

Sponsored by

Hooke's law, elastic strings and Simple harmonic motion

Hooke's law states that the tension in a stretched string is proportional to the extension,e from its natural (unstretched) length, L.
$T=\lambda \frac{e}{L}$ where λ is modulus of elasticity.

Example 1

An elastic string is of natural length 4 m and modulus 25 N . Find
(i) The extension in the string when the extension is 20 cm

$$
T=\lambda \frac{e}{L}=25 x \frac{0.2}{4}=1.25 \mathrm{~N}
$$

(ii) The extension of the string when the tension is 6 N $e=T \frac{L}{\lambda}=6 \times \frac{4}{25}=0.96 \mathrm{~m}$

Example 2

A spring is of natural length 1.6 and modulus 20 N . Find the thrust in the spring when it is compresses to a length of 1 m

$$
T=\lambda \frac{e}{L}=20 \times \frac{0.6}{1.6}=7.5 \mathrm{~N}
$$

Example 3

A body of mass mkg lies on a smooth horizontal surface and is connected to a point O on the surface by a light elastic string of natural length 60 cm and modulus 90 N . When the body moves in a horizontal circular path about O with constant speed of $3 \mathrm{~ms}^{-1}$, the extension in the string is 30 cm . find the mass of the body.
$\left.T=\lambda \frac{e}{L}=90 x \frac{0.3}{0.6}=45 \mathrm{~N} \quad \mathrm{~T}=m \frac{v^{2}}{r} \right\rvert\, \quad 45=m \frac{3^{2}}{(0.6+0.3)} \quad \mathrm{m}=4.5 \mathrm{~kg}$

Example 4

A smooth surface inclined at 30° to the horizontal has a body A of mass 2 kg that is held at rest on the surface by a light elastic string which has one end attached to A and the other to a fixed point on the surface 1.5 m away from A up to the line of greatest slope. If the modulus of elasticity of the string is 2 gN , find the natural length

$T=\lambda \frac{e}{L}$
$2 \mathrm{~g} \sin 30=2 \mathrm{~g} \times \frac{1.5-L}{L}$
$\mathrm{L}=1 \mathrm{~m}$

Equilibrium of a suspended body
When an elastic string one end fixed and a mass attached to its other end so that the mass is suspended in equilibrium, the string is stretched due to the mass.

$$
\mathrm{T}=\mathrm{mg}
$$

$\mathrm{mg}=\lambda \frac{e}{L}$ at equilibrium

Example 5

A light elastic string of natural length 65 has one end fixed and a mass of 500 g freely suspended from the other end. Find the modulus of elasticity of the string if the total length of the string in equilibrium position is 85 cm

$\mathrm{mg}=\lambda \frac{e}{L}$	$0.5 \times 9.8=\lambda \times \frac{0.85-0.65}{0.65}$	$\lambda=15.93 \mathrm{~N}$

Example 6

A light spring of natural length 1.5 m has one end fixed and a mass of 400 g freely suspended from the other. The modulus of the spring is 44.1 N
(a) Find the extension of the spring when the body hangs in equilibrium

$\mathrm{mg}=\lambda \frac{e}{L}$	$0.4 \times 9.8=44.1 x \frac{e}{1.5}$	$\mathrm{e}=0.13 \mathrm{~m}$

(b) The mass is pulled vertically downwards a distance of 10 cm and released, find the acceleration of the body when released
$T_{1}=\lambda \frac{e+x}{L}$
$T_{1}=44.1 \times \frac{0.13+0.1}{1.5}=6.762 \mathrm{~N}$
$T_{1}-T=m a$
$6.762-3.92=0.4 a$
$F=m a$

$$
A=7.11 \mathrm{~ms}^{-2}
$$

Potential energy stored in an elastic string

Work done $=$ average force x extension $=\lambda \frac{e^{2}}{2 L}$

Example 7

An elastic string is of natural length 6.4 m and modulus 55 N . Find the work done in stretching it from 6.4 m to 6.8 m

Work done $=\lambda \frac{e^{2}}{2 L}=55 \times \frac{0.4^{2}}{2 \times 6.4}=0.688 \mathrm{~J}$

Example 8

An elastic string of natural length 4 m is fixed at one end and stretched to 5.6 m by a force of 8 N . Find the modulus of elasticity and the work done
$T=\lambda \frac{e}{L}$
$8=\lambda \frac{5.6-4}{4}$
$\lambda=20 N$
Work done $=\lambda \frac{e^{2}}{2 L}=20 \times \frac{1.6^{2}}{2 \times 4}=6.4 \mathrm{~J}$

