

Sponsored by The Science Foundation College Uganda East Africa Senior one to sinior six +256 778 633 682, 753 802709 Based On, best for science

Equations involving indices, logarithms and others

Equations involving indices

This involves expressing the values raised to the powers into simplest form and thereafter making appropriate substitutions.

Example 1

Solve the following equations

- (a) $3^{2x+1} 3^{x+1} 3^x + 1 = 0$
- (b) $2^{2x+1} 2^{x+1} + 1 = 2^x$
- (c) $3(3^{2x}) + 2(3^x) 1 = 0$

Solution

(a)
$$3^{2x+1} - 3^{x+1} - 3^x + 1 = 0$$

 $3^{2x} \cdot 3^1 - 3^x \cdot 3^1 - 3^x + 1 = 0$
Let $p = 3^x$
 $3p^2 \cdot 4p + 1 = 0$
 $(3p - 1)(p - 1) = 0$
 $p = \frac{1}{3}$ or $p = 1$
 $\therefore 3^x = \frac{1}{3} = 3^{-1}; x = -1$
 $\therefore 3^x = 1 = 3^0; x = 0$

(b)
$$2^{2x+1} - 2^{x+1} + 1 = 2^{x}$$

 $2(2^{x})^{2} - 2(2^{x}) + 1 = 2^{x}$
Let $2^{x} = q$
 $2q^{2} - 2q + 1 = q$
 $2q^{2} - 3q + 1 = 0$
 $(2q - 1)(q - 1) = 0$
 $q = \frac{1}{2} \text{ or } q = 1$
 $\therefore 2^{x} = \frac{1}{2} = 2^{-1}; x = -1$
 $\therefore 2^{x} = 1 = 2^{0}; x = 0$
Hence $x = 0$ or $x = -1$
(c) $3(3^{2x}) + 2(3^{x}) - 1 = 0$

 $3(3^{x})^{2} + 2(3^{x}) - 1 = 0$ Let p = 3^x $3p^{2} + 2p - 1 = 0$ (3p - 1)(p + 1) = 0p = $\frac{1}{3}$ or p = -1 $\therefore 3^{x} = 3^{-1}$ or x = -1 $3^{x} = -1$ (has no root) Hence x = -1

Example 2

(a) Solve the simultaneous equations

$$3^{x} = 2^{3y+1}; \ 4^{x-1} = 12^{2y+1}$$

Given $\frac{\log 3}{\log 2} = \frac{8}{5}$

Solution

 $3^x = 2^{3y+1}$ (i)

 $4^{x-1} = 12^{2y+1}$ (ii)

Introducing log to both sides of equation (i) $x \log 3 = 3y + 1 \log 2$ $\frac{\log 3}{\log 2} = \frac{3y+1}{x} = \frac{8}{5}$ 8x - 15y = 5(iii) From eqn. (ii) $4^{x-1} = 12^{2y+1}$ $2^{2(x-1)} = (3^1 \cdot 2^2)^{2y+1}$ $2^{2(x-1)} = 3^{2y+1} \cdot 2^{2(2y+1)}$ $3^{2y+1} = 2^{2x-4y-4}$ $\frac{\log 3}{\log 2} = \frac{2x-4y-4}{2y+1} = \frac{8}{5}$ 10x - 36y = 28 5x - 18y = 14(iv) Seqn. (iii) - 8eqn (iv)

