

This document is sponsored by

Vector mechanics

Crossing a river

There are two cases to consider when crossing a river

Case I: Shortest route

If the water s not still and boatman wishes to cross directly opposite to the standing point. In order to cross from point A to point B directly opposite A (perpendicularly), then the course set by the boat must be upstream of the river.

$u=$ speed of the boat in still water
$\mathrm{w}=$ speed of running water

At point $\mathrm{B}: \mathrm{w}=\mathrm{usin} \theta$
$\theta=\sin ^{-1}\left(\frac{w}{u}\right)$
$\theta=$ is the direction to the vertical but the direction to the ban is $(90-\theta)^{0}$

Time taken $=\frac{A B}{u \cos \theta}$

Example 1

A man who can swim at $6 \mathrm{~km} / \mathrm{h}$ in still water would like to swim between two directly opposite point on the river banks of the river 300 m flowing at $3 \mathrm{~km} / \mathrm{h}$. Find the time taken to do this.

$A B=0.3 \mathrm{~km}$
$\theta=\sin ^{-1}\left(\frac{w}{u}\right)=\sin ^{-1}\left(\frac{3}{6}\right)=30^{\circ}$
Time taken $=\frac{A B}{u \cos \theta}=\frac{0.3}{6 \cos 30}$
time $=0.058 \mathrm{hrs}=3.46 \mathrm{minute}$

He must swim at 300 to $A B$ in order to cross directly and it takes him 3.46 minutes.

Alternatively
Using Pythagoras theorem
$6^{2}=3^{2}+V_{A B}{ }^{2}$
$\mathrm{V}_{\mathrm{AB}}=\sqrt{36-9}=5.1962 \mathrm{~km} / \mathrm{h}$
Time $=\frac{A B}{V_{A B}}=\frac{0.3}{5.1963}=0.058 \mathrm{hrs}$

Example 2

Two points A and B are on opposite banks of a river flowing at $\frac{5}{6} m s^{-1}$. A man who can swim at $\frac{25}{18} \mathrm{~ms}^{-1}$ in still water would like to swim directly from A to B. Find the width of the river if he takes 2 minutes to cross the river.

$\theta=\sin ^{-1}\left(\frac{w}{u}\right)=\sin ^{-1}\left(\frac{5 / 6}{25 / 18}\right)=36.87^{\circ}$
Time taken $=\frac{A B}{u \cos \theta}=\frac{0.3}{\frac{25}{18} \cos 36.87}$
$A B=133.333 m$

Alternatively: using Pythagoras theorem
$\left(\frac{25}{18}\right)^{2}=\left(\frac{5}{6}\right)^{2}+V_{A B}{ }^{2}$
$\mathrm{V}_{\mathrm{AB}}=1.1111 \mathrm{~m}$
Time taken $=\frac{A B}{V_{A B}}$
$2 \times 60=\frac{A B}{1.1111}$
$A B=133.333 m$

Case II: the shortest time taken/ as quickly as possible

If the boatman wishes to cross the river as quickly as possible, then he should steer his boat directly from A to B as shown. The river pushes the boat down stream

Time taken to cross the river, $\mathrm{t}=\frac{A B}{u}$
Distance covered downstream = wt

Or
Distance downstream $=w \frac{A B}{u}$

$$
\tan \theta=\frac{w}{u} \text { or } \theta=\tan ^{-1} \frac{w}{u}
$$

The resultant velocity downstream V_{R}

$$
V_{R}=\sqrt{w^{2}+u^{2}}
$$

Example 3

A man who can swim at $2 \mathrm{~ms}^{-1}$ in still water wishes to swim across a river 120 m wide as quickly as possible. If the river flowsat $0.5 \mathrm{~ms}-1$, find the time the man takes to cross far downstream he travels.

Solution

$$
\begin{aligned}
& \mathrm{u}=2 \mathrm{~ms}^{-1}, \mathrm{w}=0.5 \mathrm{~ms}^{-1}, \mathrm{AB}=120 \mathrm{~m} \\
& \mathrm{t}=\frac{A B}{\mathrm{u}}=\frac{120}{2}=60 \mathrm{~s} \\
& \text { Distance }=\mathrm{wt}=0.5 \times 60=30 \mathrm{~m}
\end{aligned}
$$

Example 4

A boat can travel at $3.5 \mathrm{~ms}^{-1}$ in still water. A river is 80 m wide and the current flows at $2 \mathrm{~ms}^{-1}$, calculate
(a) the shortest time to cross the river and the distance downstream the oat is carried.

$$
\begin{aligned}
& \mathrm{u}=3.5 \mathrm{~ms}^{-1}, \mathrm{w}=2 \mathrm{~ms}^{-1}, \mathrm{AB}=80 \mathrm{~m} \\
& \mathrm{t}=\frac{A B}{u}=\frac{80}{3.5}=22.95 \mathrm{~s} \\
& \text { Distance, } \mathrm{BC}=\mathrm{wt}=2 \times 22.95=45.8 \mathrm{~m}
\end{aligned}
$$

(b) the course that must be set to point exactly opposite the starting point and time taken for crossing

course, $\theta=\sin ^{-1} \frac{w}{u}=\sin ^{-1} \frac{2}{3.5}=34.8^{0}$
Time for crossing $=\frac{80}{3.5 \cos 34.8}=27.8 \mathrm{~s}$

$$
\mathrm{u}=3.5 \mathrm{~ms}^{-1}, \mathrm{w}=2 \mathrm{~ms}^{-1}, \mathrm{AB}=80 \mathrm{~m}
$$

Revision exercise 1

1. A man who can row at $0.9 \mathrm{~ms}^{-1}$ in still water wishes to cross a river of width 1000 m as quickly as possible. If the current flows at a rate of $0.3 \mathrm{~ms}^{-1}$. Find the time taken for journey. Determine the direction in which he should point the boat and position of the boat where he lands. [111.11s, 71.57^{0} to the bank, 333.33 downstream]
2. A man swims at $5 \mathrm{kmh}^{-1}$ in still water. Find the time it takes the man to swim across the river 250 m wide, flowing at $3 \mathrm{kmh}^{-1}$, if he swims so as to cross the river
(a) the shortest route [225s]
(b) in the quickest time[180s]
3. A boy can swim in still water at $1 \mathrm{~ms}^{-1}$, he swims across the river flowing at $0.6 \mathrm{~ms}^{-1}$ which is 300 m wide, find the time he takes
(a) if he travels the shortest possible distance [375s]
(b) if he travels as quickly as possible and the distance downstream, [300s, 180m]
4. A boy wishes to swim across a river 100 m wide as quickly as possible. The river flows at $3 \mathrm{kmh}^{-1}$ and the boy can swim at $4 \mathrm{kmh}^{-1}$ in still water. Find the time that the boy takes to cross the river and how far downstream he travels. [90s, 75m]

Relative motion

It is composed of
(a) relative velocity
(b) Relative path

(a) Relative velocity

This is the velocity a body would have as seen by an observer on another body. Suppose A and B are two moving bodies, the velocity of A relative to B is the velocity of A as it appears to observer on B

It is denoted by $\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}$
Note that $V_{A B} \neq V_{B A}$ since $V_{B A}=V_{B}-V_{A}$.

Numerical calculations

There are two methods used in calculations

- Geometric method and
- Vector method
(i) Geometric method.

If V_{A} and V_{B} are not given in vector form and the velocity of A relative to B is required, then we can reverse the velocity of B such that $V_{A B}=V_{A}+\left(-V_{B}\right)$ and the vector triangle is drawn as below.

$$
\left\{\begin{array}{l}
\mathrm{V}_{\mathrm{AB}}^{2}=\mathrm{V}_{\mathrm{A}}^{2}+\mathrm{V}_{\mathrm{B}}^{2}-2 \mathrm{~V}_{\mathrm{A}} \times \mathrm{V}_{\mathrm{B}} \cos \theta \\
\text { and } \\
\frac{V_{A B}}{\sin \theta}=\frac{V_{B}}{\sin \alpha}=\frac{V_{A}}{\sin \beta}
\end{array}\right.
$$

(ii) Vector method

Find components of velocity for each separately

$$
\therefore V_{A B}=V_{A}-V_{B}
$$

Example 5

Particle A is moving due north at $30 \mathrm{~ms}^{-1}$ and particle B is moving due south at $20 \mathrm{~ms}^{-1}$. Find the velocity of A relative to B.

Solution

$\uparrow V_{A}=30 \mathrm{~ms}^{-1}$ and $\downarrow V_{B}=20 \mathrm{~ms}^{-1}$
$V_{A B}=V_{A}-V_{B}$

$$
\begin{aligned}
& V_{A B}=\binom{0}{30}-\binom{0}{-20}=\binom{0}{50} \\
& \left|V_{A B}\right|=\sqrt{0^{2}+50^{2}}=50 \mathrm{~ms}^{-1} \text { due north }
\end{aligned}
$$

Example 6

A particle A has a velocity $(4 i+6 j-5 k) \mathrm{ms}^{-1}$ while B has a velocity of $(-10 i-2 j+6 k) \mathrm{ms}^{-1}$. Find the velocity of A relative to B.
$V_{A B}=V_{A}-V_{B}$
$V_{A B}=\left(\begin{array}{c}4 \\ 6 \\ -5\end{array}\right)-\left(\begin{array}{c}-10 \\ -2 \\ 6\end{array}\right)=\left(\begin{array}{c}14 \\ 8 \\ -11\end{array}\right) m s^{-1}$

Example 7

A girl walks at $5 \mathrm{kmh}^{-1}$ due west and a boy runs $12 \mathrm{kmh}^{-1}$ at a bearing of 150°. Find the velocity of the boy relative to the girl

Method I (geometrical)

$V_{B G}{ }^{2}=V_{B}{ }^{2}+V_{G}{ }^{2}-2 V_{B} \times V_{G} \cos 120^{\circ}$
$V_{B G}=\sqrt{5^{2}+12^{2}-2 \times 5 \times 12 \cos 120^{0}}=15.13 \mathrm{~ms}^{-1}$
$\frac{5}{\sin \theta}=\frac{15.13}{\sin 120}$
$\theta=16.63^{0}$
The relative velocity is $15.13 \mathrm{~ms}^{-1}$ at $\mathrm{S} 46.63^{0} \mathrm{E}$

Method II (Vector)

$$
\begin{aligned}
& V_{B G}=V_{B}-V_{G} \\
& \quad=\binom{12 \sin 30}{-12 \cos 30}-\binom{-5}{0}=\binom{11}{-10.39} \\
& \left|V_{B G}\right|=\sqrt{11^{2}+(-10.39)^{2}} \\
& \quad=15.13 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
\theta=\tan ^{-1} \frac{10.39}{11}=43.40
$$

The relative velocity is $15.13 \mathrm{~ms}^{-1}$ at S46.63 ${ }^{\circ}$ E

Example 8

Plane A is flying due north at $40 \mathrm{kmh}^{-1}$ while plane B is flying in the direction $\mathrm{N} 30^{\circ} \mathrm{E}$ at $30 \mathrm{kmh}^{-1}$. Find the velocity of A relative B

$V_{A B}{ }^{2}=V_{A}{ }^{2}+V_{B}{ }^{2}-2 V_{A} \times V_{B} \cos 30^{\circ}$
$V_{B G}=\sqrt{40^{2}+30^{2}-2 \times 40 \times 30 \cos 30^{0}}$
$=20.53 \mathrm{kmh}^{-1}$
$\frac{30}{\sin \theta}=\frac{20.53}{\sin 30} ; \theta=46.94^{\circ}$

The relative velocity is $20.53 \mathrm{kmh}^{-1}$ at $\mathrm{N} 46.9^{0} \mathrm{~W}$

Method II (vectors)

$V_{A B}=V_{A}-V_{B}=\binom{0}{40}-\binom{30 \sin 30}{-30 \cos 30}=\binom{-15}{14.02}$
$\left|V_{B G}\right|=\sqrt{(-15)^{2}+(14.02)^{2}}=20.53 \mathrm{kmh}^{-1}$

$\theta=\tan ^{-1} \frac{14.02}{15}=43.1^{0}$
The relative velocity is $20.53 \mathrm{kmh}^{-1}$ at $\mathrm{N} 46.9^{0} \mathrm{~W}$

Example 9

Ship P is steering $60 \mathrm{kmh}^{-1}$ due east while ship Q is steering in the direction N600W at $50 \mathrm{kmh}^{-1}$. Find the velocity of P relative to Q .

