Normal reaction at points A and $B\left[R_{A}=25.92, R_{B}=294 N\right]$
4. A uniform ladder $A B$ of mass 8 kg and length 6 m rests with its upper end A against a smooth vertical wall and lower end B on a smooth horizontal ground. The base of the ladder is 1 m from the floor and the top of the ladder is 2 m from the floor. A light horizontal string, which has one end attached to B and the other end attached to the wall vertically below the top of the ladder and 1 m above the floor, keeps the ladder in equilibrium. Find the tension in the string [27.7N]
5. A uniform ladder $A B$ of weight w and length $2 L$ rests with its upper end A against a smooth vertical wall and lower end B on a smooth horizontal ground. A light horizontal string, which has one end attached to B and the other end attached to the wall, keeps the ladder in equilibrium The vertical plan containing the ladder and the string is at the right angles to the wall. Find the tension in the string $\left[\frac{w}{2 \sqrt{3}}\right]$
6. A uniform ladder $A B$ of weight w and length $4 m$ rests with its upper end A against a smooth vertical wall and lower end B on a smooth horizontal ground. The ladder is kept in equilibrium inclined at an angle θ to the ground by a light inextensible string attached to the wall and to a point C on the ladder. The vertical plane containing the ladder and the string is at right angles to the wall

If $\tan \theta=2$, find the tension in the string when $B C$ is of length
(i) $\quad 1 \mathrm{~m}\left[\frac{w}{3} N\right]$
(ii) $2 m\left[\frac{w}{2} N\right]$
7. A uniform ladder $A B$ of mass mkg and length $2 L$ rests with its upper end A against a smooth vertical wall and lower end B on a smooth horizontal ground. The ladder is kept in equilibrium inclined at an angle θ to the vertical by a light inextensible string attached B and to the wall vertically below the top of the ladder. The vertical plane containing the ladder and the string is at right angles to the wall

(a) A man of mass 4 m kg stands on the ladder at a distance $\frac{L}{2}$ from the bottom of the ladder, find
(i) The tension in the string $\left[\left(\frac{3 m g \tan \theta}{2}\right) N\right]$
(ii) Normal reaction at the bottom of the ladder [5mg N)
(iii) Normal reaction at the top of the ladder $\left[\left(\frac{3 \operatorname{mgtan} \theta}{2}\right) N\right]$
(b) If the maximum tension which the string can bear without breaking is $4 \mathrm{mgtan} \theta$, find how far up the ladder the man can safely climb. $\left[\frac{7 L}{4}\right]$

Rough contact at the foot and smooth contact at the top

Example 6

A uniform ladder of mass 25 kg rests in limiting equilibrium with the top end against a smooth vertical wall and its base on a rough horizontal floor. If the ladder makes an angle 75° with the horizontal, find:
(i) Magnitude of the normal reaction at the floor
(ii) Coefficient of friction between the floor and the ladder

(i) (\uparrow) $\mathrm{R}_{\mathrm{B}}=25 \mathrm{~g}=25 \times 9.8=245 \mathrm{~N}$
$(\rightarrow) R_{A}=\mu_{B} R_{B}=245 \mu_{B}$
Taking moments about B
$\mathrm{R}_{\mathrm{A}} \times 2 \mathrm{~L} \sin \theta=25 \mathrm{~g} \times \mathrm{L} \cos \theta$
$R_{A} \times 2 L \sin 75=25 \mathrm{~g} \times \operatorname{Lcos} 75$
$\mathrm{R}_{\mathrm{A}}=32.824 \mathrm{~N}$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{A}}=32.824=245 \mu_{\mathrm{B}} \\
& \mu_{B}=0.134
\end{aligned}
$$

Example 7

A uniform ladder which is 5 m long and mass of 20 kg leans with its upper end against a smooth vertical wall and its lower end on a rough ground. The bottom of the ladder is 3 m from the wall. Calculate
(i) The frictional force between the ladder and the ground
(ii) The coefficient of friction

$\theta=\cos ^{-1} \frac{3}{5}=53.13^{0}$
(i) ($\uparrow) R_{B}=20 \mathrm{~g}=20 \times 9.8=196 \mathrm{~N}$
$(\rightarrow) R_{A}=\mu_{B} R_{B}=196 \mu_{B}$

Taking moments about B
$\mathrm{R}_{\mathrm{A}} \times 5 \sin \theta=20 \mathrm{~g} \times 2.5 \cos \theta$
$\mathrm{R}_{\mathrm{A}} \times 5 \sin 53.13=20 \mathrm{~g} \times 2.5 \cos 53.13$
$\mathrm{R}_{\mathrm{A}}=73.5 \mathrm{~N}$
Frictional force $=73.5 \mathrm{~N}$
(ii) $R_{A}=\mu_{B} R_{B}=196 \mu_{B}$
$73.5=196 \mu_{B}$
$\mu_{B}=0.375$

Example 8

A non-uniform ladder AB 10m long and 8 kg lies in limiting equilibrium with its lower end resting on a rough horizontal ground and the upper end resting against a smooth vertical wall. If the centre of gravity of the ladder is 3 m from the foot of the ladder and the ladder makes an angle of 30° with the horizontal, find the
(i) Coefficient of friction between the ladder and the ground
(ii) Reaction at the wall

(i) (\uparrow) $R_{B}=8 g=8 \times 9.8=78.4 \mathrm{~N}$
$(\rightarrow) R_{A}=\mu_{B} R_{B}=78.4 \mu_{B}$
Taking moments about B
$R_{A} \times 10 \sin \theta=8 \mathrm{~g} \times 3 \cos \theta$
$\mathrm{R}_{\mathrm{A}} \times 10 \sin 30=8 \mathrm{~g} \times 3 \cos 30$
$R_{A}=40.738 \mathrm{~N}$

Reaction at the wall $=40.738 \mathrm{~N}$
$\mathrm{R}_{\mathrm{A}}=\mu_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}=78.4 \mu_{\mathrm{B}}$
$78.4 \mu_{\mathrm{B}}=40.738$

$$
\mu_{\mathrm{B}}=0.5196
$$

Example 9

A uniform ladder $A B 10 \mathrm{~m}$ long and mass 30 kg lies in a limiting equilibrium with its lower end resting on a rough horizontal ground and its upper end resting against a smooth vertical wall. If the ladder makes an angle of 60° with the horizontal, with a man of mass 90 kg standing on the ladder at a point 7.5 m from its base, find
(i) Magnitude of normal reaction and friction force at the ground
(ii) The minimum value of the coefficient of friction between the ladder and the ground that would enable the man to climb to the top of the ladder

(i) (个) $R_{B}=30 \mathrm{~g}+90 \mathrm{~g}=120 \times 9.8=1176 \mathrm{~N}$ $(\rightarrow) R_{A}=\mu_{B} R_{B}=1176 \mu_{B}$

Taking moments about B
$R_{A} \times 10 \sin 60=30 g \times 5 \cos 60+90 g \times 7.5 \cos 60$

$$
\mu_{\mathrm{B}} \mathrm{R}_{\mathrm{B}}=\mathrm{R}_{\mathrm{A}}
$$

$$
1176 \mu_{\mathrm{B}}=466.788
$$

$$
\mu_{\mathrm{B}}=0.397
$$

(ii) $R_{A} \times 10 \sin 60=30 g \times 5 \cos 60+90 g \times 10 \cos 60$
$\mathrm{R}_{\mathrm{A}}=594.093 \mathrm{~N}$
$\mu_{B} R_{B}=R_{A}$
$1176 \mu_{B}=594.093$
$\mu_{B}=0.5052$
$R_{A}=466.788 \mathrm{~N}$

