

Sponsored by

Simple harmonic motion

This is a periodic motion of a body whose acceleration is directly proportional to the displacement from a fixed point and is directed towards the fixed point.
$a \propto-x$ or;
$a=-\omega^{2} x$ where ω is angular velocity, x , is displacement from fixed point
The negative sign means that the acceleration and displacement are always in opposite direction

Maximum acceleration

$a_{\max }=-\omega^{2} r$ where r is the maximum displacement or amplitude.

Force F

$\mathrm{F}=\mathrm{ma}=m \omega^{2} x$
Maximum force, $F_{\max }=m \omega^{2} r$

Velocity in terms of displacement

Velocity of a body executing S.H.M can be expressed as a function of displacement x.
$a=-\omega^{2} x$
$a=\frac{d v}{d t}=\frac{d v}{d x} \cdot \frac{d x}{d t}$
But $\frac{d x}{d t}=v$
$a=v \frac{d v}{d x}$
$v \frac{d v}{d x}=-\omega^{2} x$
$v d v=-\omega^{2} x d x$
Integrating both sides

$$
\begin{aligned}
& \int v d v=-\omega^{2} \int x d x \\
& \frac{v^{2}}{2}=-\frac{\omega^{2} x^{2}}{2}+c \ldots \ldots \ldots
\end{aligned}
$$

\qquad
Where con is a constant of integration

At momentary rest $\mathrm{v}=0$
$x=r$ (amplitude

$$
\frac{0^{2}}{2}=-\frac{\omega^{2} x^{2}}{2}+c
$$

$c=\frac{\omega^{2} r^{2}}{2}$
Substituting c in eqn. (i)
$\frac{v^{2}}{2}=-\frac{\omega^{2} x^{2}}{2}+\frac{\omega^{2} r^{2}}{2}$
$v^{2}=\left(\omega^{2} r^{2}-\omega^{2} x^{2}\right)$
$v^{2}=\omega^{2}\left(r^{2}-x^{2}\right)$

Velocity is maximum when $x=0$
$v^{2}=\omega^{2} r^{2}$
$v_{\max }=\omega r$

Displacement at any time t

$\frac{d x}{d t}=v$
$\frac{d x}{d t}=\omega \sqrt{\left(r^{2}-x^{2}\right)}$
$\int \frac{d x}{\sqrt{\left(r^{2}-x^{2}\right)}}=\int \omega d t$
$\sin ^{-1} \frac{x}{r}=\omega t+\varepsilon$
$\mathrm{x}=\mathrm{r} \sin (\omega t+\varepsilon)$
When timing at the centre, $t=0, x=0$
$x=r \sin \omega t$ particle moves away from the centre
When timing at the amplitude, $\mathrm{t}=0, \mathrm{x}=\mathrm{r}$
$x=r \sin \omega t$ particle moves towards from the centre

Period

This is the time taken for one complete oscillation
$\mathrm{T}=\frac{\text { distance }}{\text { speed }}=\frac{2 \pi r}{v}$
But $v=r \omega$
$\mathrm{T}=\frac{2 \pi r}{\mathrm{r} \omega}$
$\mathrm{T}=\frac{2 \pi}{\omega}$

Example 1

A particle moves in a straight line with simple harmonic motion about mean position O with a periodic time of $\frac{\pi}{2} \mathrm{~s}$. Find the magnitude of acceleration of the particle when 1 m from O .

Solution
From $a=-\omega^{2} x$ and $\omega=\frac{2 \pi}{T}$
Negative ignored
$a=\left(\frac{2 \pi}{\pi / 2}\right)^{2} x 1=16 \mathrm{~ms}^{-2}$

Example 2

A particle moves with S.H.M about a mean position O . When the particle is 25 cm from O , its acceleration is $1 \mathrm{~ms}^{-1}$ towards O . Find the
(i) Periodic time of motion
(ii) Magnitude of acceleration of the particle when 20 cm from O

Solution

$a=-\omega^{2} x$
$1=\omega^{2}(0.25)$
$\omega^{2}=4$
$\mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \pi}{2}=\pi \mathrm{s}$
(ii) $a=-\omega^{2} x$
$a=2^{2}(0.2)=0.8 \mathrm{~ms}^{-2}$
$\omega=2$ rads $^{-1}$