Method I (Geometrical)

$V_{P Q}{ }^{2}=V_{P}{ }^{2}+V_{Q}{ }^{2}-2 V_{P} \times V_{Q} \cos 150^{\circ}$
$V_{B G}=\sqrt{60^{2}+50^{2}-2 \times 60 \times 50 \cos 150^{0}}$
$=106.28 \mathrm{kmh}^{-1}$
$\frac{50}{\sin \theta}=\frac{106.28}{\sin 30} ; \theta=13.6^{0}$
The relative velocity is $106.28 \mathrm{kmh}^{-1}$ at $\mathrm{S} 76.4^{0} \mathrm{E}$

Method II (Vector)

$$
\begin{aligned}
& V_{P Q}=V_{P}-V_{Q} \\
& =\binom{60}{0}-\binom{-50 \sin 60}{50 \cos 60}=\binom{103.301}{-25} \\
& \left|V_{B G}\right|=\sqrt{(103.301)^{2}+(-25)^{2}}=106.3 \mathrm{kmh}^{-1}
\end{aligned}
$$

$$
\xrightarrow[\sim]{\text { N }}
$$

$$
\theta=\tan ^{-1} \frac{25}{103.301}=13.6^{0}
$$

$$
\text { Direction } \mathrm{S}\left(90^{\circ}-13.6^{\circ}\right) \mathrm{E}
$$

The relative velocity is $106.28 \mathrm{kmh}^{-1}$ at $\mathrm{S} 76.4^{0} \mathrm{E}$

Finding true velocity

Example 10

To a cyclist riding due north at $40 \mathrm{kmh}^{-1}$, a steady wind appears to blow from $\mathrm{N} 60^{\circ} \mathrm{E}$ at $50 \mathrm{kmh}^{-1}$. Find the true velocity of the wind

Solution
$\mathrm{V}_{\mathrm{wc}}=\mathrm{V}_{\mathrm{w}}-\mathrm{V}_{\mathrm{c}}$
$\binom{30}{0}=\mathrm{V}_{W}-\binom{0}{40}$
$\mathrm{V}_{W}=\frac{30}{40}$
$\left|V_{W}\right|=\sqrt{(30)^{2}+(40)^{2}}=50 \mathrm{kmh}^{-1}$

$\theta=\tan ^{-1} \frac{40}{30}=53.13^{\circ}$
Direction $\mathrm{N}(90-15.13)^{\circ} \mathrm{E}=\mathrm{N} 36.87^{\circ} \mathrm{E}$

Example 11

To a motorist travelling due north at $40 \mathrm{kmh}^{-1}$, a steady wind appears to blow from $\mathrm{N} 60^{\circ} \mathrm{E}$ at $50 \mathrm{kmh}^{-1}$.
(a) find the true velocity of the wind

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{WM}}=\mathrm{V}_{\mathrm{W}}-\mathrm{V}_{\mathrm{M}} \\
& \binom{50 \sin 60}{-50 \cos 60}=\mathrm{V}_{W}-\binom{0}{40} \\
& \mathrm{~V}_{W}=\frac{-43.5}{15}
\end{aligned}
$$

$\left|V_{W}\right|=\sqrt{(-43.5)^{2}+(15)^{2}}=46 \mathrm{kmh}^{-1}$
$\theta=\tan ^{-1} \frac{15}{43.5}=19.02^{0}$
Direction: $\mathrm{N} 71^{\circ} \mathrm{W}$
(b) If the wind velocity and direction remain constant but the speed of the motorist is increase, find his speed when the wind appears to be blowing from the direction $\mathrm{N} 45^{\circ} \mathrm{E}$.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{WM}}=\mathrm{V}_{\mathrm{W}}-\mathrm{V}_{\mathrm{M}} \\
& \binom{-b \sin 45}{-b \cos 45}=\binom{46 \sin 71}{-46 \cos 71}-\binom{0}{a}
\end{aligned}
$$

i components: $-b \sin 45=46 \sin 71$
b $=61.5096$
j components: $-\mathrm{b} \cos 45=-46 \cos 71-a$
$\mathrm{a}=58.47 \mathrm{kmh}^{-1}$

Example 12

To a man travelling due north at $10 \mathrm{kmh}^{-1}$, a steady wind appears to blow from East. When he travels in the direction $\mathrm{N} 60^{\circ} \mathrm{W}$ at $8 \mathrm{kmh}^{-1}$, it appears to come from south. Find the velocity of the wind.
$V_{w M}=V_{w}-V_{M}$
$\binom{-a}{0}=V_{W}-\binom{0}{10}$
$\mathrm{V}_{W}=\binom{-a}{10}$
Also
$\mathrm{V}_{\mathrm{wm}}=\mathrm{V}_{\mathrm{w}}-\mathrm{V}_{\mathrm{M}}$
$\binom{0}{b}=\mathrm{V}_{W}-\binom{-8 \sin 60}{b+8 \cos 60}$
(i) and (ii)
$\binom{-a}{10}=\binom{-8 \sin 60}{b+8 \cos 60}$

$$
\begin{aligned}
& \mathrm{a}=8 \sin 60=4 \sqrt{3} \\
& 10=\mathrm{b}+8 \cos 60 \\
& \mathrm{~b}=6 \\
& \mathrm{~V}_{W}=\binom{-a}{10}=\binom{-4 \sqrt{3}}{10} \\
& \left|\mathrm{~V}_{W}\right|=\sqrt{(-4 \sqrt{3})^{2}+10^{2}}=12.17 \mathrm{kmh}^{-1} \\
& \theta=\tan ^{-1}\left(\frac{10}{4 \sqrt{3}}\right)=55.3^{0}
\end{aligned}
$$

Direction: $\mathrm{N}(90-53.3)^{0} \mathrm{~W}=\mathrm{N} 34.7^{\circ} \mathrm{W}$

Example 13

To a cyclist riding due north at $40 \mathrm{kmh}^{-1}$, a steady wind appears to blow eastwards. On reducing his speed to $30 \mathrm{kmh}^{-1}$ but moving in the same direction, the wind appears to come from southwest. Find the velocity of the wind
$\mathrm{V}_{\mathrm{wc}}=\mathrm{V}_{\mathrm{w}}-\mathrm{V}_{\mathrm{c}}$
$\binom{a}{0}=V_{W}-\binom{0}{40}$
$\mathrm{V}_{W}=\binom{a}{10}$

Also
$\mathrm{V}_{\mathrm{wc}}=\mathrm{V}_{\mathrm{w}}-\mathrm{V}_{\mathrm{C}}$
$\binom{b \sin 45}{b \cos 45}=\mathrm{V}_{W}-\binom{0}{30}$
(i) and (ii)
$\binom{a}{40}=\binom{b \sin 45}{30+b \cos 45}$
$40=30+b \cos 45$
$b=10 \sqrt{2}$
$a=b \sin 45=10 \sqrt{2} \sin 45=10$
$\mathrm{V}_{W}=\binom{a}{40}=\binom{10}{40}$
$\left|V_{W}\right|=\sqrt{10^{2}+40^{2}}=41.23 \mathrm{kmh}^{-1}$
$\theta=\tan ^{-1}\left(\frac{40}{10}\right)=75.96^{\circ}$
Direction: $\mathrm{N}(90-76)^{\circ} \mathrm{E}=\mathrm{N} 14^{0} \mathrm{E}$

Exercise 2

1. Car A moving Eastward at $20 \mathrm{~ms}^{-1}$ and car B is moving Northward at $10 \mathrm{~ms}^{-1}$. Find the
(i) velocity of A relative to $B\left[10 \sqrt{5} \mathrm{~ms}^{-1}\right.$
(ii) velocity of B relative to $A\left[10 \sqrt{5} \mathrm{~ms}^{-1}\right.$
2. A yatch and a trawler leave a harbour at 8 am. The yatch travels due west at $10 \mathrm{kmh}-1$ and trawler due east at $20 \mathrm{kmh}^{-1}$
(i) what is the velocity of the trawler relative to yatch [30 kmh^{-1} east]
(ii) how far apart are the boats at 9.30am [45km]
3. At 10.30am a car travelling at $25 \mathrm{~ms}^{-1}$ due east overtakes a motor bike travelling at $10 \mathrm{~ms}^{-1}$ due east. What is the velocity of the car relative to the motor bike and how far apart are the vehicle at 10.30 am . [$15 \mathrm{~ms}^{-1}$ east, 900 m]
4. Bird A has a velocity of $(7 i+3 j+10 k) \mathrm{ms}^{-1}$ while bird B has a velocity $(6 i-17 k) \mathrm{ms}^{-1}$. Find the velocity of B relative to $A\left[\left(-i-3 j-27 k 0 m^{-1}\right]\right.$
5. Joe rides his horse with a velocity $\binom{5}{24} \mathrm{kmh}^{-1}$ while Jill is riding her horse with velocity $\binom{5}{12} \mathrm{kmh}^{-1}$
(i) Find Joe's velocity as seen by Jill $\left[\binom{5}{24} \mathrm{kmh}^{-1}\right]$
(ii) What is Jill's velocity as seen by Joe. $\left[\binom{0}{-124} \mathrm{kmh}^{-1}\right]$
6. In EPL football match, a ball is moving at $5 \mathrm{~ms}^{-1}$ in the direction of N450E and the player is running due north at $8 \mathrm{~ms}^{-1}$. Find the velocity of the ball relative to the player.
[$5.69 \mathrm{~ms}^{-1}$ at $\mathrm{S} 38.38^{0} \mathrm{E}$]
7. An aircraft is flying at $250 \mathrm{kmh}^{-1}$ in direction $N 60^{\circ} \mathrm{E}$ and a second aircraft is flying at $200 \mathrm{kmh}^{-1}$ in the direction $\mathrm{N} 20^{\circ} \mathrm{W}$. Find the velocity of the first aircraft as seen by the pilot of the second aircraft. [292 kmh^{-1} at $\mathrm{S} 77.9^{0} \mathrm{E}$]
8. A ship is sailing southeast at $20 \mathrm{kmh}^{-1}$ and a second ship is sailing due west at $25 \mathrm{kmh}^{-1}$. Find the magnitude and direction of the velocity of the first ship relative to the second. [$41.62 \mathrm{kmh}^{-1}$ at $\mathrm{S} 70.13^{0} \mathrm{E}$]
9. What is the velocity of a cruiser moving at $20 \mathrm{kmh}^{-1}$ due to north as seen by an observer on a liner moving at $15 \mathrm{kmh}^{-1}$ in the direction $\mathrm{N} 30^{0} \mathrm{~W}\left[10.3 \mathrm{kmh}^{-1}\right.$ at $\left.\mathrm{N} 46.9^{\circ} \mathrm{E}\right]$
10. A car is being driven at $20 \mathrm{~ms}-1$ on a bearing of 0400 . Wind is blowing from 3000 with speed of $10 \mathrm{~ms}-1$. Find the velocity of the wind as experienced by the driver of the car.
[$48.13 \mathrm{~ms}^{-1}$ at $\mathrm{S} 18.13^{0} \mathrm{~W}$]
11. An aircraft is moving at $250 \mathrm{kmh}^{-1}$ in direction $N 60^{\circ} \mathrm{E}$. The second aircraft is moving at $200 \mathrm{kmh}^{-1}$ in a direction $\mathrm{N} 20^{\circ} \mathrm{W}$. Find the velocity of the first aircraft as seen by the pilot of the second aircraft. [292 kmh^{-1} at $\mathrm{S} 77.9^{0} \mathrm{E}$]
12. To a pigeon flying with velocity of $(-2 i+3 j+k) \mathrm{ms}^{-1}$, a hawk appears to have a velocity of ($i-5 j-10 k) \mathrm{ms}^{-1}$. Find the true velocity of the hawk[(-i $\left.\left.-2 j-9 k\right) \mathrm{ms}^{-1}\right]$
13. To a cyclist riding at $3 \mathrm{~ms}^{-1}$ due east, the wind appears to come from the south with the speed $3 \sqrt{3} \mathrm{~ms}^{-1}$. Find the true speed and direction of the wind. [$6 \mathrm{~ms}^{-1}$ from $\mathrm{S} 30^{\circ} \mathrm{W}$]
14. To the pilot of an aircraft A travelling at $300 \mathrm{kmh}^{-1}$ due south, it appears that an aircraft B is travelling at $600 \mathrm{kmh}^{-1}$ in a direction $N 60^{\circ} \mathrm{W}$. Find the true speed and direction of the aircraft B . [520 kmh^{-1} west]
15. Jane is riding her horse at $5 \mathrm{kmh}^{-1}$ due north and sees Suzan riding her horse apparently with velocity $4 \mathrm{kmh}^{-1}, \mathrm{~N} 60^{\circ} \mathrm{E}$. Find Suzan's true velocity. [$7.81 \mathrm{kmh}^{-1} \mathrm{~N} 26.3^{\circ} \mathrm{E}$]
16. A eagle flying at $8 \mathrm{~ms}^{-1}$ on a bearing of 240° sees a chick apparently running at $5 \mathrm{~ms}^{-1}$ on bearing 300°. Find true velocity of the chick. [11.4 ms^{-1} at 262.4°]
17. A train is travelling at $80 \mathrm{kmh}^{-1}$ in direction $\mathrm{N} 15^{\circ} \mathrm{E}$. A passenger on the train observes a plane apparently moving at $125 \mathrm{kmh}^{-1}$ in the direction $\mathrm{N} 50^{\circ} \mathrm{E}$. Find the true velocity of the plane. [196kmh ${ }^{-1} \mathrm{~N} 36.5^{0} \mathrm{E}$]
18. To an athlete jogging at $12 \mathrm{kmh}^{-1}$ on a bearing of $\mathrm{N} 10^{\circ} \mathrm{E}$, the wind seems to come from a direction $\mathrm{N} 20^{0} \mathrm{~W}$ at $15 \mathrm{kmh}^{-1}$. Find the true velocity of the wind. [$7.57 \mathrm{kmh}^{-1} \mathrm{~N} 72.5^{0} \mathrm{~W}$]
19. To a passenger on a boat which is travelling at $20 \mathrm{kmh}^{-1}$ on a bearing 230°, the wind seems to be blowing from 250° as $12 \mathrm{kmh}^{-1}$. Find the true velocity of the wind $\left[9.64 \mathrm{kmh}^{-1} \mathrm{~N} 24.8^{0} \mathrm{E}\right]$
20. On a particular day wind is blowing $\mathrm{N} 30^{\circ} \mathrm{E}$ at a velocity of $4 \mathrm{~ms}^{-1}$ and a motorist is driving at $40 \mathrm{~ms}^{-1}$ in the direction of $S 60^{\circ} \mathrm{E}$.
(a) Find the velocity of the wind relative to the motorist. [40.2 ms^{-1} at $\mathrm{N} 54.28^{\circ} \mathrm{W}$]
(b) If the motorist changes the direction maintaining his speed and the wind appears to blow due east. What is the new direction of the motorist [$\mathrm{N} 85.03^{\circ} \mathrm{W}$]
21. A, B and C are three aircrafts. A has velocity $(200 i+170 j) \mathrm{ms}^{-1}$. To the pilot of A it appears that B has velocity $(50 \mathrm{i}-270 \mathrm{j}) \mathrm{ms}^{-1}$. To the pilot of B it appears that C has a velocity $(50 \mathrm{i}+170 \mathrm{j}) \mathrm{ms}^{-1}$. Find the velocities of B and $C\left[(250 \mathrm{i}-100 \mathrm{j}) \mathrm{ms}^{-1},(300 \mathrm{i}+70 j) \mathrm{ms}^{-1}\right]$
22. To a bird flying due east at $10 \mathrm{~ms}^{-1}$, the wind seems to come from south. When the bird alters its direction of flight to $\mathrm{N} 30^{\circ} \mathrm{E}$ without altering its speed, the wind seems to come from the northwest. Find the true velocity of wind. [$10.6 \mathrm{~ms}^{-1}$ from $\mathrm{S} 69.9^{0} \mathrm{~W}$]
23. To an observer on a trawler moving at $12 \mathrm{kmh}^{-1}$ in the direction $\mathrm{S} 30^{\circ} \mathrm{W}$, the wind appears to come from N600W. To an observer on a ferry moving at $15 \mathrm{kmh}^{-1}$ in a direction $\mathrm{S} 80^{\circ} \mathrm{E}$, the wind appears to come from the north. Find the true velocity of the wind. [$26.8 \mathrm{kmh}^{-1} \mathrm{~N} 33.4^{0} \mathrm{~W}$]