Rough contact at the root of the ladder

Example 10

A uniform pole $A B$ of mass 10kg has its lower end A on a rough horizontal ground and being raised to a vertical position by a rope attached to B. The rope and the pole lie in the same vertical plane and A does not slip across the ground. If the rope is at right angles to the pole and the pole is 30° to the horizontal, find (i) tension in the rope (ii) coefficient of friction on the ground

(i) Taking moments about A
$\mathrm{T} \times 2 \mathrm{~L}=10 \mathrm{~g} \times \mathrm{L} \cos 30$
$\mathrm{T}=42.44 \mathrm{~N}$
(ii) $(\uparrow) R_{A}+T \sin 60=10 g$
$R A+42.44 \sin 60=10 \times 9.8$
$R A=61.25 N$
$(\rightarrow) T \cos 60=\mu_{A} R_{A}$
$42.44 \cos 60=61.25 \mu_{\mathrm{A}}$
$\mu_{\mathrm{A}}=0.346$

Example 11

A uniform pole $A B$ of mass 10kg has its lower end A on a rough horizontal ground and being raised to a vertical position by a rope attached to B. The rope and the pole lie in the same vertical plane and A does not slip across the ground. If the rope is makes angle of 70° the pole and the pole is 30° to horizontal, find (i) tension in the rope (ii) coefficient of friction on the ground

(i) Taking moments about A
$2 \mathrm{~L} \times \operatorname{Tcos} 20=10 \mathrm{~g} \times \mathrm{L} \cos 30$
$\mathrm{T}=45.157 \mathrm{~N}$

$$
\begin{aligned}
& \text { (ii) }(\uparrow) R_{A}+T \sin 40=10 \mathrm{~g} \\
& R_{A}+45.157 \sin 40=10 \times 9.8 \\
& R_{A}=68.974 \mathrm{~N}
\end{aligned}
$$

$$
(\rightarrow) T \cos 40=\mu_{\mathrm{A}} \mathrm{R}_{\mathrm{A}}
$$

$$
45.157 \cos 40=68.974 \mu_{\mathrm{A}}
$$

$$
\mu_{\mathrm{A}}=0.5015
$$

Example 12

A uniform ladder $A B$ of length $2 L$ rests in limiting equilibrium with its lower end A resting on a rough horizontal ground. A point C on the beam rests against a smooth support. $A C$ is of length $\frac{3 L}{2}$ with C higher than A and $A C$ makes an angle of 60° with the horizontal. Find the coefficient of friction between the ladder and the ground

Taking moments about A
$R_{C}=\frac{2 w \cos 60}{3}$
$(\uparrow) R_{A}+R_{C} \sin 30=w$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{A}}+\frac{2 w \cos 60}{3} \sin 30=w \\
& \mathrm{R}_{\mathrm{A}}=\frac{(3-2 \sin 30 \cos 60) w}{3} \\
& (\rightarrow) \mathrm{R}_{\mathrm{C}} \cos 30=\mu_{\mathrm{A}} \mathrm{R}_{\mathrm{A}} \\
& \frac{2 w \cos 60}{3} \cos 30=\frac{(3-2 \sin 30 \cos 60) w}{3} \mu_{A} \\
& \mu_{A}=\frac{2 \cos 30 \cos 60}{(3-2 \sin 30 \cos 60)}=0.346
\end{aligned}
$$

Example 13

A uniform rod of length 2 L inclined at an angle θ to the horizontal rests in vertical plane against a smooth horizontal bar at a height h above the ground. Given that the lower end of the rod is on a rough ground and the rod is about to slip; show that the coefficient of friction between the rod and the ground is $\frac{L \sin ^{2} \theta \cos \theta}{h-L \cos ^{2} \theta \sin \theta}$.

Taking moments about A
$R_{C} x y=w L \cos \theta$
$R_{C}=\frac{w L \cos \theta}{y}$
($\uparrow) R_{A}+R_{C} \sin (90-\theta)=w$ \qquad
$R_{A}=\frac{\left(y-l \cos ^{2} \theta\right) w}{y}$

$$
\begin{aligned}
& (\rightarrow) \mathrm{R}_{\mathrm{C}} \cos (90-\theta)=\mu_{\mathrm{A}} \mathrm{R}_{\mathrm{A}} \ldots . \text { (iii) } \\
& \frac{w L \cos \theta}{y} \sin \theta=\mu_{A} \frac{\left(y-l \cos ^{2} \theta\right) w}{y} \\
& \mu_{A}=\frac{L \cos \theta \sin \theta}{\left(y-l \cos ^{2} \theta\right)} \\
& \text { But } \sin \theta=\frac{h}{y}=>\mathrm{y}=\frac{h}{\sin \theta} \\
& \mu_{A}=\frac{L \cos \theta \sin ^{2} \theta}{\left(\frac{h}{\sin \theta}-l \cos ^{2} \theta\right)} \\
& \mu_{A}=\frac{L \cos \theta \sin \theta}{\left(h-l \cos { }^{2} \theta \sin \theta\right)}
\end{aligned}
$$

Example 14

The diagram below shows a uniform wooden plank of mass 70 kg and length 5 m . The end A rests on a rough horizontal ground. The plank is in contact with the top of a rough pillar at C . the height of the pillar is 2.2 m and $\mathrm{AC}=3.5 \mathrm{~m}$

Given that the coefficient of friction at the ground id 0.6 and the plank is just about to slip, find
(i) Angle the plank makes with the ground at A
(ii) Normal reaction at A and normal reaction at C .
(iii) Coefficient of friction at C

Solution

$\theta=\sin ^{-1} \frac{2.2}{3.5}=38.9^{0}$
Taking moments about A
$R_{C} \times 3.5=70 \mathrm{~g} \times 2.5 \cos 38.9$
$\mathrm{R}_{\mathrm{C}}=381.34 \mathrm{~N}$
(个) $R_{A}+\mu_{C} R_{C} \sin 38.9+R_{C} \sin 51.1=70 g$
$R_{A}+\mu_{\mathrm{C}} 381.34 \sin 38.9+381.34 \sin 51.1=70 \mathrm{~g}$
$R_{A}=389.2248-239.4674 \mu_{C}$
$(\rightarrow) R_{C} \cos 51.1=0.6 R_{A}+\mu_{C} R_{C} \sin 38.9$
$381.34 \cos 51.1=0.6\left(389.2248-239.4674 \mu_{C}\right)+$

$$
\mu_{\mathrm{c}} \times 381.34 \times \sin 38.9
$$

$\mu_{C}=\frac{5.93252}{153.0948}=0.0388$
$\mathrm{R}_{\mathrm{A}}=389.2248-239.4674 \times 0.0388=379.933 \mathrm{~N}$