Example 3

A particle move with S.H.M of the periodic time $\frac{\pi}{2}$ s and has a maximum speed of $3 \mathrm{~ms}^{-1}$. Find the maximum acceleration experienced by the particle
$\boldsymbol{v}_{\text {max }}=\boldsymbol{\omega} \boldsymbol{r}$
$3=\left(\frac{2 \pi}{\pi / 2}\right) r ; r=0.75 \mathrm{~m}$

$$
\begin{aligned}
& a_{\max }=-\omega^{2} r \\
& a_{\max }=\left(\frac{2 \pi}{\pi / 2}\right)^{2} \times 0.75=12 \mathrm{~ms}^{-2}
\end{aligned}
$$

Example 4

A particle moves with S.H.M about a mean position O . the amplitude of the motion is 5 m and the period is $8 \pi \mathrm{~s}$. Find the
(i) maximum speed of the particle
(ii) speed of the particle when 3 m from O

Solution
$\left.\begin{array}{ll}\text { (i) } & \boldsymbol{v}_{\max }=\boldsymbol{\omega} r=\frac{2 \pi}{8 \pi} x 5=1.25 \mathrm{~ms}^{-1} \\ \text { (ii) } & v^{2}=\omega^{2}\left(r^{2}-x^{2}\right)\end{array} \right\rvert\, v=\sqrt{\left(\frac{2 \pi}{8 \pi}\right)^{2}\left(5^{2}-3^{2}\right)}=1 \mathrm{~ms}^{-1}$

Example 5

A body of mass 200 g executes S.H.M with amplitude of 20 mm . The maximum force which acts on it is 0.064 N , calculate (a) its maximum velocity (ii) it period of oscillation

Solution

$F_{\max }=m \omega^{2} r$
$0.064=0.2 x \omega^{2} x 0.02$
$\omega=4 \mathrm{rads}{ }^{1}$

$$
\begin{aligned}
& v_{\max }=\omega r=4 \times 0.02=0.08 \mathrm{~ms}^{-1} \\
& \text { (ii) } \mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \pi}{4}=\frac{\pi}{2} \mathrm{~s}
\end{aligned}
$$

Example 6

A particle moves with S.H.M about O with a period of 2π seconds. It passes a point A with a velocity of $4 \mathrm{~ms}^{-1}$ away from O . Given that $\mathrm{OA}=4 \mathrm{~m}$, find
(i) The amplitude
(ii) The speed at B where $\mathrm{OB}=3 \mathrm{~m}$

Solution

$\omega=\frac{2 \pi}{T}=\frac{2 \pi}{2 \pi}=1 \mathrm{rads}^{-1}$
From $v^{2}=\omega^{2}\left(r^{2}-x^{2}\right)$
$4^{2}=1^{2}\left(r^{2}-4^{2}\right)$
$r=5.66 m$

Example 7

A particle moving with S.H.M has velocities of $4 \mathrm{~ms}^{-1}$ and $3 \mathrm{~ms}^{-1}$ at distance of 3 m and 4 m respectively from equilibrium position. Find
(a) amplitude
(b) period

$$
\begin{align*}
& v^{2}=\omega^{2}\left(r^{2}-x^{2}\right) \\
& 4^{2}=\omega^{2}\left(r^{2}-3^{2}\right) \\
& 16=\omega^{2}\left(r^{2}-9\right) . \tag{i}
\end{align*}
$$

Also,
$3^{2}=\omega^{2}\left(r^{2}-4^{2}\right)$
$9=\omega^{2}\left(r^{2}-16\right)$ \qquad
(i) \div (ii) $\frac{16}{9}=\frac{\omega^{2}\left(r^{2}-9\right)}{\omega^{2}\left(r^{2}-16\right)}$
$r=5 m$
Amplitude $=5 \mathrm{~m}$
(b) eqn. (i)
$16=\omega^{2}\left(5^{2}-9\right)$
$\omega=1 \mathrm{rads}^{-1}$
Period, $T=\frac{2 \pi}{\omega}=\frac{2 \pi}{1}=2 \pi \mathrm{~s}$