b. Relative position

Consider two bodies A and B moving with V_{A} and V_{B} from points with position vectors $O A$ and $O B$ respectively.

Position of A at time t is $R_{A(t t)}=R_{A(t=0)}+t \times V_{A}$
Position of A at time t is $R_{B t=t)}=R_{B(t=0)}+t x V_{B}$
Position of A relative to B at time t is $R_{A B t=t)}=R_{A(t=0)}-R_{B(t=0)}$
$R_{A B t=t)}=\left(R_{A(t=0)}+t x V_{A}\right)-\left(R_{B(t=0)}+t x V_{B}\right)$
$R_{A B t=t)}=\left(R_{A(t=0)}-R_{B(t=0)}\right)+\left(V_{A B}\right) t$

Example 14

The velocities of ships P and Q are $(i+6 j) \mathrm{kmh}^{-1}$ and $(-i+3 j) \mathrm{kmh}^{-1}$. At a certain instant, the displacement between the two ship is $(7 i+4 j) \mathrm{km}$. Find the
(a) Relative velocity of ship P to Q

$$
\begin{aligned}
& V_{P Q}=V_{P}-V_{Q} \\
& V_{P Q}=\binom{1}{6}-\binom{-1}{3}=\binom{2}{3} k m h^{-1}
\end{aligned}
$$

(b) Magnitude of displacement between ships P and Q after 2 hours.
$R_{\text {PQt }=t)}=\left(R_{P(t=0)}-R_{Q(t=0)}\right)+\left(V_{P Q}\right) t$
$\mathrm{R}_{\mathrm{PQt}=\mathrm{t})}=\binom{7}{4}+t\binom{2}{3}$
$\mathrm{R}_{\mathrm{PQt}=2)}=\binom{7}{4}+2 x\binom{2}{3}=\binom{11}{10} \mathrm{~km}$
$\left|R_{P Q}\right|=\sqrt{11^{2}+10^{2}}=14.87 \mathrm{~km}$

Example 15

Two ship A and B move simultaneously with velocities $20 \mathrm{kmh}^{-1}$ and $40 \mathrm{kmh}^{-1}$. Ship A moves in the northern direction while ship B moves in $N 60^{\circ}$ E. Initially ship B is 10 km due west of A. Determine
(a) the relative velocity of A to B.
$\prod_{\mathrm{A}}^{20 \mathrm{~km} / \mathrm{h}} \frac{\sum_{\mathrm{B}}^{6} 60^{\circ}>}{\uparrow_{\mathrm{A}}} 40 \mathrm{~km} / \mathrm{h}$

$$
V_{A B}=V_{A}-V_{B}
$$

$$
\begin{aligned}
& V_{A B}=\binom{0}{20}-\binom{40 \sin 60}{40 \cos 60}=\binom{-34.641}{0} \\
& \left|V_{A B}\right|=\sqrt{(-34.641)^{2}+0^{2}}=34.641
\end{aligned}
$$

(b) the position of A relative to B at any time t

$R_{A B(t=t)}=\left(R_{A(t=0)}-R_{B(t=0)}\right)+\left(V_{A B}\right) t$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{AB}(t=t)}=\left[\binom{10}{0}-\binom{0}{0}\right]+t\binom{-34.641}{0} \\
& \mathrm{R}_{\mathrm{AB}(\mathrm{t}=\mathrm{t})}=\binom{10-34.641 t}{0} \mathrm{~km}
\end{aligned}
$$

Distance and time of closest approach

(Shortest distance and time of shortest distance)

When two particles are moving simultaneously with specific velocities, time will come when they are closest to each other without colliding.

There are three methods used for the distance and time of closest approach, i.e. Geometrical, vector and differential method.

1. vector method

Consider particle A and B moving with velocities VA and $V B$ from point with position vector $O A$ and $O B$ respectively.
For minimum distance to be attained then $V_{A B} \cdot R_{A B(t=t)}=0$. This gives the time.
Then shortest distance, $\mathbf{d}=\left|R_{A B(t=t)}\right|$
2. Differential method

The minimum distance is reached when $\frac{d}{d t}\left|R_{A B(t=t)}\right|^{2}=0$. This gives time Then shortest distance, $\mathbf{d}=\left|R_{A B(t=t)}\right|$
3. Geometrical method

If V_{A} and V_{B} are not given in vector form, then the velocity of B is reversed such that
$V_{A B}=V_{A}+\left(-V_{B}\right)$ and the vector triangle is drawn as below.
The shortest distance, d will be perpendicular to ${ }_{\text {vAB }}$

$V_{A B}{ }^{2}=V_{A}{ }^{2}+V_{B}{ }^{2}-2 V_{A} V_{B} \cos \theta$
$\frac{V_{A B}}{\sin \theta}=\frac{V_{B}}{\sin \alpha}$
Shortest distance, $d=A B \sin \beta$
Time to the shortest distance, $\mathrm{t}=\frac{A B \cos \beta}{V_{A B}}$

Example 16

A particle P starts from rest from a point with position vector $(2 j+2 k) m$ with a velocity $\quad(j+$ $k) \mathrm{ms}^{-1}$. A second particle Q starts at the same time from a point whose position vector is $(-11 \mathrm{i}-2 \mathrm{j}-$ $7 \mathrm{k}) \mathrm{m}$ with a velocity of $(2 i+j+2 k) \mathrm{ms}^{-1}$. Find
(i) the shortest distance between the particles
(ii)
(iii) how far each has travelled by this time.
$V_{P Q}=V_{P}-V_{Q}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)-\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{c}-2 \\ 0 \\ -1\end{array}\right)$
$R_{P Q(t=t)}=\left(R_{P(t=0)}-R_{Q(t=0)}\right)+\left(V_{P Q}\right) t$
$R_{P Q(t=t)}=\left[\left(\begin{array}{l}0 \\ 2 \\ 2\end{array}\right)-\left(\begin{array}{c}-11 \\ -2 \\ -7\end{array}\right)\right]+\left(\begin{array}{c}-2 \\ 0 \\ -1\end{array}\right) t$
$R_{P Q(t=t)}=\left(\begin{array}{c}11-2 t \\ 4 \\ 9-t\end{array}\right)$
For minimum distance: $V_{A B} \cdot R_{A B(t=t)}=0$.
$\left(\begin{array}{c}-2 \\ 0 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}11-2 t \\ 4 \\ 9-t\end{array}\right)=0$
$-22+4 t+0-9+t=0$
$\mathrm{t}=\frac{31}{5}=6.2 \mathrm{~s}$
(i) Then shortest distance, $\mathbf{d}=\left|R_{P Q(t=t)}\right|$
$R_{P Q(t=6.2)}=\left(\begin{array}{c}11-2 t \\ 4 \\ 9-t\end{array}\right)$
$R_{P Q(t=6.2)}=\left(\begin{array}{c}11-2 x 6.2 \\ 4 \\ 9-6.2\end{array}\right)=\left(\begin{array}{c}-1.4 \\ 4 \\ 2.8\end{array}\right)$

$$
\left|R_{P Q(t=6.2)}\right|=\sqrt{(-1.4)^{2}+4^{2}+2.8^{2}}=5.08 \mathrm{~m}
$$

(ii) How far each has travelled

$$
\begin{aligned}
& R_{P(t=t)}=R_{P(t=0)}+\left(V_{P}\right) t \\
& R_{P(t=6.2)}=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)+6.2 x\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
8.2 \\
8.2
\end{array}\right) \\
& \quad\left|R_{P(t=6.2)}\right|=\sqrt{0^{2}+8.2^{2}+8.2^{2}}=11.6 \mathrm{~m} \\
& R_{Q(t=6.2)}=\left(\begin{array}{c}
-11 \\
-2 \\
-7
\end{array}\right)+6.2 x\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1.4 \\
4.2 \\
5.4
\end{array}\right) \\
& \quad\left|R_{Q(t=6.2)}\right|=\sqrt{1.4^{2}+4.2^{2}+5.4^{2}}=6.8 m
\end{aligned}
$$

Method II

$\frac{d}{d t}\left|R_{A B(t=t)}\right|^{2}=0$.
$\left|R_{P Q(t=t)}\right|^{2}=\left(\begin{array}{c}11-2 t \\ 4 \\ 9-t\end{array}\right)^{2}$
$\left|R_{P Q(t=t)}\right|^{2}=(11-2 t)^{2}+4^{2}+(9-t)^{2}$
$\left|R_{P Q(t=t)}\right|^{2}=218-62 t+5 t^{2}$

$$
\begin{array}{l|l}
\frac{d}{d t}\left|R_{P Q(t=t)}\right|^{2}=\frac{d}{d t}\left(218-62 t+5 t^{2}\right) & R_{P Q(t=6.2)}=\left(\begin{array}{c}
11-2 x \\
4.2 \\
4 \\
9-6.2
\end{array}\right)=\left(\begin{array}{c}
-1.4 \\
4 \\
2.8
\end{array}\right) \\
\frac{d}{d t}\left|R_{P Q(t=t)}\right|^{2}=-62+10 t=0 & \left|R_{P Q(t=6.2)}\right|=\sqrt{(-1.4)^{2}+4^{2}+2.8^{2}}=5.08 \mathrm{~m} \\
\mathrm{t}=6.2 \mathrm{~s} &
\end{array}
$$

Example 17

At 12 noon the position vectors r and velocity vectors v of ship A and ship B are as follows $r_{A}=(-9 i+6 j) k m, v_{A}=(3 i+12 j) k m h^{-1}$ and $r_{B}=(16 i+6 j), v_{B}=(-9 i+3 j) k m h^{-1}$ respectively
(i) Find how far apart the ships are at noon

$$
\begin{aligned}
& R_{A B(t=0)}=\left(R_{A(t=0)}-R_{B(t=0)}\right) \\
& R_{A B(t=0)}=\binom{-9}{6}-\binom{16}{6}=\binom{-25}{0} \\
& \left|R_{A B(t=0)}\right|=\sqrt{(-25)^{2}+0^{2}}=25 \mathrm{~km} \text { apart }
\end{aligned}
$$

(ii) Assuming velocities do not change, find the least distance between the ships in the subsequent motion

$$
V_{A B}=V_{A}-V_{B}=\binom{3}{12}-\binom{-9}{3}=\binom{12}{9} \quad \mathrm{t}=\frac{4}{3} \text { hours }
$$

$$
R_{A B(t=t)}=\left(R_{A(t=0)}-R_{B(t=0)}\right)+\left(V_{A B}\right) t
$$

$$
R_{A B(t=t)}=\binom{-25}{0}+\binom{12}{9} t=\binom{-25+12 t}{9 t} k m
$$

For minimum distance: $V_{A B} \cdot R_{A B(t=t)}=0$.
$\binom{12}{9} \cdot\binom{-25+12 t}{9 t}=0$
$-300+144 t+81 t=0$