Revision Exercise 2

1. A non- uniform ladder $A B 10 \mathrm{~m}$ long and mass 8 kg lies in limiting equilibrium with its lower end resting on a rough horizontal ground of angle of friction 17° and the upper end resting against a smooth vertical wall. if the centre of gravity is at point C and the ladder makes an angle of 63° with horizontal, find the length AC. [6m]
2. A uniform ladder of mass 30 kg lies in limiting equilibrium with its lower end resting on a rough horizontal ground of coefficient of friction 0.4 and the upper end resting against a smooth vertical wall. If the ladder makes an angle of 60° with the horizontal, find the magnitude of the frictional force at the ground. [158.4N]
3. A uniform pole $A B$ of mass 100kg has its lower end A on a rough horizontal ground and being raised to vertical position by a rope attached to B. The rope and the pole lie in the same vertical plane and A does not slip across the ground. If the rope is at right angles to the pole and the pole is 20° to the horizontal, find
(i) Normal reaction on the ground [157N)
(ii) Frictional force on the ground [547N]
4. A ladder 12 m long and weighing 200 N is placed 60° to the horizontal with one end B leaning against a smooth vertical wall and the other end A on a rough horizontal ground. Find:
(a) Reaction at the wall [57.7N]
(b) Reaction at the ground [208.2N at 73.9^{0} to the horizontal]
5. A uniform pole $A B$ has its lower end A on a rough horizontal ground of friction λ and being raised to vertical position by a rope attached to B. The rope and the pole lie in the same vertical plane and A does not slip across the ground. If the rope is at right angles to the pole and the pole is at an angle θ to the horizontal. Show than $\tan \lambda=\frac{\sin 2 \theta}{3-\cos 2 \theta}$.
6. A uniform ladder of length 10 m and weight w lies in limiting equilibrium with its lower end resting on a rough horizontal ground of coefficient of friction $\frac{1}{3}$ and the upper end resting against a smooth vertical wall. The ladder makes an angle of θ with the horizontal where $\tan \theta=1.7$. A man of weight 2 w starts to climb the ladder. Find
(i) How far up the ladder the man can climb before slipping can occur. [6m]
(ii) Find in terms of w, the magnitude of the frictional force at the ground to enable the man reach the top. $\left[\frac{8 w}{17}\right]$
7. A uniform ladder of length 5 m and weight 80 N lies in limiting equilibrium with its lower end resting on a rough horizontal ground and the upper end resting against a smooth horizontal rail fixed 4 m vertically above the ground. If the ladder makes an angle of θ with the vertical where $\tan \theta \leq 0.75$ with the horizontal.
(a) Find expressions in terms of θ for
(i) Vertical reaction R of the ground [$80-50 \sin ^{2} \theta \cos \theta$]
(ii) Friction F at the ground $\left[50 \cos ^{2} \theta \sin \theta\right.$]
(iii) Normal reaction N at the rail $[50 \sin \theta \cos \theta$]
(b) Given that the ladder does not slip, show that F is maximum when $\tan \theta=\frac{1}{\sqrt{2}}$ and find its maximum value $\left[\frac{100}{3 \sqrt{3}} N\right]$
8. A uniform ladder $A B$ of weight w rests in limiting equilibrium with its lower end A resting on a rough horizontal ground, coefficient of friction μ. A point C on the ladder rests against a smooth peg. $A C$ is of length $\frac{1}{4} A B$ from end B and a height h from the ground. If $A B$ makes an angle of θ with the ground, show that the frictional force is $\frac{\mu w}{3}\left(2-3 \cos ^{2} \theta\right)$
9. A smooth horizontal rail is fixed at a height of 3 m above the horizontal rough ground. A straight uniform pole $A B$ of length 6 m and mass 20kg rests in limiting equilibrium at a point Con the rail with its lower end A resting on the ground. The vertical plane containing the pole is at right angles to the rail. The distance $A C$ is 5 m

Calculate the
(i) Magnitude of the force exerted by the rail on the pole [94N]
(ii) Coefficient of friction between the pole and the ground [0.47]
(iii) Magnitude of the force exerted by the ground on the pole [133N]
10. A uniform ladder lies in limiting equilibrium with its lower end resting on a rough horizontal ground of coefficient of friction $\frac{5}{8}$ and the upper end resting against a smooth vertical wall. If the ladder makes an angle of 45° with the vertical.
(i) Show that a man whose weight is equal to that of the ladder can ascend $\frac{3}{4}$ of the length of the ladder
(ii) Find what weight must be placed on the bottom of the ladder to enable the man ascend to the top $\left[\frac{2 w}{5}\right]$

Rough contacts both at the top and foot of a ladder

Example 15

A uniform ladder rests with one end on a rough horizontal ground and the other against a rough vertical wall, the coefficient of friction being respectively $\frac{3}{5}$ and $\frac{1}{3}$. Find the inclination of the ladder to the vertical when it is about to slip

(\uparrow) $R_{B}+\frac{1}{3} R_{A}=W$ \qquad
$(\rightarrow) \mathrm{R}_{\mathrm{A}}=\frac{3}{5} R_{B}=>R_{B}=\frac{5}{3} R_{A}$
Substituting for R_{B} in equation (i)
$\frac{5}{3} R_{A}+\frac{1}{3} R_{A}=w$
$R_{A}=\frac{w}{2}$
Taking moments about B
$R_{A} \times 2 L \sin \theta+\frac{1}{3} R_{A} \times 2 L \cos \theta=w \times L \cos \theta$

Substituting for R_{A} in eqn. (ii)
$\frac{w}{2} \times 2 \operatorname{Lsin} \theta+\frac{1}{3} x \frac{w}{2} \times 2 L \cos \theta=w \times L \cos \theta$
$\operatorname{Sin} \theta=\frac{2}{3} \cos \theta$
$\tan \theta=\frac{2}{3}$
$\theta=33.7^{0}$
Angle to the vertical $=90-33.7=56.3^{\circ}$

Example 16

A uniform ladder rests in limiting equilibrium with the top end against a rough vertical wall with coefficient of friction μ_{1} and its base on a rough horizontal floor with coefficient of friction μ_{2}. If the ladder makes an angle of θ with the floor, prove that $\tan \theta=\frac{1-\mu_{1} \mu_{2}}{2 \mu_{2}}$

(个) $R_{B}+\mu_{1} R_{A}=w$ \qquad
$(\rightarrow) R_{A}=\mu_{2} R_{B}$ \qquad
$R_{B}=\frac{1}{\mu_{2}} R_{A}$

$$
\begin{aligned}
& \frac{1}{\mu_{2}} R_{A}+\mu_{1} R_{A}=w \\
& R_{A}=\frac{\mu_{2} w}{1+\mu_{1} \mu_{2}}
\end{aligned}
$$

Taking moments about B

$$
\mathrm{R}_{\mathrm{A}} \times 2 \mathrm{~L} \sin \theta+\mu_{1} \mathrm{R}_{\mathrm{A}} \times 2 \mathrm{~L} \cos \theta=\mathrm{w} \times \mathrm{L} \cos \theta
$$

$$
\begin{equation*}
\frac{\mu_{2} w}{1+\mu_{1} \mu_{2}} \times 2 L \sin \theta+\mu_{1} \times \frac{\mu_{2} w}{1+\mu_{1} \mu_{2}} \times 2 L \cos \theta=w \times L \cos \theta \tag{iii}
\end{equation*}
$$

$$
\frac{\mu_{2} w}{1+\mu_{1} \mu_{2}} \times 2 L \sin \theta=w \times L \cos \theta-\mu_{1} \times \frac{\mu_{2} w}{1+\mu_{1} \mu_{2}} \times 2 L \cos \theta
$$

$$
\frac{2 \mu_{2}}{1+\mu_{1} \mu_{2}} \sin \theta=\frac{1+\mu_{1} \mu_{2}-2 \mu_{1} \mu_{2}}{1+\mu_{1} \mu_{2}} \cos \theta
$$

$$
\tan \theta=\frac{1-\mu_{1} \mu_{2}}{2 \mu_{2}}
$$

Substituting R_{B} in eqn. (i)

Example 17

The foot of a ladder length of 9 m and mass 25 kg rests on a rough horizontal surface while the upper end rests in contact with a rough vertical wall. The ladder is in vertical plane perpendicular to the wall. If the first rug is 30 cm from the foot and the rest at the interval of 30 cm , find the highest rug to which a man of mass 75 kg can climb without causing the ladder to slip, when the ladder is inclined at 600 to the horizontal and the coefficient of friction at each end is 0.25 .