Example 8

A particle moves with S.H.M about a mean position O . the particle is initially projected from O with speed $\frac{\pi}{6} m s^{-1}$ and just reaches a point $A, 2 \mathrm{~m}$ from 0 .
(a) Find how far the particle from 0,3 seconds after projection
(b) How many second after projection is the particle a distance of 1 m from 0
(i) For the first time,
(ii) second time (iii) third time

Solution
(a) At equilibrium position, $v_{\max }=\omega r$ $\frac{\pi}{6}=\omega x 2 ; \omega=\frac{\pi}{12} r a d s^{-1}$
$x=r \sin \omega t$ since particle moves away from O
$\mathrm{x}=2 \sin \left(\frac{\pi}{12} x 3\right)=1.414 \mathrm{~m}$

$$
\begin{aligned}
& x=r \sin \omega t \\
& 1=r \sin \left(\frac{\pi}{12}\right) t \\
& \left(\frac{\pi}{12}\right) t=\sin ^{-1} 0.2=30^{\circ}, 150^{\circ}, 210^{\circ}
\end{aligned}
$$

$\mathrm{T}=2 \mathrm{~s}, 10 \mathrm{~s}, 14 \mathrm{~s}$

Example 9

A particle is released from rest at point A. 1 m from a second point O . the particle accelerates towards O and moves with S.H.M of period 12 s and O is the centre of oscillation
(a) Find how far the particle is from 0,1 s after release
(b) How many seconds after release is the particle at the midpoint of OA
$\begin{array}{ll}\text { (i) For the first time } & \text { (ii) second time }\end{array}$
Solution
(a) $x=r \cos \omega t$ since particles moves towards centre
$\omega=\frac{2 \pi}{12}=\frac{\pi}{6} r a d s^{-1}$
$x=1 \cos \frac{\pi}{6} x 1=\frac{\sqrt{3}}{2} m$
(b) $x=r \cos \omega t$
$0.5=1 \cos \frac{\pi}{6} x t$
$\frac{\pi}{6} t=\cos ^{-1} 0.5=60^{\circ}, 300^{0}$
$\mathrm{t}=2 \mathrm{~s}, 10 \mathrm{~s}$

Example 10

A particle of mass 2 kgmoving with S.H.M along the x -axis, is attracted towards the origin O by a force of $32 x$ newton. Initially the particle is at $x=20$. Find
(a) amplitude and period of oscillation
(b) velocity of the particle at any time $t>0$
(c) speed when $t=\frac{\pi}{4} s$

Solution

$$
\text { (a) } \begin{aligned}
& \mathrm{F}=\mathrm{m} \omega^{2} \mathrm{x} \\
& 32 \mathrm{x}=2 \omega^{2} \mathrm{x} \\
& \omega=4 \mathrm{rads}^{-1} \\
& T=\frac{2 \pi}{\omega}=\frac{2 \pi}{4}=1.571 s \\
& v^{2}=\omega^{2}\left(r^{2}-x^{2}\right) \\
& 0^{2}=4^{2}\left(r^{2}-20^{2}\right) \\
& \mathrm{r}=20 \mathrm{~m}
\end{aligned}
$$

(b) $x=r \cos \omega t$

$$
\begin{aligned}
& v=\frac{d}{d t}(r \cos \omega t) \\
& v=-r \omega \sin \omega t=-20 \times 4 \sin 4 t \\
& v=-80 \sin 4 t
\end{aligned}
$$

(c) speed $=-80 \sin \left(4 x \frac{\pi}{4}\right)=0 \mathrm{~ms}^{-1}$

Example 11

A particle is initially released from rest at point A and performs S.H.M about mean position B. The particle just returns to A during each oscillation and $A B=2 \sqrt{2} m$. If the particle passes through B with speed $\pi \sqrt{2} m s^{-1}$, find
(i) The time when the particle is first travelling with speed of $\pi \mathrm{ms}^{-1}$
(ii) How far from B the particle during this time