Shortest distance, $\mathbf{d}=\left|R_{P Q\left(t=\frac{4}{3}\right.}\right|$
$R_{A B\left(t=\frac{4}{3}\right)}=\binom{-25+12 x \frac{4}{3}}{9 x \frac{4}{3}}=\binom{-9}{12} \mathrm{~km}$
$\left|R_{A B\left(t=\frac{4}{3}\right)}\right|=\sqrt{(-9)^{2}+12^{2}}=15 \mathrm{~km}$
(iii) Find when their distance of closest approach occurs and the potion vectors of A and B

$$
\begin{array}{l|l}
\text { It occurs at } 12.00+\frac{4}{3} x 60=1.20 \mathrm{pm} & R_{B(t=t)}=R_{B(t=0)}+V_{B} t \\
\text { how far each travelled } & R_{B\left(t=\frac{4}{3}\right)}=\binom{16}{6}+\binom{-9}{3} x \frac{4}{3}=\binom{4}{10} \mathrm{~km} \\
R_{A(t=t)}=R_{A(t=0)}+V_{A} t &
\end{array}
$$

Example 18

At a certain time, the position vectors r and velocity vectors v of ship A and ship B are as follows
$r_{A}=(20 j) k m \quad V_{A}=(9 i-2 j) k m h^{-1}$ at 14.00hrs
$r_{B}=(i+4 j) k m \quad V_{B}=(4 i+8 j) k m h^{-1}$ at 15.00hrs
Assuming velocities do not change, find
(a) the position vector of A at 15.00 hrs

$$
R_{A(t=t)}=R_{A(t=0)}+V_{A} t
$$

At 16.00hrs: $R_{A(t=1)}=\binom{0}{20}+\binom{9}{-2} \times 1=\binom{9}{18} \mathrm{~km}$
(b) the least distance between A and B in the subsequent motion

$R_{A B(t=t)}=\left(R_{A(t=0)}-R_{B(t=0)}\right)+\left(V_{A B}\right) t$	$\mathrm{t}=0.8 \mathrm{hrs}$
$R_{A B(t=t)}=\left[\binom{9}{18}-\binom{1}{4}\right]+\left[\binom{9}{-2}-\binom{8}{8}\right] \mathrm{t}$	Shortest distance, $\mathrm{d}=\left\|R_{P Q(t=0.8)}\right\|$

$R_{A B(t=t)}=\binom{8+5 t}{14-10 t}$
For minimum distance: $V_{A B} \cdot R_{A B(t=t)}=0$.
$\binom{5}{-10} \cdot\binom{8+5 t}{14-10 t}=0$
(c) time at which this least separation occurs.
$15.00+0.8 \times 60=15.48 \mathrm{hrs}$

Example 19

At a certain time, the position vectors r and velocity vectors v of ship A and ship B are as follows $r_{A}=(-2 i+3 j) k m \quad v_{A}=(12 i-4 j) k m h-1$ at 11.45am $r_{B}=(8 i+7 j) k m \quad V_{B}=(2 i-14 j) k m h-1$ at 12.00 noon

Assuming velocities do not change, find
(a) The least distance between A and B in the subsequent motion
$\mathrm{OA}=\binom{-2}{3}$ and $\mathrm{v}_{\mathrm{A}}=\binom{12}{-4} k m h^{-1}$
$R_{A(t=t)}=R_{A(t=0)}+V_{A} t$
12.00: $R_{A\left(t=\frac{1}{4}\right)}=\binom{-2}{3}+\frac{1}{4}\binom{12}{-4}=\binom{1}{2} \mathrm{~km}$
$V_{A B}=V_{A}-V_{B}=\binom{12}{-4}-\binom{2}{-14}=\binom{10}{10}$
$R_{A B(t=t)}=\left(R_{A(t=0)}-R_{B(t=0)}\right)+\left(V_{A B}\right) t$
$R_{A B(t=t)}=\left[\binom{1}{2}-\binom{8}{7}\right]+\binom{10}{10} t$
$R_{A B(t=t)}=\binom{-7+10 t}{-5+10 t}$

For minimum distance: $V_{A B} \cdot R_{A B(t=t)}=0$.

$$
\binom{10}{10} \cdot\binom{-7+10 t}{-5+10 t}=0
$$

$\mathrm{t}=0.6 \mathrm{hrs}$
$R_{A B(t=0.6)}=\left(\begin{array}{l}-7+10\end{array} x \quad 0.6\right)=\binom{-1}{1} \mathrm{~km}$
$\left|R_{A B(t=0.6)}\right|=\sqrt{(-1)^{2}+1^{2}}=1.4142 \mathrm{~km}$
(b) length of time for which A is within range, if ship B has guns within a range of up to 2 km
$R_{A B(t=t)}=\binom{-7+10 t}{-5+10 t}$
$\left|R_{A B(t=t)}\right|=2 k m$

$$
\begin{aligned}
& \binom{-7+10 t}{-5+10 t}^{2}=2^{2} \\
& (-7+10 t)^{2}+(-5+10 t)^{2}=4
\end{aligned}
$$

$100 t^{2}-12 t+35=0$
$\mathrm{t}=0.7 \mathrm{hrs}$ or $\mathrm{t}=0.5 \mathrm{hrs}$

Time for which they are in range
$=0.7-0.5=0.2 h$

Example 20

At 10am, ship A moves with a constant velocity ($4 \mathrm{i}+20 \mathrm{j}$) kmh^{-1} and ship B due north of A moves with a constant velocity $(-3 i-4 j) \mathrm{kmh}^{-1}$.
(a) Find the velocity of A relative to B
$V_{A B}=V_{A}-V_{B}=\binom{4}{20}-\binom{-3}{-4}=\binom{7}{24} k m h^{-1}$
(b) If the shortest distance between the two ships is 4.2 km . Find the
(i) time to the nearest minute when they are closest together
(ii) original distance apart at 10am
(iii) the bearing of B from A when they are closest together.

Solution

(ii) Let a km be the distance apart at 10am
$R_{A B(t=t)}=\left(R_{A(t=0)}-R_{B(t=0)}\right)+\left(V_{A B}\right) t$
$R_{A B(t=t)}=\left[\binom{0}{0}-\binom{0}{a}\right]+\binom{7}{24} t=\binom{7 t}{-a+24 t} k m$
$R_{A B(t=t)}=\binom{7 t}{-a+24 t} \mathrm{~km}$
$\left|R_{A B(t=t)}\right|=4.2 \mathrm{~km}$
$\binom{7 t}{-a+24 t}^{2}=(4.2)^{2}$
$(7 t)^{2}+(-a+24 t)^{2}=17.64$
$625 t^{2}-48 a t+a^{2}=17.64$ \qquad
For minimum distance: $V_{A B} \cdot R_{A B(t=t)}=0$.
$\binom{7}{24} \cdot\binom{7 t}{-a+24 t}=0$
$49 t-24 a+576 t=0$
$a=\frac{625 t}{24}$
Substituting for a in eqn. (i)
$625 \mathrm{t}^{2}-48\left(\frac{625 t}{24}\right) \mathrm{t}+\left(\frac{625 t}{24}\right)^{2}=17.64$
$53.1684 \mathrm{t}^{2}=17.67$
$\mathrm{t}= \pm 0.57 h=0.576 \times 60=35$ minute
(ii) $\mathrm{a}=\frac{625 \mathrm{t}}{24}=\frac{625 \times 0.576}{24}=15 \mathrm{~km}$
(iii) $R_{A B(t=0.576)}=\binom{7 \times 0.576}{-15+24 \times 0.576} \mathrm{~km}$ $R_{A B(t=0.576)}=\binom{4.032}{-1.176}$
$\theta=\tan ^{-1}\left(\frac{1.176}{4.032}\right)=16.3^{0}$
Direction: E16.3 ${ }^{0} S$
(c) length of time for which A is within range, if the visibility of ship B is within 12 km
$R_{A B(t=t)}=\binom{7 t}{-a+24 t}=\binom{7 t}{-15+24 t} k m$
$\left|R_{A B(t=t)}\right|=12 \mathrm{~km}$
$(7 t)^{2}+(-a+24 t)^{2}=144$
$625 t^{2}-720 t+81=0$
$t=1.026 h$ or $t=0.126 h$
Time for which they are in range
$=1.026-0.126=0.9 \mathrm{~h}$

Example 21

At 12 noon a ship A is moving with constant velocity of $20.4 \mathrm{kmh}^{-1}$ in the direction $N \theta^{0} E$ where $\tan \theta=$ $\frac{1}{5}$. A second ship B is 15 km due to north of A. Ship B is moving with constant velocity of $5 \mathrm{kmh}^{-1}$ in the
direction $\mathrm{S} \alpha^{0} \mathrm{~W}$, where $\tan \alpha=1 / 4$. If the shortest distance between the ships is 4.2 km , find the time to the nearest minute when the distance between the ships is shortest. (12mars)

Table of results

Vector	Magnitude	Direction
V_{A}	$20.4 \mathrm{kmh}^{-1}$	N日E
V_{B}	$5 \mathrm{kmh}^{-1}$	SaW
$V_{A} \equiv$		

$\tan \theta=\frac{1}{5} ; \theta=11.3^{0}$
$V_{A}=\binom{20.4 \sin 11.3^{0}}{20.4 \cos 11.3^{0}}=\binom{4}{20}$
V_{B} 三

$\tan \alpha=\frac{1}{5} ; \alpha=36.87^{\circ}$
$V_{-B}=\binom{-5 \sin 36.87^{0}}{-5 \cos 36.87^{\circ}}=\binom{-3}{-4}$

```
p \(B(0,15)\)
15 km
\(A(0,0)\)
\[
\mathrm{r}_{\mathrm{A}}=\int V_{A} d t=\int\binom{4}{20} d t=\binom{4 t}{20 t}+c
\]
```

$$
\text { At } \mathrm{t}=0, r_{A}=\binom{0}{0} \Rightarrow \mathrm{c}=\binom{0}{0}
$$

$$
\text { Hence } r_{A}=\binom{4 t}{20 t}
$$

$$
\mathrm{R}_{\mathrm{B}}=\int V_{B} d t=\int\binom{-3}{-4} d t=\binom{-3 t}{-4 t}+c
$$

$$
\text { At } \mathrm{t}=0, r_{B}=\binom{0}{15} \Rightarrow \mathrm{c}=\binom{0}{15}
$$

$$
\text { Hence } r_{B}=\binom{-3 t}{15-4 t}
$$

$$
{ }_{A} r_{B}=r_{A}-r_{B}=\binom{4 t}{20 t}-\binom{-3 t}{15-4 t}=\binom{7 t}{24 t-15}
$$

$$
\mathrm{d}_{\mathrm{s}}=\left|{ }_{A} \mathrm{r}_{\mathrm{B}}\right|=\sqrt{(7 t)^{2}+(24 t-15)^{5}}
$$

but ds $=4.2$

$$
\begin{aligned}
& \Rightarrow \sqrt{(7 t)^{2}+(24 t-15)^{5}}=4.2 \\
& \left(\sqrt{(7 t)^{2}+(24 t-15)^{5}}\right)^{2}=4.2^{2} \\
& (7 t)^{2}+(24 t-15)^{5}=4.2^{2} \\
& 47 t^{2}+576 t^{2}-720 t+225=17.64 \\
& 625 t^{2}-720 t+207.36=0 \\
& \mathrm{t}=\frac{720 \pm \sqrt{(-720)^{2}-4(625)(207.36)}}{2(625)}=0.576 \text { hours } \\
& \quad=0.576 \times 60=35 \text { minutes }
\end{aligned}
$$

Hence the time at which the distance is shortest is $12: 35 \mathrm{pm}$

Example 22

At noon a boat A is 30 km from boat B and its direction from B is 2860. A is moving in the North-East direction at $16 \mathrm{kmh}-1$ and B is moving in the north direction at 10kmh-1. Determine when they are closest to each other. What is the distance between them?

$$
\begin{gathered}
R_{A(t=0)}=\binom{0}{0}, R_{B(t=0)}=\binom{30 \sin 74}{-30 \cos 74} \mathrm{~km} \\
V_{A B}=\binom{16 \sin 45}{16 \cos 45}-\binom{0}{10}=\binom{11.314}{1.314} \mathrm{~km} / \mathrm{h} \\
R_{A B(t=t)}=\left(R_{A(t=0)}-R_{B(t=0)}\right)+\left(V_{A B}\right) t
\end{gathered}
$$

$R_{A B(t=t)}=\left[\binom{0}{0}-\binom{30 \sin 74}{-30 \cos 74}\right]+\binom{11.314}{1.314} t$
$R_{A B(t=t)}=\binom{-28.838+11.314 t}{8.269+1.314 t} \mathrm{~km}$
For minimum distance: $V_{A B} \cdot R_{A B(t=t)}=0$.
$\binom{11.314}{1.314} \cdot\binom{-28.838+11.314 t}{8.269+1.314 t}=0$
$t=2.43 \mathrm{~h}$
$R_{A B(t=2.43)}$
$=\binom{-28.838+11.314 \times 2.43}{8.269+1.314 \times 2.43} \mathrm{~km}$
$R_{A B(t=2.43)}=\binom{-1.345}{11.462} \mathrm{~km}$
$\left|R_{A B(t=2.43)}\right|=\sqrt{(-1.345)^{2}+11.462^{2}}$
$=11.54 \mathrm{~km}$

Alternatively

$V_{A B}^{2}=V_{A}{ }^{2}+V_{B}{ }^{2}-2 V_{A} V_{B} \cos 45$
$V_{A B}=\sqrt{16^{2}+10^{2}-2 \times 16 \times 10 \cos 45}$
$=11.39 \mathrm{~km} / \mathrm{h}$
$\frac{10}{\sin \alpha}=\frac{11.39}{\sin 45}$
$\alpha=38.38^{\circ}$
$45+\alpha+\beta+74=180^{\circ}$
$\beta=22.62^{\circ}$
$\mathrm{d}=\mathrm{AB} \sin \beta=30 \sin 22.62=11.54 \mathrm{~km}$
Time, $\mathrm{t}=\frac{A B \cos \beta}{V_{A B}}=\frac{30 \cos 22.62}{11.39}=2.43 \mathrm{~h}$
Time is 2.43 h from noon or 2 hour and 25.8 minutes

It occurs 2.26pm at a distance 11.54 km

Example 23

Two planes A and B are both flying above the Pacific Ocean. Plane A is flying on a course of 010° at a speed $300 \mathrm{kmh}^{-1}$ and plane B is flying on a course of 340° at $200 \mathrm{kmh}^{-1}$. At a certain instant, plane B is 40 km from A. Plane A is then on a bearing of 060°. After what time will they come closest together and what will be their minimum distance apart.