Let the man ascend a distance $=\mathrm{ym}$
(\uparrow) $\mathrm{R}_{\mathrm{B}}+\frac{1}{4} R_{A}=25 g+75 g$ \qquad

$$
\begin{equation*}
(\rightarrow) \mathrm{R}_{\mathrm{A}}=\frac{1}{4} R_{B}=>R_{B}=4 R_{A} \tag{ii}
\end{equation*}
$$

Substituting for R_{B} in eqn. (i)

$$
\begin{aligned}
& 4 R_{A}+\frac{1}{4} R_{A}=25 g+75 g \\
& R_{A}=226.154 N
\end{aligned}
$$

Taking moments about B

$$
R_{A} \times 9 \sin \theta+\frac{1}{4} R_{A} \times 9 \cos \theta=25 \times 4.5 \cos \theta+75 \times 4.5 \cos \theta
$$

$226.154 N \times 2 L \sin \theta+\mu_{1} \times 226.154 N \times 2 L \cos \theta$
$=25 \times 4.5 \cos 60+75 \times 4.5 \cos 60$
$Y=4 m$
Number of rugs $=\frac{4}{0.3}=13$

Example 18

A uniform ladder of length 2 L and weight w rests in a vertical plane with one end on a rough horizontal ground and the other against a rough vertical wall, the angle of friction being respectively $\tan ^{-1}\left(\frac{1}{3}\right)$ and $\tan ^{-1}\left(\frac{1}{2}\right)$.
(a) Find the inclination of the ladder to the horizontal when it is in limiting equilibrium at either end

$\mu_{\mathrm{A}}=\frac{1}{3}$ and $\mu_{\mathrm{B}}=2$
(个) $R_{B}+\frac{1}{3} R_{A}=w$ \qquad
$(\rightarrow) \mathrm{R}_{\mathrm{A}}=\frac{1}{2} R_{B}$
$R_{B}=2 R_{A}$ \qquad

Substituting R_{B} in eqn. (i)
$2 R_{A}+\frac{1}{3} R_{A}=w$
$R_{A}=\frac{3 w}{7}$
Taking moments about B
$R_{A} \times 2 L \sin \theta+\frac{1}{3} R_{A} \times 2 L \cos \theta=w \times L \cos \theta$..(iii)
$\frac{3 w}{7} \times 2 L \sin \theta+\frac{1}{3} \times \frac{3 w}{7} \times 2 L \cos \theta=w \times L \cos \theta$
$\frac{6}{7} \sin \theta=\frac{5}{7} \cos \theta$
$\tan \theta=\frac{5}{6}$
$\theta=39.8^{\circ}$
(b) A man of weight 10times that of the ladder begins to ascend it. How far will he climb before the ladder slips

Let the man ascend a distance $=\mathrm{ym}$
$(\uparrow) \mathrm{R}_{\mathrm{B}}+\frac{1}{3} R_{A}=10 w+w$ \qquad
$(\rightarrow) \mathrm{R}_{\mathrm{A}}=\frac{1}{2} R_{B}=>R_{B}=2 R_{A}$
Substituting for R_{B} in eqn. (i)

$$
\begin{aligned}
& 2 R_{A}+\frac{1}{3} R_{A}=11 w \\
& R_{A}=\frac{33}{7} w
\end{aligned}
$$

Taking moments about B

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{A}} \times 2 \mathrm{~L} \sin \theta+\frac{1}{3} \mathrm{R}_{\mathrm{A}} \times 2 \mathrm{~L} \cos \theta=\mathrm{wL} \cos \theta+10 \mathrm{wy} \cos \theta \\
& \begin{array}{r}
\frac{33}{7} w \times 2 \mathrm{~L} \sin \theta+\frac{1}{3} \times \frac{33}{7} w \times 2 \mathrm{~L} \cos \theta \\
=\mathrm{wL} \cos \theta+10 \mathrm{wy} \cos \theta
\end{array} \\
& \frac{66}{7} L \sin \theta+\frac{15}{7} L \cos \theta=10 y \cos \theta \\
& \frac{66}{7} L \tan \theta+\frac{15}{7} L=10 y \\
& 10 \mathrm{~L}=10 \mathrm{y}=>\mathrm{y}=\mathrm{Lm}
\end{aligned}
$$

Example 19

A non-uniform ladder $A B$ is in limiting equilibrium with its lower end A resting on a rough horizontal ground and the upper end B resting against a rough vertical wall. The ladder is in a vertical plane perpendicular to the wall. The centre of gravity of the ladder is $\mathrm{ta} \mathrm{G}=\frac{2}{3} A B$. The coefficient of friction between the ladder and the wall is twice that between the ladder and the floor. If the ladder makes an angle θ with the wall and the angle of friction between the ladder and the floor is λ;
(i) Show that $4 \tan \theta=3 \tan 2 \lambda$
(ii) How far can a man of equal mass as the ladder ascend without the ladder slipping given that $\theta=45^{\circ}$ and coefficient of friction between the ladder and the floor is $\frac{1}{2} \cdot\left[\frac{2}{3} A B\right]$

$\mu_{A}=\tan \lambda$ and $\mu_{B}=2 \tan \lambda$
$(\uparrow) R_{A}+2 \tan \lambda=w$ \qquad
$(\rightarrow) R_{B}=\tan \lambda R_{A}$
Substituting R_{B} in eqn. (i)
$R_{A}+2 \tan \lambda \tan \lambda R_{A}=w$

$$
R_{A}=\frac{w}{1+\tan ^{2} \lambda}
$$

Taking moments about B
$R_{A} \times L \sin \theta=w \frac{L}{3} \sin \theta+\tan \lambda R_{A} L \cos \theta$
$\frac{w}{1+\tan ^{2} \lambda} \times L \sin \theta-w \frac{L}{3} \sin \theta=\tan \lambda\left(\frac{w}{1+\tan ^{2} \lambda}\right) L \cos \theta$
$\frac{2-2 \tan ^{2} \lambda}{3\left(1+2 \tan ^{2} \lambda\right)} \sin \theta=\frac{\tan \lambda}{1+2 \tan ^{2} \lambda} \cos \theta$
$\tan \theta=\frac{3 \tan \lambda}{2-2 \tan ^{2} \lambda}=$
$\tan \theta=\frac{3}{2} x \frac{2}{2}\left[\frac{3 \tan \lambda}{2\left(1-\tan ^{2} \lambda\right)}\right]=\frac{3}{4}\left[\frac{2 \tan \lambda}{\left(1-\tan ^{2} \lambda\right)}\right]=\frac{3}{4} \tan 2 \lambda$
$4 \tan \theta=3 \tan 2 \lambda$