Example 9

An elastic string of natural length 1.2 m and modulus of elasticity 8 N is stretched until the extending force is 6 N . Find the extension and work done
$T=\lambda \frac{e}{L}$

$$
\mathrm{e}=0.9 \mathrm{~m}
$$

$6=8 x \frac{e}{1.2}$

$$
\text { Work done }=\lambda \frac{e^{2}}{2 L}=8 x \frac{0.9^{2}}{2 x 1.2}=2.7 \mathrm{~J}
$$

Example 10

A light elastic string of natural length 1.2 m has one end fixed at A and a mass of 5 kg freely suspended from the other. The modulus of the string is such that a 5 kg mass hanging vertically would stretch the string by 15 cm . the mass is held at A and allowed to fall vertically, how far from A it comes to rest.
$m g=\lambda \frac{e}{L}$
$5 \times 9.8=\lambda x \frac{0.15}{1.2}$
$\lambda=392 \mathrm{~N}$
At $\mathrm{A} ; \mathrm{u}=0 \mathrm{~ms}^{-1}, \mathrm{~s}=1.2 \mathrm{~m}, \mathrm{~g}=9.8 \mathrm{~ms}^{-2}$
$v^{2}=u^{2}+2 g s=0^{2}+2 \times 9.8 \times 1.2=23.52 \mathrm{~m}^{2} \mathrm{~s}^{-2}$

$$
\begin{aligned}
& \mathrm{w}=\mathrm{k} . \mathrm{e}+\mathrm{p} . \mathrm{e} \\
& \lambda \frac{e^{2}}{2 L}=\frac{m v^{2}}{2}+m g e \\
& 392 \times \frac{e^{2}}{2 \times 1.2}=\frac{5 \times 23.52}{2}+5 \times 9.8 \times e \\
& \mathrm{e}=0.769 \mathrm{~m} \\
& \text { Depth }=1.2+0.769=1.969 \mathrm{~m}
\end{aligned}
$$

Revision exercise

1. An elastic string of natural length 1 m and modulus 20 N . find the tension in the string when the extension is 20 cm [4 N]
2. A spring of natural length 50 cm and modulus 10 N . Find the thrust in the spring when it is compressed to a length 40 cm [2N]
3. When the length of a spring is 60% of its original length, the thrust in the spring is 10 N . find the modulus of the spring [25N]
4. An elastic string of natural length 60 cm and modulus 18 N . Find the extension of the string when the tension in the string is $6 \mathrm{~N}[20 \mathrm{~cm}]$
5. The tension in an elastic string is 8 N when the extension in the string is 25 cm . If the modulus of the string is 8 N . Find the un-stretched length. [25 cm]
6. A light elastic string of natural length 20 cm and modulus 2 gN has one end fixed and a mass of 500 g freely suspended from the other. Find the total length of the string [25 cm]
7. When a mass of 5 kg is freely suspended from one end of a light elastic string, the other end of it fixed, the string extends to twice its natural length. Find the modulus of the string [49N]
8. A body of mass 4 kg lies on a smooth horizontal surface and is connected to point O of the surface by a light elastic string of natural length 64 cm and modulus 25 N . when the body moves in a horizontal circular path about O with constant speed of vms ${ }^{-1}$, the extension in the string is 36 cm . Find $v\left[1.875 \mathrm{~ms}^{-1}\right.$]
9. A body of mass 5 kg lies on a horizontal surface and is connected to a point O on the surface by a light elastic string of natural length 2 m and modulus 30 N . When the body moves in a horizontal circular path about O with a constant speed $3 \mathrm{~ms}^{-1}$, find the extension in the string[1m]
10. An elastic string of natural length 2 m and modulus 10 N . Find the energy stored when it is extended to a length of 3 m [2.5J]
11. An elastic string of natural length 1 m and modulus 20 N . Find the energy stored when it is extended by a length of 30 cm [0.9J]

Simple harmonic motion in strings

Example 11

One end of a light elastic string of natural length 2 m and modulus 10 N is fixed to point A on a smooth horizontal surface. A body of mass 200 g is attached to the other end of the string and is held at rest at point B on the surface causing the spring to extend by 30 cm . Show that when released, the body will move with S.H.M. State its amplitude and find the maximum speed.