$V_{A B}=V_{A}-V_{B}$
$V_{A B}=\binom{300 \sin 10}{300 \cos 10}-\binom{-200 \sin 20}{200 \cos 20}=\binom{120.4985}{107.5038}$
$R_{A(t=0)}=\binom{0}{0} k m, R_{B(t=0)}=\binom{40 \cos 30}{40 \sin 30} \mathrm{~km}$
$R_{A B(t=t)}=\left(R_{A(t=0)}-R_{B(t=0)}\right)+\left(V_{A B}\right) t$
$R_{A B(t=t)}=\left[\binom{0}{0}-\binom{40 \cos 30}{40 \sin 30}\right]+t\binom{120.4985}{107.5038}$

$$
R_{A B(t=t)}=\binom{-34.641+120.4985 t}{-20+107.5038 t}
$$

For minimum distance: $V_{A B} \cdot R_{A B(t=t)}=0$
$\binom{120.4985}{107.5038}\binom{-34.641+120.4985 t}{-20+107.5038 t}=0$
$-6324.2645+26076.9555 t=0$
$t=0.2425 h$
Least distance $=\left|R_{A B(t=0.2425)}\right|$
$R_{A B(t=0.2425)}=$
$\binom{-34.641+120.4985 x 0.2425}{-20+107.5038 x 0.2425}$
$R_{A B(t=0.2425)}=\binom{5.4202}{6.0692} \mathrm{~km}$
$\left|R_{A B(t=0.2425)}\right|=\sqrt{(5.4202)^{2}+(6.0692)^{2}}=8.14 \mathrm{~m}$

Alternatively

$V_{A B}{ }^{2}=V_{A}{ }^{2}+V_{B}{ }^{2}-2 V_{A} V_{B} \cos 30$
$V_{A B}=\sqrt{300^{2}+200^{2}-2 \times 300 \times 200 \cos 30}$
$=161.484 \mathrm{~km} / \mathrm{h}$
$\frac{200}{\sin \alpha}=\frac{161.484}{\sin 30}$
$\alpha=38.26^{\circ}$
$\alpha+\beta=50$
$\beta=11.74^{\circ}$
$\mathrm{d}=\mathrm{AB} \sin \beta=40 \sin 11.74=8.14 \mathrm{~km}$
Time, $\mathrm{t}=\frac{A B \cos \beta}{V_{A B}}=\frac{40 \cos 11.74}{161.484}=0.2425 \mathrm{~h}$

Example 24

At a given instant two cars are at a distance 300 m and 400 m from a point of intersection O of two roads crossing at right angles and are approaching O at uniform speeds of $20 \mathrm{~m} / \mathrm{s}$ and $40 \mathrm{~m} / \mathrm{s}$ respectively. Find
(i) Initial distance between the two cars
(ii) shortest distance between the cars
(iii) time taken to reach this point

Example 25

A road running north-south crosses a road running east-west at a junction 0 . Initially Paul is on the east-west, 1.7 km west of O and is cycling towards O at $15 \mathrm{mk} / \mathrm{h}$. At the same time John is at O cycling due north at $8 \mathrm{~km} / \mathrm{h}$. If Paul and John do not alter their velocities, find the
(i) relative velocity of Paul to John
(ii) shortest distance between Paul and John

$R_{P(t=0)}=\binom{0}{0} k m, R_{J(t=0)}=\binom{1.7}{0} \mathrm{~km}$
$V_{P J}=V_{P}-V_{J}$
$V_{P J}=\binom{15}{0}-\binom{0}{8}=\binom{15}{-8} m s^{-1}$
$\left|V_{P J}\right|=\sqrt{15^{2}+(-8)^{2}}=17 \mathrm{~km} / \mathrm{h}$
$R_{P J(t=t)}=\left(R_{P(t=0)}-R_{J(t=0)}\right)+\left(V_{P J}\right) t$
$R_{P J(t=t)}=\left[\binom{0}{0}-\binom{1.7}{0}\right]+\binom{15}{-8} t$
$R_{P J(t=t)}=\binom{-1.7+15 t}{-8 t}$
For minimum distance: $V_{P J} \cdot R_{P J(t=t)}=0$
$\binom{15}{-8} \cdot\binom{-1.7+15 t}{-8 t}=0$
$-25.5+289 t=0$
$t=0.088 h$
Least distance $=\left|R_{P J(t=0.088)}\right|$
$R_{P J(t=0.088)}=\binom{-1.7+15 \times 0.088}{-8 x 0.88}=\binom{-0.38}{-0.704}$
$\left|R_{P J}\right|=\sqrt{(-0.38)^{2}+(-0.704)^{2}}=0.8 \mathrm{~km}$

Example 26

Two airship P and Q are 100km apart, P being west of Q. Two Helicopters A and B fly simultaneously from P and Q respectively, at 11.00a.m. Helicopter A is flying with a constant speed of $400 \mathrm{~km} / \mathrm{h}$ in the direction $\mathrm{N} 50^{\circ} \mathrm{E}$. Helicopter B flying at a constant speed of 500 km in the direction $\mathrm{N} 70^{\circ} \mathrm{W}$. Find the
(i) Time when the helicopters are closest together.
(ii) closest distance between the helicopters

$$
\begin{aligned}
& R_{A B(t=t)}=\left(R_{A(t=0)}-R_{B(t=0)}\right)+\left(V_{A B}\right) t \\
& R_{A B(t=t)}=\left[\binom{0}{0}-\binom{100}{0}\right]+t\binom{776.264}{86.105} \\
& R_{A B(t=t)}=\binom{-100+776.264 t}{86.105 t} \mathrm{~km}
\end{aligned}
$$

For minimum distance: $V_{A B} \cdot R_{A B(t=t)}=0$

$$
\binom{776.264}{86.105}\binom{-100+776.264 t}{86.105 t} .
$$

$$
609999.869 t=77624.4
$$

$\mathrm{t}=0.1273 \mathrm{~h}=0.1273 \times 60=8$ minutes

$$
\begin{aligned}
& \underbrace{\overbrace{500}^{N}}_{-} \nabla^{V_{A}} \\
& R_{A(t=0)}=\binom{0}{0} \mathrm{~km}, R_{B(t=0)}=\binom{100}{0} \mathrm{~km} \\
& V_{A B}=V_{A}-V_{B} \\
& V_{A B}=\binom{400 \sin 50}{400 \cos 50}-\binom{-500 \sin 70}{500 \cos 70} \\
& V_{A B}=\binom{776.264}{86.105} \mathrm{kms}^{-1}
\end{aligned}
$$

Time when they are closest
$=11.00+8=11.08 \mathrm{am}$
Least distance $=\left|R_{A B(t=0.1273)}\right|$
$R_{A B(t=0.1273)}\binom{-100+776.264 \times 0.1273}{86.105 \times 0.1273} \mathrm{~km}$
Alternatively

$V_{A B}{ }^{2}=V_{A}{ }^{2}+V_{B}{ }^{2}-2 V_{A} V_{B} \cos 120$
$V_{A B}=\sqrt{400^{2}+500^{2}-2 \times 400 \times 500 \cos 120}$
$=781.025 \mathrm{~km} / \mathrm{h}$
$\frac{500}{\sin \alpha}=\frac{781.025}{\sin 120}$
$R_{A B(t=0.1273)}=\binom{-1.182}{10.961} \mathrm{~km}$

$$
\left|R_{A B(t=0.1273)}\right|=\sqrt{(-1.182)^{2}+10.961^{2}}
$$

$$
=11.0247 \mathrm{~km}
$$

Closest distance $=11.025 \mathrm{~km}$

$$
\begin{aligned}
& \alpha=33.67^{\circ} \\
& \alpha+\beta+50=90 \\
& \beta=6.33^{\circ} \\
& d=P Q \sin \beta=100 \sin 6.33=11.025 \mathrm{~km}
\end{aligned}
$$

$$
\text { Time, } \mathrm{t}=\frac{P Q \cos \beta}{V_{A B}}=\frac{100 \cos 6.33}{781.025}
$$

$$
t=0.1273 h=0.1273 \times 60=8 \text { minutes }
$$

Time when they are closest
$=11.00+8=11.08 \mathrm{am}$

Example 26

Car A is 80 m North-West of point O , Car B is 50 m N300E of O . Car A is moving at $20 \mathrm{~m} / \mathrm{s}$ on a straight road towards O. Car B is moving at $10 \mathrm{~m} / \mathrm{s}$ on another straight road towards O. Determine the
(i) Initial distance between the cars
(ii) Velocity of A relative to B
(iii) shortest distance between the two cars as they approach O

$R_{A(t=0)}=\binom{-80 \cos 45}{80 \sin 45}, R_{B(t=0)}=\binom{50 \sin 30}{50 \cos 30}$
$R_{A B(t=0)}=\binom{-80 \cos 45}{80 \sin 45}-\binom{50 \sin 30}{50 \cos 30}=\binom{-81.5685}{13.2673}$
$\left[R_{A B(t=0)}\right]=\sqrt{(-81.5685)^{2}+13.2673^{2}}=82.6404 \mathrm{~m}$
(ii) $V_{A}=\binom{20 \sin 45}{-20 \cos 45}, V_{B}=\binom{-10 \sin 30}{-10 \cos 30}$
$V_{A B}=V_{A}-V_{B}$
$V_{A B}=\binom{20 \sin 45}{-20 \cos 45}-\binom{-10 \sin 30}{-10 \cos 30}$
$V_{A B}=\binom{19.1421}{-5.4819}$
$\left|V_{A B}\right|=\sqrt{(19.1421)^{2}+(-5.4819)^{2}}$

$$
=19.9116 \mathrm{~m} / \mathrm{s}
$$

$\theta=\tan ^{-1} \frac{5.4819}{19.1421}=15.98^{\circ}$
Direction: E15.98 ${ }^{\circ}$ S
(iii)
$R_{A B(t=t)}=\left(R_{A(t=0)}-R_{B(t=0)}\right)+\left(V_{A B}\right) t$
$R_{A B(t=t)}=\binom{-81.5685}{13.2673}+t\binom{19.1421}{-5.4819}$
$R_{A B(t=t)}=\binom{-81.5685+19.1421 t}{13.2673-5.4821 t} k m$
For minimum distance: $V_{A B} \cdot R_{A B(t=t)}=0$
$\binom{19.1421}{-5.4819} \cdot\binom{-81.5685+19.1421 t}{13.2673-5.4821 t}=0$
$\mathrm{t}=4.1216 \mathrm{~s}$
Least distance $=\left|R_{A B(t=4.1216 s)}\right|$
$R_{A B(t=t)}=\binom{-81.5685+19.1421 \times 4.1216}{13.2673-5.4821 x 4.1216} m$
$R_{A B(t=t)}=\binom{-2.672}{-9.328} m$
$\left|R_{A B(t=t)}\right|=\sqrt{(-2.672)^{2}+(-9.328)^{2}}=9.728 \mathrm{~m}$

Alternatively

Method II: Using geometric approach

Using cosine rule

$$
\begin{aligned}
& \left|V_{A B}\right|^{2}=20^{2}+10^{2}-2 \times 20 \times 10 \cos 75^{0} \\
& \left|V_{A B}\right|=19.912 m s^{-1} \\
& \frac{\left|V_{A B}\right|}{\sin 75^{0}}=\frac{10}{\sin \alpha} \\
& \alpha=29.02^{0} \\
& 45^{0}+29.02^{0}=74.02^{0}
\end{aligned}
$$

\therefore The velocity of A relative to B is $19.912 \mathrm{~ms}^{-1}$ due $S 74.02^{\circ} \mathrm{E}$

The shortest distance between the two cars as they approach O (04marks)
Using geometrical approach

$$
\begin{aligned}
& \frac{50}{\sin \theta}=\frac{82.64}{\sin 75^{0}} ; \theta=35.76^{\circ} \\
& <B A D=35.76-29.02=6.74^{0} \\
& \sin 6.74^{0}=\frac{\left|r_{A B}\right|}{A B} \\
& { }_{A} r_{B}=82.64 \sin 6.74^{0}=9.699 \mathrm{~m}
\end{aligned}
$$