Revision exercise 3

1. A uniform ladder rests in limiting equilibrium with the top end against a rough vertical wall with coefficient of friction 0.25 and its base on a rough horizontal floor with coefficient of friction μ. If the ladder makes an angle of 300 with the vertical; find the value of μ [0.269]
2. A non-uniform ladder $A B$ of length $6 m$ is in limiting equilibrium with its lower end A resting on rough horizontal ground with coefficient of friction $\frac{1}{3}$ and the upper end B resting against a rough vertical wall with coefficient of friction $\frac{1}{4}$. The ladder is in a vertical plane perpendicular to the wall. The centre of gravity of the ladder is at C where $A C=4 \mathrm{~m}$. If the ladder makes an acute angle θ with the ground. Show that $\tan \theta=\frac{23}{12}$.
3. A uniform ladder $A B$ is of weight $2 w$ and length 10 m rests in limiting equilibrium with the top end against a rough vertical wall with coefficient of friction $\frac{1}{3}$ and its base on a rough horizontal floor with coefficient of friction $\frac{1}{3}$. If the ladder makes an angle an angle of θ with horizontal, such that $\tan \theta=\frac{16}{17}$. A man of weight 5 w starts to climb the ladder.
(a) How far up the ladder can a man climb before slipping [9m]
(b) When a boy of weight Y stands on the bottom rung of the ladder at A, the man is just able to climb to the top safely. Find Y in terms of $\mathrm{W}\left[\frac{7 w}{11}\right]$
4. A non-uniform ladder $A B$ of length 12 m and mass 30 is in limiting equilibrium with its lower end A resting on a rough horizontal ground with coefficient of friction 0.25 and upper end B resting against a rough vertical wall with coefficient of friction 0.2 . The ladder is in a vertical plane perpendicular to the wall. The centre of gravity of the ladder is at its trisection of the length nearer to A. The ladder makes an angle θ with the horizontal such that $\tan \theta=\frac{9}{4}$. A straight horizontal string connects A to a point at the base of the wall vertically below B. A man of mass 9okg begins to climb the ladder
(i) How far up the ladder can the man climb without causing tension in the string [8m]
(ii) What tension must the string be capable of withstanding if the man is to reach the tip of the ladder safely [126N]

Beams hinged and maintained in a horizontal position

Example 20

A uniform beam $A B, 3.0 \mathrm{~m}$ long and weight 6 N is hinged at a wall at A and is held stationary in a horizontal position by a rope attached to B and joined to a point C on the wall, 4.0 m vertically above A. find
(i) The tension T in the rope
(ii) The magnitude and direction of the reaction R at the hinge.

$\theta=\tan ^{-1} \frac{4}{3}=53.13^{0}$
Taking moments at A at equilibrium
$(T \sin 53.13) \times 3=6 \times 1.5$
$\mathrm{T}=3.75 \mathrm{~N}$
$(\uparrow) R_{A} \sin \alpha+T \operatorname{sion} \theta=6$

Example 21

 horizontally in equilibrium by a string which has one end attached to B and the other end attached to a point C on the wall 4 m above A. Find(i) The tension in the rope
(ii) The magnitude and direction of the reaction R at the hinge

$$
\theta=\tan ^{-1} \frac{4}{4}=45^{\circ}
$$

Taking moments at A at equilibrium
$(T \sin 45) \times 3=50 \times 2$
$\mathrm{T}=35.36 \mathrm{~N}$
(\uparrow) $R_{A} \sin \alpha+$ Tsion $\theta=50$
$R \sin \alpha=50-35.36 \sin 45$
Rsin $\alpha=24.997$. \qquad
$(\rightarrow) \mathrm{R} \cos \alpha=\mathrm{T} \cos \theta$
$R \cos \alpha=35.36 \cos 45$
$R \cos \alpha=25$
$(i) \div(i i)$
$\operatorname{Tan} \alpha \frac{24.997}{25} \quad \alpha=45^{\circ}$
Substituting α into eqn. (ii)
$R \cos 45=25 ;$
$\mathrm{R}=35.36 \mathrm{~N}$ at 45° to the horizontal

Example 22

A uniform beam $A B$ of length 2.4 m and weight 20 N is freely hinged at A to a vertical wall and is maintained in horizontally in position by a chain which has one end attached to B and the other end attached to a point C on the wall 1.5 m above A. If the beam carries a load of 10 N at a point 1.8 m from A. Calculate
(i) The tension in the chain
(ii) The magnitude and direction of the reaction R at the hinge

$\theta=\tan ^{-1} \frac{1.5}{2.4}=32.01^{\circ}$
Taking moments at A at equilibrium
$(T \sin 32.01) \times 2.4=20 \mathrm{~g} \times 1.2+10 \mathrm{~g} \times 1,8$
Tension in chain, $\mathrm{T}=323.87 \mathrm{~N}$
(个) $R_{A} \sin \alpha+$ Tsion $\theta=20 g N+10 g N$
$R \sin \alpha=30 \mathrm{~g}-323.87 \sin 32.01$
$R \sin \alpha=122.63$
$(\rightarrow) \mathrm{R} \cos \alpha=\mathrm{T} \cos \theta$
$R \cos \alpha=323.87 \cos 32.01$
$R \cos \alpha=274.63$ \qquad
(i) $\div(i i)$

Tan $\alpha \frac{122.63}{274.63} \quad \alpha=24.06^{\circ}$
Substituting α into eqn. (ii)
$R \cos 24.06=274.63 ;$
$R=300.85 \mathrm{~N}$ at 24.07° to the horizontal

Example 23

A uniform beam $A C$ of mass 8 kg and length 8 m is hinged at A and maintained in equilibrium by two strings attached to it at points A and D as shown below. The tension in $B C$ is twice that in $A B . A B=$ 4 m and $\mathrm{AD}=\frac{3}{4} A C$.

Find:
(i) Tension in the string $B C$
(ii) Magnitude and direction of the resultant force at the hinge

$\alpha=\tan ^{-1} \frac{4}{8}=26.6^{0}$
$\beta=\tan ^{-1} \frac{4}{6}=33.7^{0}$
Taking moments about A
$6 \times \operatorname{Tsin} \beta+8 \times T \sin \alpha=8 \mathrm{~g} \times 4$
$6 \times T \sin 33.7+8 \times T \sin 26.6=8 \mathrm{~g} \times 4$
$\mathrm{T}=29.886 \mathrm{~N}$

Tension in $\mathrm{BC}=2 \times 29.886=59.772 \mathrm{~N}$
(个) $R \sin \theta+T \sin \beta+2 T \sin \alpha=8 g$
$R \sin \theta=35.0545$
$(\rightarrow) R \cos \theta=T \cos \beta+2 T \cos \alpha$
$R \cos \theta=78.3092$ \qquad
(i) \div (ii) $\tan \theta=\frac{78.3092}{35.0545} ; \quad \theta=24.1^{0}$

Substituting θ in eqn. (ii)
$\mathrm{R}=\frac{78.3092}{\cos 24.1}=85.8 \mathrm{~N}$
$\therefore \mathrm{R}=85.8 \mathrm{~N}$ at 24.1^{0} to horizontal

Example 24

A rod 1 m long has weight of 20 N and its centre of gravity 60 cm from A . It rests horizontally with A against a rough vertical wall. A string $B C$ is fastened to the wall at 75 cm vertically above A. Find the
(i) Normal reaction and friction at A if friction is limiting the coefficient of friction.
(ii) Tension in the string

$\theta=\tan ^{-1} \frac{0.75}{1}=36.9^{0}$
taking moments about A
$\mathrm{T} \sin \theta \times 0.4=20 \times 0.6$
Tsin36.9 x $0.4=20 \times 0.6$
$\mathrm{T}=19.99 \mathrm{~N}$

$$
\begin{aligned}
& (\uparrow) q+T \sin \theta=20 \\
& \quad q+19.99 \sin 36.9=20 \\
& q=8 N
\end{aligned}
$$