Solution

(i) At equilibrium position (B)
$v_{\text {max }}=\omega r$
$\pi \sqrt{2}=\omega \times 2 \sqrt{2}$
$\omega=\frac{\pi}{2} r a d s^{-1}$
$v^{2}=\omega^{2}\left(r^{2}-x^{2}\right)$
$\pi^{2}=\left(\frac{\pi}{2}\right)^{2}\left((2 \sqrt{2})^{2}-x^{2}\right)$

$$
x=2 m
$$

(ii) $x=r \cos \omega t$

$$
2=2 \sqrt{2} \cos \frac{\pi}{2} t
$$

$$
\frac{\pi}{2} t=\cos ^{-1} \frac{1}{\sqrt{2}}=45^{\circ}
$$

$$
t=0.5 \mathrm{~s}
$$

Example 12

The points A, O, B, C lie in the that order on a straight line $A O=O O C=6 \mathrm{~cm}$ and $O B=5 c$. A particle perform S.H.M of period 3 s and amplitude 6 cm between A and C. find the time taken for the particle from A to B

Time for $A O$ is half the period $=1.5 \mathrm{~s}$
B is 5 cm from 0
$x=r \cos \omega t$
$5=6 \cos \frac{2 \pi}{3} \mathrm{t}$
$\frac{2 \pi}{3} \mathrm{t}=\cos ^{-1} \frac{5}{6}=33.6^{0}$
$t=0.28$
Time for $A B=1.5+0.28=1.78 \mathrm{~s}$

Example 13

A particle passes through 3 points A, B and C in that order with velocity $0 \mathrm{~ms}^{-1}, 2 \mathrm{~ms}^{-1}$ and $-1 \mathrm{~ms}^{-1}$ respectively. The particle is moving with S.H.M in a straight line. What is the amplitude and period of the motion if $A B=2 m$ and $A C=8 m$.

At $B: v=2 \mathrm{~ms}^{-1}, x=r-2$
Using $v^{2}=\omega^{2}\left(r^{2}-x^{2}\right)$
$2^{2}=\omega^{2}\left(r^{2}-(r-2)^{2}\right)$
$1=\omega^{2}(r-1)$
At $C: v=-1 \mathrm{~ms}^{-1}, x=8-r$
$(-1)^{2}=\omega^{2}\left(r^{2}-(8-r)^{2}\right)$
$1=\omega^{2}(16 r-64)$
(i) \div (ii) $\frac{1}{1}=\frac{\omega^{2}(r-1)}{\omega^{2}(16 r-64)}$
$r=4.2$
Amplitude $=4.2 \mathrm{~m}$
Using equation (i)
$1=\omega^{2}(4.2-1)$
$\omega=0.56 \mathrm{rads}^{-1}$
$\mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \pi}{0.56}=11.22 \mathrm{~s}$

Example 14

A particle is performing S.H.M with centre O, amplitude 6 m and period 2π. Points B and C lis between O and A with $O B=1 \mathrm{~m}, ~ O C=3 \mathrm{~m}$ and $O A=6 \mathrm{~m}$. find the least time taken while travelling from
(a) A to B
(ii) A to C

Solution

Example 15

The velocity of a particle at any time is given by $v(t)=-a \omega \sin \omega t+b \omega \cos \omega t$.
(a) Find the expression for displacement x at any time that $x=0$ when time $t=0$

$$
v(t)=-a \omega \sin \omega t+b \omega \cos \omega t
$$

But $\mathrm{v}(\mathrm{t})=\frac{d x}{d t}$
$\Rightarrow \frac{d x}{d t}=-a \omega \sin \omega t+b \omega \cos \omega t$.
$\int d x=\int(-\mathrm{a} \omega \sin \omega \mathrm{t}+\mathrm{b} \omega \cos \omega \mathrm{t}) d t$
$x=\frac{a \omega}{\omega} \cos \omega t+\frac{b \omega}{\omega} \sin \omega t+c$
Since a and b are expressed in terms of amplitude and phase angle ε