\therefore The shortest distance between the two cars they approach O is 9.699 m

Revision exercise 3

1. 1.At 8am ship A and ship Bare 11 km apart with B due west of A. a and B move with a constant velocities $(-4 i+3 j) k h / h$ and $(2 i+4 j) k m / h$ respectively. Find the the
(i) least distance between the two ship in the subsequent motion[1.81km]
(ii) time to the nearest minute at which this situation occurs[9.47am]
2. 2. At 7.30 am, two ship A and B are 8 km apart with B due north of A. A and B move with constant velocities (12j)km/h and (-5i) km / h respectively. Find the
(i) least distance between the two ship in the subsequent motion[3.08km]
(ii) time to the nearest minute at which this situation occurs[8.04am]
1. A and B are two tankers at 13.00 hrs, tanker B bas position vector of ($4 i+8 j$)km relative to A. A and B move with constant velocities $(6 i+9 j) \mathrm{km} / \mathrm{h}$ and $(-3 i+6 j) \mathrm{km} / \mathrm{h}$ respectively. Find the
(i) least distance between the two ship in the subsequent motion[6.32km]
(ii) time to the nearest minute at which this situation occurs[13.40hrs]
2. At 12 noon the position vectors r and velocity vectors v of two ship A and B are as follows $r_{A}=(5 i+j) k m, V_{A}=(7 i+3 j) k m / h$ and $r_{B}=(8 i+7 j) k m, V_{B}=(2 i-j) k m / h$
(i) Assuming velocities do not change, find the least distance between the ships in subsequent motion [2.81]
(ii) Find the time when their distance of closest approach occur [12.57pm]
3. At a certain time, the position vectors r and velocity vectors V of two ship A and B are as follows
$r_{A}=(3 i+j) k m, V_{A}=(2 i+3 j) k m / h$ at 11.00am
$r_{B}=(2 i-j) k m, V_{B}=(3 i+7 j) k m / h$ at 12.00noon
Assuming velocities do not change; find the
(i) The position vector of A at noon [$5 \mathrm{i}+4 \mathrm{j}]$
(ii) Distance between the ships at 12.00 noon [5.83km]
(iii) The least distance between A and B in the subsequent motion[1.7km]
(iv) Time at which the least separation occurs [1.21pm]
4. At 12 noon, the position vectors r and velocity vectors V of two battle ship A and battle B are as follows
$r_{A}=(13 i+5 j) k m, V_{A}=(3 i-10 j) k m / h$
$r_{B}=(3 i-5 j) k m, V_{B}=(15 i+14 j) k m / h$
(i) Assuming the velocities do not change, find the least distance between the ships in subsequent motion [4.47km]
(ii) The battle ship has guns with a range of up to 5 km , find the length of time during which the cruiser is within range of the battle ships [10minutes]
5. At tine $t=0$ the position vectors r and velocity vectors V of two battle ship A and battle B are as follows
$r_{A}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) m, V_{A}=\left(\begin{array}{c}-6 \\ 0 \\ 1\end{array}\right) m / s$ and $r_{B}=\left(\begin{array}{c}4 \\ -14 \\ 1\end{array}\right) m, V_{A}=\left(\begin{array}{c}-5 \\ 1 \\ 7\end{array}\right) m / s$
Assuming velocities do not change, find
(i) The potion vectors of B relative to A at time t seconds $\left[\left(\left(\begin{array}{c}7 \\ 2 \\ 2\end{array}\right)+\left(\begin{array}{c}9 \\ 13 \\ -7\end{array}\right) t\right) k m\right]$
(ii) The least distance between the ships in the subsequent motion [15.9m]
(iii) The time taken to the closest distance $\left[\frac{25}{33} s\right]$
6. At time $t=0$ the position vectors r and velocity vectors V of two battle ship A and battle B are as follows

$$
\begin{aligned}
r_{A} & =(3 i+j+5 k) m, V_{A}
\end{aligned}=(4 i+j-3 k) m / s ~(i-3 j+2 k) m, V_{B}=(i+2 j+2 k) m / s
$$

Assuming velocities do not change, find
(i) The position vector of B relative to A at time t second $\left[\left(\begin{array}{c}2+3 t \\ 4-t \\ 3-5 t\end{array}\right) \mathrm{m}\right]$
(ii) The value of t when A and B are closed $\left(\frac{13}{35}\right)$
(iii) Least distance between A and B [4.917m]
9. At tine $t=0$ the position vectors r and velocity vectors V of two battle ship A and battle B are as follows
$r_{A}=(\beta) m, V_{A}=\left(\begin{array}{c}2 \\ 1 \\ -5\end{array}\right) m / s$ and $r_{B}=(2 \beta) m, V_{A}=\left(\begin{array}{c}1 \\ -5 \\ 1\end{array}\right) \mathrm{m} / \mathrm{s}$
Where β is a constant, assuming velocities do not change show that the least distance between the ships in the subsequent motion is $\frac{\beta}{73}$ and their distance of closest approach is $\frac{6 \beta \sqrt{2}}{\sqrt{73}}$.
10. A lizard on a wall at point A, has a position vector $r_{A}=\left(\begin{array}{c}65 \\ 40 \\ 0\end{array}\right) \mathrm{cm}$. At time $\mathrm{t}=0$ seconds a fly has a position vector $r_{F}=\left(\begin{array}{l}37 \\ 16 \\ 22\end{array}\right) \mathrm{cm}$ and velocity vector $V_{F}=\left(\begin{array}{c}5 \\ 2 \\ -1\end{array}\right) \mathrm{cm} / \mathrm{s}$
If the fly were to continue with this velocity, find the closest distance it would come to the lizard and the value of t when it occurs [$\sqrt{374} \mathrm{~m}, 7 \mathrm{~s}$]
11. A particle P move with constant velocity $(2 i+3 j+8 k) m / s$ passes a point with position vector $(6 i-11 j+4 k) m$. At the same instant particle Q passes through a point whose position vector is ($i-2 j+5 k$)m moving at constant velocity of $(3 i+4 j-7 k) m / s$. Find
(a) Position of Q relative to P at that instant. [10.344m]
(b) Shortest distance between the particles [10.32m]
(c) Time that elapses before the particles are nearest to each other [0.0485s]
12. Two particles P and Q move with constant velocities $(4 i+j-2 k) m / s$ and $(6 i+3 k) \mathrm{m} / \mathrm{s}$ respectively. Initially P is at a point whose position vector is $(i-20 j+21 k) m$ and Q is at a point whose position vector is $(i+3 k) m$. find
(a) Time for which the distance between P and Q is least [2.2s]
(b) Distance of P from the origin at the time when the distance between P and Q is least [28.8m]
(c) Least distance between P and Q [24.14m]

Course of closest approach

If A is to pass as close as possible to B, then velocity of A must ne perpendicular to the relative velocity

$$
V_{A B} \cdot V_{A}=0
$$

Example 27

Two particles P and Q initially at positions $(3 i+2 j) m$ and $(13 i+2 j) m$ respectively begin moving. Particle P moves with a constant velocity $(2 i+6 j) \mathrm{m} / \mathrm{s}$. A second particle Q moves with a constant velocity of (5j)m/s
(a) Find
(i) Time when the particles are closest together.
(ii) Bearing of particle O from Q when they are closest to each other.
(b) Given that half the time, the particle are moving closest to each other, particle P reduces its speed to half its original speed, in the direction to approach particle Q and the velocity of particle Q remains unchanged, find the direction of particle P.

Solution

$r_{P(t=0)}=\binom{3}{2} m, r_{Q(t=0)}=\binom{13}{2} m$
$V_{P Q}=V_{P}-V_{Q}=\binom{2}{6}-\binom{0}{5}=\binom{2}{1} \mathrm{~m} / \mathrm{s}$
$r_{P Q(t=t)}=\left(r_{P(t=0)}-r_{Q(t=0)}\right)+\left(V_{P Q}\right) t$
$r_{P Q(t=t)}=\binom{3}{2}-\binom{13}{2}+\binom{2}{1} t=\binom{-10+2 t}{t} m$
For minimum distance $V_{P Q} \cdot r_{P Q(t=t)}=0$
$\binom{2}{1} \cdot\binom{-10+2 t}{t}=0$
$-20+4 t+t=0$
$t=4 s$
(ii) $r_{P Q(t=4)}=\binom{-10+2 \times 4}{4}=\binom{-2}{4}$

$$
\beta=\tan ^{-1} \frac{4}{2}=63.43^{\circ}
$$

The bearing of P from $Q=(270+63.43)$

$$
=333.43^{0}
$$

(b) At $\mathrm{t}=2 \mathrm{~s}, V_{P}=\binom{1}{3} \mathrm{~m} / \mathrm{s}$

Let P move at angle θ to x -axis

$$
V_{P Q}=\sqrt{10} \frac{\cos \theta}{\sin \theta}-\binom{0}{5}=\binom{\sqrt{10} \cos \theta}{\sqrt{10} \sin \theta-5}
$$

If P is to approach Q ; $8 \sin \theta$
$\binom{\sqrt{10} \cos \theta}{\sqrt{10} \sin \theta-5} \cdot\left(\frac{\sqrt{10} \cos \theta}{\sqrt{10} \sin \theta}\right)=0$
$10 \cos ^{2} \theta+10 \sin ^{2} \theta-5 \sqrt{10} \sin \theta=0$
$\theta=\sin ^{-1} \frac{10}{5 \sqrt{10}}=39.2^{0}$
Direction: $\mathrm{N} 50.8^{0} \mathrm{E}$

Example 28

A motor boat B is travelling at a constant velocity of $10 \mathrm{~m} / \mathrm{s}$ due east and motor boat A is travelling at a constant speed of $8 \mathrm{~m} / \mathrm{s}$. Initially A and B are 600 m apart with A due south of B. Find
(a) course that A should set to get close as possible to B

Let A move at an angle θ to x-axis
$V_{A B}=\binom{8 \cos \theta}{8 \sin \theta}-\binom{10}{0}=\binom{8 \cos \theta-10}{8 \sin \theta}$
If A is to approach $\mathrm{B} ; V_{A B} . V_{A}=0$
$\binom{8 \cos \theta}{8 \sin \theta} \cdot\binom{8 \cos \theta-10}{8 \sin \theta}=0$
$\theta=\cos ^{-1} \frac{64}{80}=36.9^{0}$
Direction: $\mathrm{N} 53.1^{0} \mathrm{E}$ or $\mathrm{E} 36.9^{0} \mathrm{~N}$
(ii) Closest distance and time taken for the situation to occur
$r_{A(t=0)}=\binom{0}{0} m, r_{B(t=0)}=\binom{0}{600} m$
$r_{A B(t=t)}=\left(r_{A(t=0)}-r_{B(t=0)}\right)+\left(V_{A B}\right) t$
$r_{A B(t=t)}=\left[\binom{0}{0}-\binom{0}{600}\right]+\binom{8 \cos 36.9-10}{8 \sin 36.9} t$
$r_{A B(t=t)}=\binom{-3.603 t}{-600+4.803 t}$
For minimum distance: $V_{A B} \cdot r_{A B(t=t)}=0$
$\binom{-3.603}{4.803} \cdot\binom{-3.603 t}{-600+4.803 t}=0$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{t}=80 \mathrm{~s} \\
\begin{aligned}
r_{A B(t=80)} & =\binom{-3.603 \times 80}{-600+4.803 \times 80} \\
& =\binom{-288.24}{-215.76}
\end{aligned} \\
\text { Least distance, } \mathrm{d}=\left|r_{A B(t=80)}\right|
\end{array} \\
& \left\lvert\, \begin{array}{l}
\left|r_{A B(t=80)}\right|=\sqrt{(-288.24)^{2}+(-215.76)^{2}} \\
\mathrm{~d}=360 \mathrm{~m}
\end{array}\right.
\end{aligned}
$$

Example 29

A motor boat B is travelling at constant velocity of $14 \mathrm{~km} / h$ due north and a motor boat A is travelling at constant speed $12 \mathrm{~km} / \mathrm{h}$. Initially A and B are 5.2 km apart with A due west of B. Find
(i) Couse that A should set in order to get as close as possible to B

Let A move at an angle θ to x-axis
$V_{A B}=\binom{12 \cos \theta}{12 \sin \theta}-\binom{0}{13}=\binom{12 \cos \theta}{12 \sin \theta-13}\binom{12 \cos \theta}{12 \sin \theta-13} \cdot\binom{12 \cos \theta}{12 \sin \theta}=0$
If A is to approach $\mathrm{B} ; V_{A B} . V_{A}=0$
$\theta=\sin ^{-1} \frac{12}{13}=67.4^{0}$
Direction: $\mathrm{N} 22.6^{\circ} \mathrm{E}$ or $67.4^{\circ} \mathrm{N}$
(ii) Closest distance and time taken for the situation to occur
$r_{A(t=0)}=\binom{0}{0} m, r_{B(t=0)}=\binom{5.2}{0} m \quad \mathrm{t}=0.961 \mathrm{~h}$
$r_{A B(t=t)}=\left(r_{A(t=0)}-r_{B(t=0)}\right)+\left(V_{A B}\right) t$
$r_{A B(t=t)}=\left[\binom{0}{0}-\binom{5.2}{0}\right]+\binom{12 \cos 67.4}{12 \sin 67.4-13} t$
$r_{A B(t=t)}=\binom{-5.2+4.612 t}{-1.921 t}$
For minimum distance: $V_{A B} \cdot r_{A B(t=t)}=0$
$\binom{4.612}{-1.921} \cdot\binom{-5.2+4.612 t}{-1.921 t}=0$

$$
\begin{aligned}
r_{A B(t=0.961)} & =\binom{-5.2+4.612 \times 0.961}{-1.921 \times 0.961} \\
& =\binom{-0.7725}{-1.8442}
\end{aligned}
$$