$(\rightarrow) R=T \cos \theta ;$
$q=\mu R$
$\mu=\frac{8}{15.99}=0.5$

Example 25

A rod of length 0.6 m and mass 10 kg is hinged at A. Its centre of gravity is 0.5 m from A , a light inextensible string attached at B passes over a fixed pulley 0.8 m above A and supports a mass M hanging freely. If a mass of 5 kg is attached at B so as to keep the rod horizontal, find the
(i) Value of N
(ii) Reaction at the hinge

$\tan \theta=\frac{0.8}{0.6}=\frac{4}{3} ; \sin \theta=\frac{4}{5} ; \cos \theta=\frac{3}{5}$
For Mkg mass: $\mathrm{T}=\mathrm{Mg}$. \qquad .(i)

For the beam: taking moments a bout A
$0.6 \times \mathrm{T} \sin \theta=5 \mathrm{~g} \times 0.6+10 \mathrm{~g} \times 0.5$
$0.6 \times \mathrm{T} \times \frac{4}{5}=5 \mathrm{~g} \times 0.6+10 \mathrm{~g} \times 0.5$
$\mathrm{T}=\frac{50 \times 9.8}{3}=163.33 \mathrm{~N}$
From eqn. (i)

$$
\begin{aligned}
& \mathrm{T}=\mathrm{Mg} \\
& \mathrm{M}=\frac{163.33}{9.8}=16.67 \mathrm{~kg} \\
& (\uparrow) \mathrm{T} \sin \theta+\mathrm{R}_{\mathrm{y}}=10 \mathrm{~g}+5 \mathrm{~g} \\
& 163.33 \times \frac{4}{5}+\mathrm{R}_{\mathrm{y}}=15 \times 9.8 \\
& \quad \mathrm{R}_{\mathrm{y}}=16.336 \mathrm{~N} \\
& (\rightarrow) \mathrm{T} \cos \theta=\mathrm{Rx} \\
& \quad \mathrm{Rx}=163.33 \times \frac{3}{5}=97.998 \mathrm{~N} \\
& \mathrm{R}=\sqrt{\left(R_{x}\right)^{2}+\left(R_{y}\right)^{2}}=\sqrt{(97.998)^{2}+(16.336)^{2}} \\
& \mathrm{R}=99.35 \mathrm{~N} \\
& \alpha=\tan ^{-1} \frac{16.336}{97.998}=9.34^{0}
\end{aligned}
$$

Reaction at B is 99.35 N at 9.34° to horizontal

Beam Hinged and maintained at an angle

Example 26

Each of the following diagrams shows a uniform rod of mass 5 kg and length 6 m freely hinged at A to a vertical wall. A string attached to B keeps the rod in equilibrium. For each case, find the tension in the string and the magnitude and direction of the reaction at the hinge
(a)

(b)

(c)

Solution

Taking moments about A
$\mathrm{T} \times 2 \mathrm{~L}=5 \mathrm{~g} \times \mathrm{L} \cos 30$
$\mathrm{T}=21.2176 \mathrm{~N}$
$(\uparrow) T \sin 60+R_{y}=5 g$
(ii)

Taking moments about A
$\mathrm{T} \times 2 \mathrm{~L}=5 \mathrm{~g} \times \mathrm{L} \cos 60$
$\mathrm{T}=42.4352 \mathrm{~N}$
(iii)

Taking moments about A
$\mathrm{T} \cos 30 \times 2 \mathrm{~L}=5 \mathrm{~g} \times \mathrm{L} \cos 30$
$\mathrm{T}=24.9 \mathrm{~N}$
$(\uparrow) T \sin 30+R_{y}=5 g$
$24.5 \sin 30+R y=5 g$

$21.2176 \sin 60+R_{y}=5 g$

$R_{y}=30.625 \mathrm{~N}$
$(\rightarrow) R x=T \cos 60=21.2176 \cos 60=10.6088 \mathrm{~N}$
$\mathrm{R}=\sqrt{\left(R_{x}\right)^{2}+\left(R_{y}\right)^{2}}=\sqrt{(10.6088)^{2}+(30.625)^{2}}$
$R=32.41 \mathrm{~N}$
$\alpha=\tan ^{-1} \frac{30.625}{10.6088}=70.9^{0}$
Reaction at A is 32.41 N at 70.9° to horizontal
$(\uparrow) R_{y}=5 g=49 N$
$(\rightarrow) \mathrm{Rx}=\mathrm{T}=42.432 \mathrm{~N}$
$\mathrm{R}=\sqrt{\left(R_{x}\right)^{2}+\left(R_{y}\right)^{2}}=\sqrt{(42.432)^{2}+(49)^{2}}$
$R=64.8209 \mathrm{~N}$
$\alpha=\tan ^{-1} \frac{49}{42.432}=49.1^{0}$
Reaction at A is 64.8209 N at 49.1° to horizontal

$$
R y=36.75 \mathrm{~N}
$$

$(\rightarrow) R x=T \cos 30=24.5 \cos 30=21.2176$
$\mathrm{R}=\sqrt{\left(R_{x}\right)^{2}+\left(R_{y}\right)^{2}}=\sqrt{21.2176^{2}+(24.5)^{2}}$
$R=42.4352 N$
$\alpha=\tan ^{-1} \frac{36.75}{21.2176}=60^{0}$
Reaction at A is 64.8209 N at 49.1° to horizontal

Example 27

A uniform rod $A B$ of mass 5 kg is smoothly hinged on the ground at point A. The rod making an angle θ with the horizontal ground is kept in equilibrium by a light inelastic string attached to B. The string which makes 90° with the rod passes over a smooth fixed pulley and carries a stationary mass m of 2 kg at the other end

Show that
(a) $\cos \theta=\frac{4}{5}$
(b) the magnitude of reaction at the hinge is $\frac{49}{5} \sqrt{13} N$

For 2 kg mass: $\mathrm{T}=2 \mathrm{~g}$
For beam taking moments about A
$\mathrm{T} \times 2 \mathrm{~L}=5 \mathrm{~g} \times \mathrm{L} \cos \theta$ \qquad (ii)
$2 \mathrm{~g} \times 2 \mathrm{~L}=5 \mathrm{~g} \times \mathrm{L} \cos \theta$
$\cos \theta=\frac{4}{5}$
$(\uparrow) T \sin (90-\theta)+R_{y}=5 g$
$T \cos \theta+R_{y}=5 g$

$$
\begin{aligned}
& 2 \mathrm{gx} \frac{4}{5}+\mathrm{Ry}=5 \mathrm{~g} \\
& \mathrm{Ry}=\frac{17}{5} g=\frac{17}{5} \times 9.8=33.32 \mathrm{~N} \\
& (\rightarrow) \mathrm{T} \cos (90-\theta)=\mathrm{Rx} \\
& \mathrm{Rx}=\mathrm{T} \sin \theta=2 \mathrm{gx} \frac{3}{5}=11.76 \mathrm{~N} \\
& \mathrm{R}=\sqrt{\left(R_{x}\right)^{2}+\left(R_{y}\right)^{2}}=\sqrt{(33.32)^{2}+(11.76)^{2}} \\
& \mathrm{R}=35.3344 \mathrm{~N} \\
& \alpha=\tan ^{-1} \frac{33.32}{11.76}=70.56
\end{aligned}
$$