$T=\lambda \frac{x}{L}=10 x \frac{x}{2}=5 x$
$\mathrm{F}=\mathrm{ma}$
$5 x=-0.2 a$
$a=-25 x$

Since $a=-\omega^{2} x$
$\omega^{2}=25$
$\omega=5 \mathrm{rads}^{-1}$
$T=\frac{2 \pi}{\omega}=\frac{2 \pi}{2} s$ and $r=0.3 \mathrm{~m}$
$v_{\text {max }}=\omega r=5 \times 0.3=1.5 \mathrm{~ms}^{-1}$

Example 12

One end of a light elastic string of natural length 1 m and modulus 5 N is fixed to a point O on a smooth horizontal surface. A body of mass 1 kg is attached to the other end, A of the string and is held at rest at point B where $O B=1.25 \mathrm{~m}$. Show that when released, the body will move with S.H.M. Find the maximum speed and the total time taken from B to O

$$
\begin{aligned}
& T=\lambda \frac{x}{L}=5 x \frac{x}{1}=5 x \\
& \mathrm{~F}=\mathrm{ma}
\end{aligned}
$$

$5 x=-1 a$
$a=5 x$
Since $a=-\omega^{2} x$
$\omega^{2}=5$
$\omega=2.236 \mathrm{rads}^{-1}$
$T=\frac{2 \pi}{\omega}=\frac{2 \pi}{2.236} s=2.81 s$ and $\mathrm{r}=0.25 \mathrm{~m}$
$v_{\max }=\omega r=2.236 \times 0.25=0.559 \mathrm{~ms}^{-1}$

$$
t_{O A}=\frac{\text { distance }}{\text { speed }}=\frac{1}{0.559}=1.788 \mathrm{~s}
$$

$$
\frac{\text { distance }}{\text { time }}=\frac{1}{T}=\frac{0.25}{t_{A B}}
$$

$$
t_{A B}=\frac{0.25 \times 2.81}{1}=0.7025 \mathrm{~s}
$$

$$
t_{O B}=t_{O A}+t_{A B}
$$

$$
t_{O B}=1.788+0.7025=2.491 \mathrm{~s}
$$

Example 13

A light elastic string of natural length 2.4 m and modulus 15 is stretched between two points A and B, 3 m apart on a smooth horizontal surface. A body of mass 4 kgis attached to the midpoint of the string is pulled 10 cm towards B and released
(i) Show that the subsequent motion is simple harmonic
(ii) Find the speed of the body when it is 158 cm from A

At equilibrium $T_{1}=T_{2}$
$\lambda \frac{e_{1}}{L}=\lambda \frac{e_{2}}{L}$
$e_{1}=e_{2}$
$e_{1}+e_{2}+2.4=3$
$e_{1}=0.3 m$
$\mathrm{F}=\mathrm{ma}$
$\mathrm{T}_{2}-\mathrm{T}_{1}=\mathrm{ma}$
$\lambda\left(\frac{0.3-x}{1.2}\right)-\lambda\left(\frac{0.3+x}{1.2}\right)=4 \mathrm{a}$

$$
4.8 a=-2 \lambda x
$$

$$
a=-\frac{2 x 15 x}{4.8}=-6.25 x
$$

It is in form of $a=\omega^{2} x$ hence S.H.M
$\omega^{2}=6.25$
$\omega=2.5 \mathrm{rads}^{-1}$
$v^{2}=\omega^{2}\left(r^{2}-x^{2}\right)$ when 158 from $A, x=8 c m$
$v=\sqrt{0.1^{2}-0.08^{2}}=0.15 m s^{-1}$

Example 14
A particle of mass m is attached by means of a light string AP and BP of the same natural length a m and modulus of elasticity mgN and 2 mgN respectively, to point A and B on a smooth horizontal surface. The particle is released from the midpoint $A B$ where $A B=3 a$. Show that the subsequent motion is simple harmonic with period $T=\left(\frac{4 \pi^{2} a}{3 g}\right)^{\frac{1}{2}}$.

At equilibrium $T_{1}=T_{2}$
$m g \frac{e_{1}}{a}=2 m g \frac{e_{2}}{a}$
$e_{1}=2 e_{2}$ \qquad

$$
\begin{aligned}
& e_{1}+e_{2}+2 a=3 a \\
& 2 e_{2}+e_{2}+2 a=3 a \\
& e_{2}=\frac{a}{3} \text { and } e_{1}=\frac{2 a}{3} \\
& \mathrm{~F}=\mathrm{ma}
\end{aligned}
$$