Least distance, $\mathrm{d}=\left|r_{A B(t=0.961)}\right|$
$\left|r_{A B(t=0.961)}\right|=\sqrt{(-0.7725)^{2}+(-1.8442)^{2}}$
$d=2 k m$

Revision exercise 4

1. A ship A is moving with constant velocity of $18 \mathrm{~km} / \mathrm{h}$ in a direction $\mathrm{N} 55^{\circ} \mathrm{E}$ and is initially 6 km from a second ship B, the bearing of A from B being $N 25^{\circ} \mathrm{W}$. If B moves with a constant speed of $15 \mathrm{~km} / \mathrm{h}$. Find
(a) Course that B should set in order to get as close as possible to $A\left[N 21.4^{\circ} E\right]$
(b) Closest distance and time taken for the situation to occur.[4.135km, $t=0.437 \mathrm{~h}$]
2. Two aircraft A and B are flying at the same altitude with A initially 10 km due north of B and flying at constant speed of $300 \mathrm{~m} / \mathrm{s}$ on a bearing of 060°. If B flies at constant speed of $200 \mathrm{~m} / \mathrm{s}$, find
(a) Course that B should set in order to get as close as possible to A [E78.4 ${ }^{0} \mathrm{~N}$]
(b) Closest distance and time taken for the situation to occur.[9.79km, $\mathrm{t}=9.12 \mathrm{~s}$]
3. At 8am two boats A and B are 5.2 km apart with A due west of B, and B travelling due north at a steady speed $13 \mathrm{~km} / \mathrm{h}$. If A travels with a constant speed of $12 \mathrm{~km} / \mathrm{h}$, show that for A to get as close as possible to B, A should set a course of N $\theta O E$ where $\sin \theta=\frac{5}{13}$. Find the closest distance and time at which it occurs. [2km, 8.57 am]
4. Two aircraft A and B are flying at the same altitude with A initially 5 km due north of B and B flying at constant speed of $300 \mathrm{~m} / \mathrm{s}$ on bearing of 060°. If A flies at constant speed of $200 \mathrm{~m} / \mathrm{s}$, find
(a) Course that A should set in order to get as close as possible to $B\left[108.2^{\circ}\right]$
(b) Time taken for the situation to occur.[5.4min]
5. A ship A moving with a constant speed of $24 \mathrm{~km} / \mathrm{h}$ in the direction $\mathrm{N} 40^{\circ} \mathrm{E}$ and is initially 10 km from a second ship B, the bearing of A from B being N300W. If B moves with a constant speed of $22 \mathrm{~km} / \mathrm{h}$; find
(a) Course that B should set in order to get as close as possible to $A\left[N 16.4^{0} E\right]$
(b) Closest distance and time taken for the situation to occur.[6.89km, 45min]

Interception and collision

Consider two bodies A and B moving with V_{A} and V_{B} from points with position vectors $O A$ and $O B$

Position of A after time t is
$r_{A(t=t)}=r_{A(t=0)}+t x V_{A}$
Position of B after time t is
$r_{B(t=t)}=r_{B(t=0)}+t x V_{B}$

$$
\text { For collision to occur } r_{A(t=t)}=r_{B(t=t)}
$$

$$
r_{A(t=0)}+t x V_{A}=r_{B(t=0)}+t x V_{B}
$$

$$
\left(r_{A(t=0)}-r_{B(t=0)}\right)+t\left(V_{A B}\right)=0
$$

Hence $r_{A B(t=t)}=0$

Example 30

The position vectors $r_{A}=(5 i-3 j+4 k) m$ and $r_{B}=(7 i+5 j-2 k) m$ are for two particles with velocities $V_{A}=(2 i+5 j+3 k) m / s$ and $V_{B}=(-3 i-55 j+18 k) m / s$ respectively. Show that if the velocities remain constant, a collision will occur

Solution
$r_{A(t=0)}+t x V_{A}=r_{B(t=0)}+t x V_{B}$
$\left(\begin{array}{c}5 \\ -3 \\ 4\end{array}\right)+t\left(\begin{array}{l}2 \\ 5 \\ 3\end{array}\right)=\left(\begin{array}{c}7 \\ 5 \\ -2\end{array}\right)+t\left(\begin{array}{c}-3 \\ -15 \\ 18\end{array}\right)$
$\left(\begin{array}{c}-2 \\ -8 \\ 6\end{array}\right)=\left(\begin{array}{c}-5 \\ -20 \\ 15\end{array}\right) t$

Along i direction: $-2=-5 \mathrm{t}$; $\mathrm{t}=0.4 \mathrm{~s}$
Along j direction: $-8=-20 \mathrm{t} ; \mathrm{t}=0.4 \mathrm{~s}$
Along k direction: $6=15 \mathrm{t}$; $\mathrm{t}=0.4 \mathrm{~s}$
Since t is the same in all directions, collision occurred

Example 31

At 12 noon the position vectors r and velocity vectors V of two ships A and B are as follows
$r_{A}=(i+7 j) m, V_{A}=(6 i+2 j) m / s, r_{B}=(6 i+4 j) m$ and $V_{B}=(-4 i+8 j) m / s$
Assuming velocities do not change
(i) Show that collision will occur
(ii) Find the time at which collision occurs
(iii) Find the position vector of the location during collision

Solution

$r_{A(t=0)}+t x V_{A}=r_{B(t=0)}+t x V_{B}$
$\binom{1}{7}+t\binom{6}{2}=\binom{6}{4}+t\binom{-4}{8}$
$\binom{-5}{3}=\binom{-10}{6} t$
Along the i direction: $-5=-10 \mathrm{t} ; \mathrm{t}=0.5 \mathrm{~h}$
Along the j direction: $3=6 t ; t=0.5 h$
Since t is the same in all directions
Collision occurred
(ii) time it occurred $=12: 00+0.5 \times 60$

$$
=12: 30 \mathrm{pm}
$$

(iii) How far each had travelled
$r_{A(t=t)}=r_{A(t=0)}+t x V_{A}$
$r_{A(t=0.5)}=\binom{1}{7}+0.5\binom{6}{2}=\binom{4}{8} \mathrm{~km}$

Example 32

At 11:30am a battle ship is at a place with position vector $(-6 i+12 j) \mathrm{km}$ and is moving with velocity vector $(16 i-4 j) k m / h$. At 12:00 noon a cruiser is at a place with position vector $(12 i-15 j)$ and is moving with velocity vector $(8 \mathrm{i}+16 \mathrm{j}) \mathrm{km} / \mathrm{h}$. Assuming velocities do not change
(i) Show that collision will occur
(ii) Find the time at which collision occurs
(iii) Find the position vector of the location of collision
$r_{A(t=t)}=r_{A(t=0)}+t x V_{A}$
At 12:00: $r_{A(t=0.5)}=\binom{-6}{12}+0.5\binom{16}{-4}=\binom{2}{10}$
For collision to occur
$r_{A(t=0)}+t x V_{A}=r_{B(t=0)}+t x V_{B}$
$\binom{2}{10}+t\binom{16}{-4}=\binom{12}{-15}+t\binom{8}{18}$
$\binom{-10}{25}=\binom{-8}{20} t$
Along the i direction: $-10=-8 \mathrm{t} ; \mathrm{t}=1.25 \mathrm{~h}$

Along the j direction: $15=20 \mathrm{t} ; \mathrm{t}=1.25 \mathrm{~h}$
Since t is the same in all directions collision occurred
(ii) time it occurred $=11: 30+1.25 \times 60$

$$
=12: 45 \mathrm{pm}
$$

(iii) How far each had travelled

$$
\begin{aligned}
& r_{A(t=t)}=r_{A(t=0)}+t x V_{A} \\
& r_{A(t=0.5)}=\binom{2}{10}+1.25\binom{16}{-4}=\binom{22}{5} \mathrm{~km}
\end{aligned}
$$

Example 33

At 12:30 noon two ships A and B are 10 km apart with B due east of A. A is travelling N600E at a speed of $12 \mathrm{~km} / \mathrm{h}$ and ship B is travelling due north at $10 \mathrm{~km} / \mathrm{h}$. Show that, is the two ships do not change their velocities, they collide and fins to the nearest minute when collision occurs.

For collision to occur
$r_{A(t=0)}+t x V_{A}=r_{B(t=0)}+t x V_{B}$
$\binom{0}{0}+t\binom{20 \sin 60}{20 \cos 60}=\binom{10}{0}+t\binom{0}{10}$
$\binom{10 \sqrt{3}}{10} t=\binom{10}{0}+t\binom{0}{10}$

Along the i direction: $10 \sqrt{3} t=10$;

$$
t=0.5774 h
$$

Along the j direction: $10 \mathrm{t}=10 \mathrm{t}$
$\therefore \mathrm{t}=0.5774 \times 60=35$ minute
Collision occurred at 12:35minutes

Example 34

Two aircraft P and Q are flying at the same height. P is flying due north at $500 \mathrm{~km} / \mathrm{h}$ while Q is flying due west at $600 \mathrm{~km} / \mathrm{h}$. When the aircrafts are 10 km apart, the pilots realize that they are about to collide. The pilot of P changes Course to 345° and maintains the speed of $500 \mathrm{~km} / \mathrm{h}$. The pilot Q maintains his course but increases speed. Determine the
(i) Distance each aircraft would have travelled if the pilots had not realized that they were about to collide

Solution
$\binom{0}{0}+t\binom{0}{500}=\binom{100 \sin 50.2}{100 \cos 50.2}+t\binom{-600}{0}$
Along i direction: $0=100 \sin 50.2-600 t$

$$
t=0.128 h
$$

$\theta=\tan ^{-1} \frac{600}{500}=50.2^{\circ}$
For collision to occur
$r_{P(t=0)}+t x V_{P}=r_{Q(t=0)}+t x V_{Q}$
$\binom{0}{0}+t\binom{0}{500}=\binom{100 \sin \theta}{100 \cos \theta}+t\binom{-600}{0}$

Distance moved by P
$\binom{0}{0}+0.128\binom{0}{500}=\binom{0}{64}=64 \mathrm{~km}$
Distance moved by Q
$\binom{100 \sin \theta}{100 \cos \theta}+0.128\binom{-600}{0}=\binom{0.0284}{64.011}$

$$
=64.011 \mathrm{~km}
$$

(ii) New speed beyond which the aircraft Q must fly in order to avoid collision

For collision to occur

$$
\begin{aligned}
& r_{P(t=0)}+t x V_{P}=r_{Q(t=0)}+t x V_{Q} \\
& \binom{0}{0}+t\binom{-500 \sin 15}{500 \cos 15}=\binom{100 \sin \theta}{100 \cos \theta}+t\binom{-V}{0} \\
& \binom{0}{0}+t\binom{-500 \sin 15}{500 \cos 15}=\binom{100 \sin 50.2}{100 \cos 50.2}+t\binom{-V}{0}
\end{aligned}
$$

Along j direction: 500 cos15t $=64.011$
$t=0.1325 h$
Along i direction:
$-500 \sin 15 \mathrm{t}=76.8284-\mathrm{Vt}$
$V \times 0.1325=76.8284+500 \sin 15 \times 0.1325$
$\mathrm{V}=709.2837 \mathrm{~km} / \mathrm{h}$

Course of interception

Suppose particle A with speed V_{A} is to intercept particle B with speed V_{B}, then
$>$ Draw a sketch diagram showing the initial position and velocities of the two particles
$>$ For interception to occur, the relative velocity must be in the direction of the initial displacement of the particles.

Example 35

At an instant a body A travelling south at $10 \sqrt{3} \mathrm{~m} / \mathrm{s}$ is 150 m west of B. Show that B will intercept A if B is travelling $S 30^{\circ} \mathrm{W}$ at $20 \mathrm{~m} / \mathrm{s}$ and find the time that elapses before collision occurs.