Reaction at A is 35.3344 N at 70.56° to horizontal

Example 28
A uniform rod $A B$ of length 3 m and mass 8 kg is freely hinged to a vertical wall at A. A string $B C$ of length $4 m$ attached at b and to point C on the wall, keeps the rod in equilibrium. If C is $5 m$ vertically above A, find the
(a) Tension in the string (03marks)

Let T be tension in the string, from the diagram
$\cos \theta=\frac{3}{5}, \cos \alpha=\frac{4}{5}$
Equation of moment about A
$\mathrm{T} \times 3=8 \mathrm{~g} \times 1.5 \cos \alpha$
$3 \mathrm{~T}=8 \times 9.8 \times \frac{4}{5} ; \mathrm{T}=31.36 \mathrm{~N}$
\therefore tension in the string is 31.36 N
$A B^{2}+4^{2}=5^{2}$
$A B=\sqrt{(25-16)}=3$
(b) Magnitude of the normal reaction at A. (02marks)
$x=T \cos \theta=31.36 \times \frac{3}{5}=18.816 \mathrm{~N}$
\therefore the magnitude of normal reaction at A is 18.816 N

Example 29

The figure below shows a uniform beam of length 0.8 metres and mass 1 kg . the beam is hinged at A and has a load of mass 2 kg attached at B

The beam is held in a horizontal position by a light inextensible string of length 0.5 metres. the string joins the mid-point M of the beam to a point C vertically above A.

Find the
(a) Tension in the string(08marks)

$$
A C^{2}=(05)^{2}-(0.4)^{2}
$$

$A C=0.3$
$\cos \theta=\frac{0.4}{0.5}=0.8$
$\sin \theta=\frac{0.3}{0.5}=0.6$
Taking moments at A
$(9.8 \times 0.4)+(2 \times 9.8 \times 0.8)=\mathrm{T} \times 0.4 \sin \theta$
$(9.8 \times 0.4)+(2 \times 9.8 \times 0.8)=\mathrm{T} \times 0.4 \times 0.6$
$\mathrm{T}=81.667 \mathrm{~N}$
(b) Magnitude and direction of the force exerted by the hinge. (04marks)

Resolving forces
$(\rightarrow) ; \mathrm{R} \cos \alpha=\mathrm{T} \cos \theta=\frac{245}{3} \times 0$.
$R \cos \alpha=\frac{196}{3}$
(\uparrow); $R \sin \alpha+T \sin \theta=g+2 g$
$R \sin \alpha=3 \times 9.8-\frac{245}{3} \times 0.6$
$R \sin \alpha=-19.6$ (ii)

Equn (ii) \div Eqn (i)
$\frac{R \sin \alpha}{R \cos \alpha}=\frac{-19.6}{\frac{196}{3}}=-0.3$
$\tan \alpha=-0.3$
$\alpha=-16.7^{0}$
Hence the direction of force at the hinge
is 16.7^{0} with the beam
From eqn (i)
$R \cos 16.7^{\circ}=\frac{196}{3} ; R=68.21 \mathrm{~N}$

Example 30

A non-uniform rod $A B$ of mass $10 k$ has its centre of gravity a distance $1 / 4 A B$. The rod is smoothly hinged at A. it is maintained in equilibrium at 60° above the horizontal by a light inextensible string tied at B and at a right angle to $A B$. Calculate the magnitude and direction of the reaction at A.
(12marks)

Taking moments about point A
$\mathrm{T} x(\mathrm{AB})=10 \mathrm{~g}\left(\frac{3}{4} A B \cos 60^{\circ}\right)$
$\mathrm{T}=\frac{15 g}{4}=\frac{15 \times 9.8}{4}=36.75 \mathrm{~N}$

Resolving forces horizontally
$X=T \cos 30^{\circ}=36.75 \cos 30^{\circ}=31.8264 \mathrm{~N}$
$Y=10 \mathrm{~g}-36.75 \sin 30^{\circ}=79.625 \mathrm{~N}$
$|R|=\sqrt{(31.8264)^{2}+(79.625)^{2}}=85.75 \mathrm{~N}$ 79.625

$\theta=\tan ^{-1}\left(\frac{79.625}{31.8264}\right)=68.2^{0}$
The direction of resultant force is 68.2^{0} or $\mathrm{E} 68.2^{\circ} \mathrm{N}$ or N21.8 ${ }^{0} \mathrm{E}$

Revision Exercise 4

1. A uniform rod $A B$ of mass 5 kg is freely hinged at A to a vertical wall and held horizontal in equilibrium by a string which has one end attached to a point C on the wall above A. the string makes an angle of 30° with $A B$, find
(a) The tension in the rope [49N]
(b) The magnitude and direction of the reaction at $A\left[49 \mathrm{~N}\right.$ at 30° with $A B$
2. A non-uniform beam $A B$ of weight $20 N$ and of length $4 m$ is freely hinged at A to a vertical wall and is held horizontal in equilibrium by a string which has one end attached at B and the other end attached to point C on the wall above A. The string makes an angle of 600 with $A B$. If the tension in the string is 12 N , find
(a) The magnitude and direction of reaction at the hinge [11.3 N at 58° with $A B$
(b) Distance from A to the centre of gravity. [2.08m]
3. One end of a uniform plank of length 4 m and weight 100 N is hinged to a vertical wall. An inelastic rope, tied to the other end of the plank is fixed at a point 4 m above the hinge. Find
(a) tension in a rope [388.9N]
(b) the reaction of the wall on the plank [302.1 N at 24.4^{0} to horizontal]
4. A uniform diving board $A B$, of length 4 m and maintained in a horizontal position by means of a light strut $D C$. D is a point on the wall 1 m below A and C is a point on the board where $A C=1 \mathrm{~m}$. An object of mass 60 kg is placed at end B
(a) Find the position of the centre of mass of the 60kg mass and the mass of the board combined. [80 cm from B]
(b) Determine
(i) Thrust in the strut [452.548 N]
(ii) Magnitude of reaction at A [388.33N]
5. Two light strings are perpendicular to each other and support a particle of weight 100 N . The tension in one string is 40.0 N . Calculate the angle this string with the vertical and the tension in the other string. [66.4 ${ }^{0}, 91.7 \mathrm{~N}$]
6. A uniform pole $A B$ of weight 5 W and length 8 a is suspended horizontally by two vertical strings attached to it at C and D where $A C=B D=a$. . A body of weight 9 W hangs from the pole at E where $\mathrm{ED}=2 \mathrm{a}$. calculate the tension in each string [5.5W, 8.5W]
7. $A B$ is a uniform rod of length 1.4 m . it is pivoted at C where $A C=0.5 \mathrm{~m}$, and rests in horizontal equilibrium when weights of 16 N and 8 N are applied at A and B respectively. Calculate
(a) Weight of the rod [4N]
(b) The magnitude of the reaction at the pivot [28N]
8. A uniform rod $A B$ of length $4 a$ and weight W is smoothly hinged at its upper end A. the rod is held at 30° to the horizontal by a string which is at 90° to the rod and attached to it at C where $A C=3 a$. Find
(a) The tension in the string [0.58 W]
(b) Reaction at A [0.578W]
9. A sphere of weight 40 N and radius 30 cm rests against a smooth vertical wall. The sphere is supported in this position by a string of length 20 cm attached to a point on the sphere and to the point on the wall, find
(a) Tension in the string [50N]
(b) Reaction due to the wall[30 N at 90° to the wall]
10. A smooth uniform rod $A B$ of length $3 a$ and eight $2 w$ is pivoted at A so that it can rotate in a vertical plane. A light ring is free to slide over the rod. A light inextensible string is attached to the ring and passes over a fixed smooth peg at a point C a height 4 a above A and carries a particle of weight w hanging freely

(a) Show that the angle θ that the rod makes to vertical in equilibrium is given by $\tan \theta=\frac{4}{3}$.
(b) Find the magnitude of the force of the pivot on the rod at A in terms of w. $\left[\frac{3 w \sqrt{5}}{3}\right]$.
11. A smooth uniform rod $A B$ of length $3 a$ and weight W is pivoted at A so that it can rotate in a vertical plane. A light ring is free to slide over the rod. A light inextensible string is attached to the ring and passes over a fixed smooth peg at point C a height 4 a above A and carries a particle of weight w hanging freely.