If at $t=0, x=0$, this means that $A=0$, hence
$a=b=0$
By substituting, $0=0+0+c$

$$
\mathrm{c}=0
$$

hence : $x=a \cos \omega t+b \sin \omega t$
(b) Show that the motion of the particle is simple harmonic [x

$$
\begin{aligned}
\frac{d x}{d t} & =-a \omega \sin \omega t+b \omega \cos \omega t \\
\frac{d^{2} x}{d t^{2}} & =-\mathrm{a} \omega^{2} \cos \omega t-\mathrm{b} \omega^{2} \sin \omega t \\
& -\omega^{2}(a \cos \omega t+b \sin \omega t)
\end{aligned}
$$

$$
\text { But } x=a \cos \omega t+b \sin \omega t
$$

$$
\Rightarrow \frac{d^{2} x}{d t^{2}}=-\omega^{2} x, \text { hence S.H.M }
$$

Example 16

A particle is moving with simple harmonic motion (SHM). When the particle is 15 m from the equilibrium, its speed is $6 \mathrm{~ms}^{-1}$. When the particle is 13 m from equilibrium, its speed is $9 \mathrm{~ms}^{-1}$. Find the amplitude of the motion (05 marks)

$$
\begin{align*}
& v^{2}=\omega^{2}\left(A^{2}-x^{2}\right) \\
& 6^{2}=\omega^{2}\left(A^{2}-15^{2}\right) \ldots \ldots . . \text { (i) } \\
& 9^{2}=\omega^{2}\left(A^{2}-13^{2}\right) \ldots \ldots . . \text { (ii) } \tag{ii}
\end{align*}
$$

Dividing (i) by (ii)
$\frac{36}{81}=\frac{A^{2}-225}{A^{2}-169}$
Amplitude $A=16.4256 \mathrm{~m}$