digitalteachers.co.ug

1

69y = -87 $y = \frac{-29}{23}$ substituting for y in equation (iii) $8x = 5 + 15\left(\frac{-29}{23}\right)$ $x = \frac{320}{23 \times 8} = \frac{-40}{23}$ $\therefore x = \frac{-40}{23} \text{ and } y = \frac{-29}{23}$ (b) Find the value of x to 2 decimal places if $2^{3x+1} = 3^{x+2}$ Solution Introducing log $(3x + 1)\log 2 = (x + 2)\log 3$ x(3Log2 - log3) = 2log3 - log2 $x = \frac{2\log_3 - \log_2}{(3\log_2 - \log_3)} = 1.53$ (c) Evaluate $3^{2x+1} - 26(3^x) = 9$ Solution $3^{2x+1} - 26(3^x) = 9$ $3^{2x+1} - 26(3^x) = 9$ $3^1 \cdot 3^{2x} - 26(3^x) = 9$ $3^1 \cdot (3^x)^2 - 26(3^x) = 9$ Let $q = 3^x$ $3q^2 - 26q - 9 = 0$ (q-9)(3q+1) = 0q = 9 0r q = $-\frac{1}{3}$ $\therefore 3^x = 9 = 3^2; x = 2$ $\therefore 3^x = -\frac{1}{3}$ (has no roots) Hence x = 2

Logarithmic equations

It convenient to convert logarithms to the same base before the calculations

Example 3

Solve the equations

(a)
$$\log_x 5 + 4\log_5 x = 4$$

Expressing terms on LHS to $\log_5 \frac{\log_5 5}{\log_5 x} + 4\log_5 x = 4$
 $\frac{1}{\log_5 x} + 4\log_5 x = 4$
Let $\log_5 x = y$
 $\frac{1}{y} + 4y = 4$
 $4y^2 - 4y + 1 = 0$
 $(2y - 1)(2y - 1) = 0$

$$2y = 1$$

$$y = \frac{1}{2}$$

$$\Rightarrow \log_5 x = \frac{1}{2}$$

$$x = 5^{\frac{1}{2}} = \sqrt{5}$$

- (b) Show that: $2\log 4 + \frac{1}{2}\log 25 - \log 20 = 2\log 2.$ $2\log 4 + \frac{1}{2}\log 25 - \log 20$ $2\log 2^2 + \frac{1}{2}\log 5^2 - (\log 4 + \log 5)$ $2\log 2^2 + \frac{1}{2}\log 5^2 - \log 4 - \log 5$ $4\log 2 + \log 5 - 2\log 2 - \log 5$ $2\log 2$ (c) Express $\log - (ry)$ in terms of
- (c) Express log₂₅(xy)in terms of log₅ x and log₅ y. Hence or otherwise solve the simultaneous equations:

$$log_{25}(xy) = 4\frac{1}{2}$$
$$\frac{log_5 x}{log_5 y} = -10$$
Solution

$$\log_{25} xy = \frac{\log_5 xy}{\log_5 25} = \frac{\log_5 x + \log_5 y}{\log_5 5^2}$$
$$= \frac{\log_5 x + \log_5 y}{2}$$
$$\therefore \log_{25} xy = \frac{\log_5 x + \log_5 y}{2}$$

Hence solving

$$log_{25} xy = 4\frac{1}{2}$$

$$\frac{log_5 x + log_5 y}{2} = \frac{9}{2}$$

$$log_5 x + log_5 y = 9$$
(i)

digitalteachers.co.ug

Equations with repeated terms (s)

Whenever a term or terms appear repeated in an equation make use of appropriate substitution.

Example 4

(a) Solve the simultaneous equations

$$2^{x} + 4^{y} = 12$$

 $3(2^{x}) - 2(2^{y})=16$
Solution
 $2^{x} + 4^{y} = 12$
 $2^{x} = 12 - 4^{y}$(i)
 $3(2^{x}) - 2(2^{y})=16$ (ii)
Substituting eqn.(i) into eqn. (ii)
 $3(12 - 4^{y}) - 2(2^{y})=16$
 $36 - 3(2^{2y}) - 2(2^{y}) = 16$
 $5(2^{2y}) = 20$
 $(2^{2y}) = 4 = 2^{2}$
 $2y = 2; \gg y = 1$
Substituting y into eqn. (i)
 $2^{x} = 12 - 4^{1} = 8 = 2^{3}$
 $x = 3$
Hence x = 3 and y = 1