(a) Show that the angle θ that the rod makes to the vertical in equilibrium is given by $\tan \theta=\frac{8 w}{3 W}$.
(b) Find the smallest value of the ratio $\frac{w}{W}$ for which equilibrium is possible. $\left[\frac{\sqrt{7}}{8}\right]$
12. A uniform rod $A C$ of mass 2 kg and length 120 cm hangs at rest in a vertical plane with end A in contact with a vertical wall. An inelastic string of length 70 cm is attached to a point B on $A C$ such that $A B$ is 90 cm . The other end of the string is attached to the wall at a point $D, 140 \mathrm{~cm}$ vertically above A

If the string is taut and angle DAC is 25.2°, find
(a) Angle DBA [121.6 ${ }^{0}$]
(b) The tension in the string [6.53N]

Beams on inclined plane

Example 31

A sphere of radius a and weight w rests on a smooth inclined plane supported by a string of length with one end attached to appoint on the surface of the sphere and the other end fastened to a point on the plane. If the angle of inclination of the plane to the horizontal is θ. Prove that the tension of the string is $\frac{w(a+L) \sin \theta}{\sqrt{L^{2}+2 a L}}$

Solution

$A M^{2}=O A^{2}-O M^{2}$
$\mathrm{AM}=\sqrt{(a+L)^{2}-a^{2}}$

$$
\begin{aligned}
& \mathrm{AM}=\sqrt{L^{2}+2 a L} \\
& \cos \beta=\frac{\sqrt{L^{2}+2 a L}}{(L+a)}
\end{aligned}
$$

Also $w \sin \theta=T \cos \alpha$
$T=\frac{w \sin \theta}{\cos \alpha}=\frac{w(a+L) \sin \theta}{\sqrt{L^{2}+2 a L}}$

Example 32

A uniform rod LM weight w rests with L on a smooth plane PO of inclination 250 as shown in the diagram below

The angle between LM and the plane is 450 . What force parallel to PO applied at M will keep the rod in equilibrium?

$$
\begin{aligned}
& R_{M} \times d=w \times y \operatorname{cons} 20 \\
& \text { But } d=2 y \sin 45 \\
& R_{M} \times 2 y \sin 45=w \times y \cos 20 \\
& R_{M}=0.6645 w
\end{aligned}
$$

Taking moments about L

Example 33

The diagram shows a uniform ladder resting in equilibrium with its top end against a smooth vertical wall and its base on a smooth inclined plane. The plane makes an angle of θ with the horizontal and the ladder makes an angle α with the wall.

Prove that $\tan \alpha=2 \tan \theta$

Taking moments about B
$R_{A} \times 2 L \cos \alpha=w \times L \sin \alpha$
$\mathrm{R}_{\mathrm{A}}=\frac{w \tan \alpha}{2}$
$(\uparrow) R_{B} \cos \theta=w$
$(\rightarrow) R_{B} \sin \theta=R_{A}$
(iii) \div (ii) $\frac{R_{B} \sin \theta}{R_{B} \cos \theta}=\frac{w}{R_{A}} ; R_{A}=w \tan \theta$
$w \tan \theta=\frac{w \tan \alpha}{2} ; \tan \alpha=2 \tan \theta$

Using cotangent rule for triangle
$L \cot \theta-L \cot 90^{\circ}=2 L \cot \alpha$

$$
\cot \theta=2 \cot \alpha
$$

$\frac{1}{\tan \theta}=\frac{2}{\tan \alpha}$

Example 34

A rod $A B$ of length L has its centre of gravity at a point G where $A G=\frac{1}{4} L$. The rod rests in equilibrium in a vertical plane at an angle α to the horizontal with its ends in contact with two inclined planes whose line of intersection is perpendicular to the rod. If the planes are smooth and equally inclined at an angle θ to the horizontal

Show that $2 \tan \theta \tan \alpha=1$ and the reaction on each plane is $\frac{w}{1+\cos \theta}$

Using cotangent rule for triangle
$\frac{3 L \cot \theta}{4}-\frac{L}{4 \cot \theta}=\left(\frac{3 L}{4}+\frac{L}{4}\right) \cot \left(90^{0}-\alpha\right)$
$0.5 \cot \theta=\tan \alpha$
$2 \tan \theta \tan \alpha=1$
$(\uparrow) R_{A} \cos \theta+R_{B} \cos \theta=\mathrm{w}$
$R_{B}=w-R_{A} \cos \theta$ \qquad
$(\rightarrow) R_{A} \cos \alpha+R_{B} \cos \alpha$
$R_{B}=R_{A}$
$R_{B}=w-R_{B} \cos \theta$
$R_{B}=R_{A}=\frac{w}{1+\cos \theta}$

Example 35

A uniform road 3 m long and of mass 29 kg is placed on two smooth planes inclined at 30° and 60° to the horizontal

Find the reaction on each plane and the inclination of the rod to horizontal when it is in equilibrium.

$$
\begin{align*}
& \text { (个) } R_{A} \cos 30+R_{B} \cos 60=20 g \\
& R_{B}=40 g-R_{A} \sqrt{3} . \tag{i}\\
& (\rightarrow) R_{B} \sin 60=R_{A} \cos 30 \\
& R_{B \sqrt{3}}=R_{A} \tag{ii}
\end{align*}
$$

$R_{B}=40 g-R_{B} \sqrt{3} x \sqrt{3}$
$R_{B}=98 N$
$R_{A}=98 \sqrt{3}=169.74 \mathrm{~N}$
Using cotangent rule for triangles
$1.5 \cot 30-1.5 \cot 60=3 \cot (90-\alpha)$
$1.5 \sqrt{3}-1.5 \frac{1}{\sqrt{3}}=3 \tan \alpha$
$\alpha=30^{\circ}$

Revision exercise 5

1. A uniform rod of length $2 a$ and mass m is placed on two smooth inclined planes at 30° and 60° to the horizontal. The normal reactions at the ends of the rod have magnitude R and S.

(a) Show that $\mathrm{R}=\mathrm{S} \sqrt{2}$
(b) Prove that the inclination of the rod to horizontal is $\cot ^{-1}(1+\sqrt{3})$
2. A uniform rod rests with its end on two smooth planes inclined at 30° and 60° to the horizontal. A weight equal to twice that of the beam can slide along its length. Find the position of the sliding weight when the beam rests in horizontal position $\left[\frac{1}{8}\right.$ of thelength from 30° plane $]$
3. The diagram shows a uniform ladder resting with its top end against a smooth vertical wall and its base on a smooth inclined plane. The plane makes an angle of θ with the horizontal and the ladder makes an angle of α with the wall.

Find α when θ is
(i) $\quad 10^{0}\left[19.4^{0}\right]$
(ii) $30^{0}\left[49.1^{0}\right]$

Thank you
Dr. Bbosa Science