Revision exercise 1

1. A particle moving with S.H.M about a mean position O has velocities of $5 \mathrm{~ms}^{-1}$ and $8 \mathrm{~ms}^{-1}$ at distances of 16 m and 12 m respectively from O .
(a) Amplitude [18.1m]
(b) Period [10.63s]
2. A particle is describing S.H.M in a straight line directly towards a fixed point O. when it is a distance from O is 3 m , its velocity is $25 \mathrm{~ms}^{-1}$ and acceleration is $75 \mathrm{~ms}^{-2}$. Determine the
(a) Period $\left[\left[\frac{2 \pi}{5}\right]\right.$ and amplitude [5.83m]
(b) Time taken by the particle to reach $\mathrm{O}\left[\frac{\pi}{10}\right]$
(c) Velocity of the particle as it passes through $O\left[29.15 \mathrm{~ms}^{-1}\right]$
3. A particle moving with simple harmonic motion about a mean position O has velocities of $3 \sqrt{3} \mathrm{~ms}^{-1}$ and $3 \mathrm{~ms}^{-1}$ at distances of 1 m and 0.268 m respectively. Find the amplitude of motion [2m]
4. A mass oscillates with S.H.M of period 1second and amplitude of oscillation is 5 cm . Given that the particle begins from the centre of the motion, state the relationship between displacement x of the mass at any time t. Hence find the first two times when the is 3 cm from its end position [$x=r \sin \omega t, 0.066 s, 0.434 s$]
5. A particle moves in a straight line with S.H.M of period5s. the greatest speed is $4 \mathrm{~ms}^{-1}$, find the
(a) amplitude $\left[\frac{10}{2 \pi} m\right]$.
(b) Speed when it is $\frac{6}{\pi} m$ from the centre. $\left[3.2 \mathrm{~ms}^{-1}\right]$
6. A particle moves with S.H.M about mean position O with a periodic time $\frac{2 \pi}{3} s$. When the particle is 0.8 m from one extreme end, its speed is $3.6 \mathrm{~ms}^{-1}$. Find the amplitude of motion [1.3m]
7. A body of mass 0.30 kg executes S .H.M with a period 2.5 s and amplitude 0.04 m . Determine (i) Maximum velocity of the body $\left[0.101 \mathrm{~ms}^{-1}\right]$
(ii) The maximum acceleration of the body $\left[0.25 \mathrm{~ms}^{-2}\right]$
8. A particle moving with S.H.M about a mean position O has velocities of $1.6 \mathrm{~ms}^{-1}$ and $1.2 \mathrm{~ms}^{-1}$ at distances of 60 cm and 80 cm respectively from 0 . find
(i) Amplitude [1m]
(ii) Period [$\pi \mathrm{s}$]
9. A particle moves with S.H.M in a straight line with amplitude 0.05 m and period 12 s . find
(a) speed as it passes equilibrium position $\left[0.026 \mathrm{~ms}^{-1}\right]$
(b) maximum acceleration of the particle $\left[0.014 \mathrm{~ms}^{-2}\right.$]
10. A particle moves in straight line with S.H.M about mean position with periodic time $\frac{\pi}{2} s$ and amplitude 2 m . Find the maximum speed of the particle $\left[8 \mathrm{~ms}^{-1}\right.$]
11. A body of mass 500 g moves horizontally with S.H.M of periodic time $\frac{\pi}{2} s$ and amplitude 1 m . Determine the magnitude of the greatest horizontal force experienced by the body during the motion. [8N]
12. A body of mass 100 g moves horizontally with S.H.M about a mean position O . When the body is 50 cm from O , the horizontal force on the body is of magnitude 5 N , find the period of motion $\left[\frac{\pi}{2} s\right]$
13. A particle moves in a straight line with S.H.M about a mean position O with a periodic time $\frac{\pi}{4} S$ and amplitude 65 cm . find how far the particle from O when its speed is $2 \mathrm{~ms}^{-1}$ [60 cm]
14. A particle moves in a straight line with S.H.M about a mean position O. The particle has zero velocity at a point which is 50 cm from O and speed of $3 \mathrm{~ms}^{-1}$ at O . Find
(a) The maximum speed of the particle $\left[3 \mathrm{~ms}^{-1}\right]$
(b) The amplitude of motion [50 cm]
(c) The periodic time of motion $\left[\frac{\pi}{2} s\right]$
15. A particle moving with S.H.M about a mean position O has velocities $3 \mathrm{~ms}^{-1}$ and $1.4 \mathrm{~ms}^{-1}$ at distances of $2 m$ and $2,4 m$ respectively from point O. Find the
(a) Amplitude of motion [2.5m]
(b) Greatest speed attained by the particle $\left[5 \mathrm{~ms}^{-1}\right]$
16. A particle is initially projected from a point A performs S.H.M about mean position A with periodic time of 3 s and amplitude 50 cm . find the
(a) Maximum speed of projection $\left[1.047 \mathrm{~ms}^{-1}\right.$]
(b) Speed of the particle 2 s after projection $\left[0.524 \mathrm{~ms}^{-1}\right]$
(c) Distance of the particle from A 2 s after projection[0.433m]
17. The head of piston moves with S.H.M of amplitude $\frac{\sqrt{3}}{10} \mathrm{~m}$ about mean position O . How far from O the head of the piston when travelling with a speed equal to half of its maximum speed [15cm]
18. A particle is fastened to the midpoint of a stretched spring lying on a smooth horizontal surface. The particle is set in motion so that it moves with S.H.M about a mean position O. If one metre is the greatest distance the particle is from O during the motion. Find how far from O the particle is when it is travelling with speed equal to four fifth of its greatest speed. [60cm]
19. A particle performs S.H.M about mean position O with a periodic time of 3 s and amplitude 6 cm . Find time it takes the particle to travel from O to a point P , a distance of 3 cm from $\mathrm{O}[0.25 \mathrm{~s}$]
20. A particle performs S.H.M about mean position O with a periodic time of 4 s and amplitude 2 cm . Find the time it takes the particle to travel from O to a point P, a distance of $\sqrt{2} \mathrm{~cm}$ from $\mathrm{O}[0.5 \mathrm{~s}$]
21. A particle performs S.H.M about mean position O with a periodic time of 10 s and amplitude 8 cm . After passing through O , the particle moves through a point A which is 1 cm from to a point B which is 2 cm from O . find the time it takes the particle to move from A to $\mathrm{B}[0.186 \mathrm{~s}$]
22. A particle performs S.H.M about mean position O with a periodic time of 4.5 s and amplitude 6 cm . After passing through 0 , the particle moves through point P which is 3 cm from 0 . Find the time that elapse before the particle passes through P [1.5s]
23. The points A, O, B, C lie in that order on a straight line with $A O=O C=4 \mathrm{~cm}$ and $O B=2 \mathrm{~cm}$. A particle perform S.H.M of period 6 s and amplitude 4 cm between A and C. Find the time taken for the particle to travel from A to B [2s]

Thank you
Dr. Bbosa Science