Solution

$A=\binom{0}{0} m \quad B=\binom{150}{0} m$
$V_{A}=\binom{0}{-10 \sqrt{3}} \mathrm{~m} / \mathrm{s} \quad V_{B}=\binom{-20 \cos \theta}{-20 \sin \theta} \mathrm{~m} / \mathrm{s}$
$\mathrm{OA}+\mathrm{tx} v_{A}=\mathrm{OB}+\mathrm{tx} v_{B}$
$\binom{0}{0}+\binom{0}{-10 \sqrt{3}} t=\binom{150}{0}+\binom{-20 \cos \theta}{-20 \sin \theta} t$
j: $20 \sin \theta=10 \sqrt{3}$
$\theta=\sin ^{-1} \frac{\sqrt{3}}{2}=60^{\circ}$

Bearing $530^{\circ} \mathrm{W}$
i: $\mathrm{t}=\frac{150}{20 \cos \theta}=\frac{150}{20 \cos 60}=15 \mathrm{~s}$
Alternatively

$$
\frac{\sin 90}{20}=\frac{\sin \theta}{10 \sqrt{3}}
$$

$$
\theta=60^{\circ}: \text { bearing } S 30^{\circ} \mathrm{W}
$$

$$
\text { Also, } \frac{\sin 90}{20}=\frac{\sin (90-\theta)}{V_{A B}}
$$

$$
V_{A B}=10 \mathrm{~m} / \mathrm{s}
$$

$$
\mathrm{t}=\frac{A B}{V A_{A B}}=\frac{150}{10}=15 \mathrm{~s}
$$

Example 36

At 9:00am two ships A and B are 15 km apart with B on a bearing of 270° from A. Ship A moves at $5 \mathrm{~km} / \mathrm{h}$ on a bearing of 330°. If the maximum speed of B is $10 \mathrm{~km} / \mathrm{h}$. Find the
(i) Direction B should set in order to intercept A as soon as possible
(ii) Time taken for the interception to occur.

Solution

Bearing E25.7 ${ }^{0} \mathrm{~N}$
i: $t=\frac{15}{10 \cos \theta+2.5}=\frac{15}{2.5+10 \cos 25.7}=1.303 h$
$\mathrm{t}=1.303 \times 60=78 \mathrm{mins}$
Alternatively
$\frac{\sin 60}{10}=\frac{\sin \theta}{5}$
$\theta=25.7^{0}$: bearing E25.7 ${ }^{0} \mathrm{~N}$
Also, $\frac{\sin 90}{10}=\frac{\sin (120-\theta)}{V_{A B}}$
$V_{A B}=11.515 \mathrm{~km} / \mathrm{h}$
$\mathrm{t}=\frac{A B}{V A_{A B}}=\frac{15}{11.515} \times 60=78$ minutes
$\left.\begin{array}{c}60 \\ 0\end{array}\right) \mathrm{km} / \mathrm{h}$

Example 37

At 12:00 noon two ship A and B are 12 km apart with B on a bearing of 140° from A. Ship A moves at $30 \mathrm{~km} / \mathrm{h}$ to intercept B which is travelling at $20 \mathrm{~km} / \mathrm{h}$ on a bearing of 340°. Find the
(i) Direction A should set in order to intercept B
(ii) time taken for the interception to occur.
$A=\binom{0}{0} \mathrm{~km} \quad B=\binom{12 \cos 50}{-12 \sin 50}^{\mathrm{B}} \mathrm{km}$
$V_{A}=\binom{30 \cos \alpha}{30 \sin \alpha} \mathrm{~km} / \mathrm{h} \quad V_{B}=\binom{-20 \cos 20}{20 \sin 20} \mathrm{~km} / \mathrm{h}$
$\mathrm{OA}+\mathrm{tx} v_{A}=\mathrm{OB}+\mathrm{tx} v_{B}$
$\binom{0}{0}+\binom{30 \cos \alpha}{30 \sin \alpha} t=\binom{12 \cos 50}{-12 \sin 50}+\binom{-20 \cos 20}{20 \sin 20} t$
i: $30 t \cos \alpha=12 \cos 50+-20 t \cos 20$

$$
\begin{equation*}
t=\frac{7.713}{30 \cos \alpha+6.84} \tag{i}
\end{equation*}
$$

$\mathrm{J}: 30 t \sin \alpha=-12 \sin 50+20 t \sin 20$
$t=\frac{9.193}{30 \sin \alpha+18.794}$
(i) $=$ (ii): $\frac{7.713}{30 \cos \alpha+6.84}=\frac{9.193}{30 \sin \alpha+18.794}$
$231.39 \sin \alpha-275.79 \cos \alpha=82.078$
But $\sin \alpha=\frac{2 T}{1+T^{2}}$ and $\cos \alpha=\frac{1-T^{2}}{1+T^{2}}$
$231.39\left(\frac{2 T}{1+T^{2}}\right)-275.79\left(c \frac{1-T^{2}}{1+T^{2}}\right)=82.078$
$357.868 \mathrm{~T}^{2}+462.78 \mathrm{~T}-193.712=0$
$\mathrm{T}=-1.626$ or $\mathrm{T}=0.333$
$\therefore \mathrm{T}=0.333$
$\sin \alpha=\frac{2 T}{1+T^{2}}$
$\alpha=\sin ^{-1} \frac{2 \times 0.333}{1+0.333^{0}}=36.8^{\circ}$
Bearing: E36.8 ${ }^{\circ} \mathrm{S}$
$t=\frac{7.713}{30 \cos \alpha+6.84}=\frac{7.713}{30 \cos 36.8+6.84}$
$\mathrm{T}=0.25 \mathrm{~h}=0.25 \times 60=15$ minutes
$\frac{\sin 20}{30}=\frac{\sin \theta}{20}$
$\theta=13.2^{0}$:
Bearing (50-13,2) ${ }^{0} \mathrm{~S}$
$\mathrm{E} 36.8^{\circ} \mathrm{S}$ or $\mathrm{S} 53.2^{0} \mathrm{E}$

$$
\begin{aligned}
& \text { Also, } \frac{\sin 20}{30}=\frac{\sin (180-(20+13.2))}{V_{A B}} \\
& V_{A B}=48.03 \mathrm{~km} / \mathrm{h} \\
& \mathrm{t}=\frac{A B}{V A_{A B}}=\frac{12}{48.03} \times 60=15 \text { minutes }
\end{aligned}
$$

Revision exercise 5

1. At $12: 00$ noon two ships A and B are 12 km apart with B on a bearing of 250° from A. Ship A moves at $4 \mathrm{~km} / \mathrm{h}$ on a bearing of 320°. If the maximum speed of B is $7 \mathrm{~km} / \mathrm{h}$, find the
(a) Direction B should set in order to intercept $A\left[N 37.6^{\circ} E\right]$
(b) Time taken for interception to occur. [99minutes]
2. Initially two particles A and B are 48 m apart with B due north of A. A has a constant velocity of $(5 i+4 j) \mathrm{m} / \mathrm{s}$ and B a constant speed of $13 \mathrm{~m} / \mathrm{s}$. Find the velocity of Y if it is to intercept A and find the time taken to do so [$5 \mathrm{i}-12 \mathrm{j}) \mathrm{m} / \mathrm{s}, 3 \mathrm{~s}$]
3. At 12 noon the position vectors, r and velocity vectors, V of two ships are
$r_{A}=\binom{5}{2} \mathrm{~km}, V_{A}=\binom{15}{10} \mathrm{~km} / \mathrm{h}$ and $r_{B}=\binom{7}{7} \mathrm{~km}, V_{A}=\binom{9}{-5} \mathrm{~km} / \mathrm{h}$
Show that if the ships do not alter their velocities, a collision will occur and find the time at which it occurs and the position vector of its location [12.30pm, $\left(10 \mathrm{i}+\frac{16}{3} j\right) \mathrm{km}$]
4. At 11.30 a jumbo jet has position vectors $(-100 i+220 j) k m$ and it is moving with velocity vectors $(300 \mathrm{i}+400 \mathrm{~J}) \mathrm{km} / \mathrm{h}$. At 11:45am a cargo plane has a position vectors $(-60 \mathrm{i}+355 \mathrm{j}) \mathrm{km}$ and is moving with velocity vectors $(400 i+300 j) k m / h$. Assuming velocities do not change
(a) Show that the planes will crash
(b) Find the time of the crash. [12.06pm]
(c) Find the position vector of the crash [$(80 i+460 j) k m]$
5. At 2 pm the position vectors, r and velocity vectors, V of three ships are as follows
$r_{A}=(5 i+j) k m \quad V_{A}=(9 i+18 j) \mathrm{km} / \mathrm{h}$
$r_{B}=(12 i+5 j) k m \quad V_{A}=(-12 i+6 j) \mathrm{km} / \mathrm{h}$
$r_{C}=(13 i-3 j) k m \quad V_{A}=(9 i+12 j) k m / h$
Assuming velocities do not change
(a) Show that Ship A and B will collide and fins when and where collision occur. [2.20pm, $(8 i+7 j) \mathrm{km}$]
(b) Find the position vector of C when A and B collide and find how far C is from the point of collision. [(16i + j)km, 10km]
(c) When the collision occurs, C immediately changes its course but not its speed and streams directly to the scene. When does C arrive[3.00 pm]
6. At 12 noon the position vectors, r and velocity vectors, V of three ships A, B and C are as follows
$r_{A}=(10.5 i+6 j) k m \quad V_{A}=(9 i+18 j) \mathrm{km} / \mathrm{h}$
$r_{B}=(7 i+20 j) k m \quad V_{A}=(12 i+6 j) \mathrm{km} / \mathrm{h}$
$r_{C}=(10 i+15 j) k m \quad V_{A}=(6 i+12 j) k m / h$
Assuming velocities do not change
(a) Show that Ship A and B will collide and fins when and where collision occur. [1:10pm, $(21 \mathrm{i}+27 \mathrm{j}) \mathrm{km}$]
(b) When the collision occurs, C immediately changes its course but not its speed and streams directly to the scene. When does C arrive[1:300pm]
7. In gulf water, a battleship streaming at $16 \mathrm{~km} / \mathrm{h}$ is 5 km southwest of a submarine. Find the course which the submarine should set in order to intercept the battle ship, if its speed is $12 \mathrm{~km} / \mathrm{h}$. [$\mathrm{N} 15^{\circ} \mathrm{W}$]
8. A boy hits a ball at $15 \mathrm{~m} / \mathrm{s}$ in a direction $\mathrm{S} 80^{\circ} \mathrm{W}$. A girl 45 m and $\mathrm{S} 65^{\circ} \mathrm{W}$ from the boy run at $6 \mathrm{~m} / \mathrm{s}$ to intercept the ball. Find in what direction the girl must rum to intercept the ball as quickly as possible and how long does it take her. [$\mathrm{N} 24.7^{\circ} \mathrm{E}, 2.35$ s]
9. A helicopter sets off from its bas and flies at $50 \mathrm{~m} / \mathrm{s}$ to intercept a ship which, when the helicopter sets off, is at a distance of 5 km on a bearing 335° from the base. The ship is travelling at $10 \mathrm{~m} / \mathrm{s}$ on a bearing 095°. Find the course that the helicopter pilot should set if he is to intercept the ship as quickly as possible and the time interval between the helicopter taking off and its reaching the ship. [$\mathrm{N} 15^{\circ} \mathrm{W}, 92.2 \mathrm{~s}$]
10. A life boat sets out a harbour at 9:10pm to go for assistance of a yatch which is, at the time, 5 km due north of the harbour and drifting due west at $8 \mathrm{~km} / \mathrm{h}$. If the life boat travels at $20 \mathrm{~km} / \mathrm{h}$ find:
(a) Course the life boat should set so as to reach the yatch as quickly as possible [S23.6 ${ }^{\circ} \mathrm{W}$]
(b) Time when the boat arrives [9:27pm]
11. A coast guard vessel wishes to intercept a yatch suspected of smuggling. At 1am the yatch is 10 km due east of the coast guard vessel and travelling due north at $15 \mathrm{~km} / \mathrm{h}$. If the coast guard vessel travels at $20 \mathrm{~km} / \mathrm{h}$,
(a) In which direction should it steer in order to intercept the yatch? [N41.4 ${ }^{0} \mathrm{E}$]
(b) When would this interception occur. [1:45am]
12. The driver of a speed boat travelling at $75 \mathrm{~km} / \mathrm{h}$ wishes to intercept a yatch travelling at $20 \mathrm{~km} / \mathrm{h}$ in a direction $\mathrm{N} 40^{\circ} \mathrm{E}$. Initially the speed boat is 10 km from the yatch on a bearing $\mathrm{S} 30^{\circ} \mathrm{E}$. Find
(a) Course the speed boat should set so as to reach the yatch as quickly as possible. [N15.5 ${ }^{\circ} \mathrm{W}$]
(b) Time when the interception occurs[9minutes and 7 seconds]
13. A jet fighter travelling at $30 \mathrm{~km} / \mathrm{h}$ wishes to intercept a plane travelling at $20 \mathrm{~km} / \mathrm{h}$ in a course of 200°. Initially the plane is 40 km away on a bearing of 11° from the jet fighter. Find
(a) Course the jet fighter should set so as to reach the plane as quickly as possible. [$\mathrm{S} 5^{\circ} \mathrm{E}$]
(b) Time taken for interception to occur. [48minutes and 24 seconds]
14. A batman hits a ball at $15 \mathrm{~m} / \mathrm{s}$ in a direction $\mathrm{S} 80^{\circ} \mathrm{W}$. A fielder, 45 m and $\mathrm{S} 65^{\circ} \mathrm{W}$ from the batsman, runs at $6 \mathrm{~m} / \mathrm{s}$ to intercept the ball. Assuming the velocities remain unchanged,
(a) Find what direction the fielder must take to intercept the ball as quickly as possible. [$\mathrm{N} 24.7^{\circ} \mathrm{E}$]
(b) How long did it take him. [2.4s \}

Thank you
Dr. Bbosa Science