$\mathrm{T}_{2}-\mathrm{T}_{1}=\mathrm{ma}$
$2 m g\left(\frac{a / 3-x}{a}\right)-m g\left(\frac{2 a / 3+x}{a}\right)=m a$
$\mathrm{a}=-\frac{3 g}{a} \mathrm{x}$
It is in form of $a=\omega^{2} x$ hence S.H.M
$\omega^{2}=\frac{3 g}{a}$

$$
\begin{aligned}
& \omega=\left(\frac{3 g}{a}\right)^{1 / 2}{r a d s^{-1}}^{\omega}=\frac{2 \pi}{\left(\frac{3 g}{a}\right)^{1 / 2}}=\left(\frac{4 \pi^{2} a}{3 g}\right)^{\frac{1}{2}}
\end{aligned}
$$

Example 15

A particle of mass 1.5 kg lies on a smooth horizontal table and attached to two light elastic string fixed at points P and $Q 12 \mathrm{~m}$ apart. The strings are of natural length 4 m and 5 m and their modulus are λ and 2.5λ respectively.
(a) Show that the particles stays in equilibrium at a point R midway between P and Q

At equilibrium $T_{1}=T_{2}$
$\lambda \frac{e_{1}}{4}=2.5 \lambda \frac{e_{2}}{5}$
$e_{1}=2 e_{2}$
$e_{1}+e_{2}+4+5=12$
$2 e_{2}+e_{2}+9=12$

$$
\begin{aligned}
& e_{2}=1 \\
& e_{1}=2 \\
& \text { At R (midpoint) } 4+e_{1}=5+e_{2} \\
& 4+2=5+1=6
\end{aligned}
$$

(b) If the particle is held at some point S in the line $P Q$ with $P S=4.8 \mathrm{~m}$ and then released. Show that the particle performs S.H.M and find the
(i) Period of oscillation
(ii) Velocity when the particle is 5.5 m from P

$F=m a$
$\mathrm{T}_{2}-\mathrm{T}_{1}=\mathrm{ma}$
$2.5 \lambda\left(\frac{1-x}{5}\right)-\lambda\left(\frac{2+x}{4}\right)=15 \mathrm{a}$
$a=-\frac{\lambda}{2} x$
It is in form of $a=\omega^{2} x$ hence S.H.M
$\omega^{2}=\frac{\lambda}{2}$
$\omega=\left(\frac{\lambda}{2}\right)^{1 / 2} \mathrm{rads}^{-1}$
$T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\left(\frac{\lambda}{2}\right)^{1 / 2}}=\left(\frac{8 \pi^{2}}{\lambda}\right)^{\frac{1}{2}}$
$v^{2}=\omega^{2}\left(r^{2}-x^{2}\right)$ when $5.5 m$ from $P, x=0.5 m$
$v=\sqrt{\frac{\lambda}{2}\left((6-4.8)^{2}-0.5^{2}\right)}$
$v=\sqrt{\frac{\lambda}{2}\left((1.2)^{2}-0.5^{2}\right)}=\sqrt{0.595 \lambda} \mathrm{~ms}^{-1}$

Elastic strings or springs hanging vertically

Example 16

A particle of mass m is suspended by a string from a fixed point A and has a natural length L. If the spring is extended from B to C where $B C=e$ and this extension is due to weight of the body $(\mathrm{mg}), C D$ $=x$ is the length a particle is pulled vertically downwards.

At equilibrium $\mathrm{T}=\mathrm{mg}$
$\mathrm{T}=\lambda \frac{e}{L}$
When pulled a distance x :
$\mathrm{T}-\mathrm{T}_{1}=\mathrm{ma}$

$$
\begin{aligned}
& \lambda \frac{e}{L}-\lambda \frac{e+x}{L}=m a \\
& a=-\frac{\lambda}{m L} x
\end{aligned}
$$

It is in form of $a=\omega^{2} x$ hence S.H.M
$\omega^{2}=\frac{\lambda}{m L}$
$\omega=\left(\frac{\lambda}{m L}\right)^{1 / 2} \mathrm{rads}^{-1}$
$T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\left(\frac{\lambda}{m L}\right)^{1 / 2}}=2 \pi \sqrt{\frac{m L}{\lambda}}$

Example 17

A light elastic spring of natural length 50 cm and modulus 20 gN , hangs vertically with its upper and fixed and the body of mass 6 kg attached to its lower end. The body initially rests in equilibrium and then pulled down a distance of 25 cm and released.
(a) Show that the ensuing motion will simple harmonic and
(b) Find the period of motion and maximum speed of the body

At equilibrium $\mathrm{T}=\mathrm{mg}$
$6 \mathrm{~g}=20 \mathrm{~g} \frac{e}{0.5}$
$\mathrm{e}=0.15 \mathrm{~m}$
When pulled a distance x :
$\mathrm{T}-\mathrm{T}_{1}=\mathrm{ma}$
Thank you
Dr. Bbosa Science