(b) Solve the equations (i) $9x^{\frac{2}{3}} + 5x^{-\frac{2}{3}} = 37$

Solution

$$9x^{\frac{2}{3}} + \frac{4}{x^{\frac{2}{3}}} = 37$$

Let $q = x^{\frac{2}{3}}$
 $9q + \frac{5}{q} = 37$
 $9q^2 - 37q + 4 = 0$
 $(9q - 1)(q - 4) = 0$
 $q = \frac{1}{9}$ or $q = 4$
When $q = \frac{1}{9}$;
 $x^{\frac{2}{3}} = \frac{1}{9} = \frac{1}{3^2} = 3^{-2}$
 $x = (3^{-2})^{\frac{3}{2}} = \frac{1}{27}$

When q = 4

$$x^{\frac{2}{3}} = 4 = 2^{2}$$

$$x = (2^{2})^{\frac{3}{2}} = 2^{3} = 8$$
Hence $x = \frac{1}{27}$ and $x = 8$
(ii) $(x^{2} - 2x)^{2} + 24 = 11(x^{2} - 2x)$
Solution
Let $t = x^{2} - 2x$
 $t^{2} - 11t + 24 = 0$
 $(t - 8)(t - 3) = 0$
 $t = 8 \text{ or } t = 3$
When $t = 8$
 $x^{2} - 2x = 8$
 $x^{2} - 2x - 8 = 0$
 $(x - 4)(x + 2) = 0$
 $x = 4 \text{ or } x = -2$
When $t = 3$
 $x^{2} - 2x = 3$
 $x^{2} - 2x - 3 = 0$
 $(x - 3)(x + 1) = 0$
 $x = 3 \text{ or } x = -1$
hence $x = -2$, -1, 3 or 4

Symmetrical equations

These are equations whose coefficients are symmetrical

Example 5

(a) (i) If
$$x + \frac{1}{x} = q$$
, $x^2 + \frac{1}{x^2}$, $x^3 + \frac{1}{x^3}$ and
 $x^4 + \frac{1}{x^4}$ in terms of q
Solution
 $x + \frac{1}{x} = q$
Squaring both sides
 $\left(x + \frac{1}{x}\right)^2 = q^2$
 $x^2 + \frac{1}{x^2} + 2 = q^2$
 $x^2 + \frac{1}{x^2} = q^2 - 2$
 $x + \frac{1}{x} = q$
Cubing both sides

$$\left(x + \frac{1}{x}\right)^3 = q^3$$

$$x^{3} + \frac{1}{x^{3}} + 3x^{2}\left(\frac{1}{x}\right) + 3x\left(\frac{1}{x}\right) = q^{3}$$

$$x^{3} + \frac{1}{x^{3}} + 3\left(x + \frac{1}{x}\right) = q^{3}$$

$$x^{3} + \frac{1}{x^{3}} = q^{3} - 3q = q(q^{2} - 3)$$

$$x + \frac{1}{x} = q$$
Pairing both sides to power four

Raising both sides to power four

$$\left(x + \frac{1}{x}\right)^4 = q^4 x^4 + \frac{1}{x^4} + 4x^3 \left(\frac{1}{x}\right) + 6x^2 \left(\frac{1}{x}\right)^2 + 4x \left(\frac{1}{x}\right)^3 = q^4 x^4 + \frac{1}{x^4} + 4 \left(x^2 - \frac{1}{x^2}\right) + 6 = q^4 x^4 + \frac{1}{x^4} = q^4 - 4(q^2 - 2) - 6 x^4 + \frac{1}{x^4} = q^4 - 4q^2 + 2$$

(a)(ii) Solve the equation

$$2x^4 - 9x^3 + 14x^2 - 9x + 2 = 0$$

Solution

Dividing through by x^2

$$2x^{2} - 9x + 14 - \frac{9}{x} + \frac{2}{x^{2}} = 0$$

$$2\left(x^{2} + \frac{1}{x^{2}}\right) - 9\left(x + \frac{1}{x}\right) + 14 = 0$$
Let $q = x + \frac{1}{x}$

$$2(q^{2} - 2) - 9q + 14 = 0$$

$$2q^{2} - 9q + 10 = 0$$

$$(q - 2)(2q - 5) = 0$$

$$q = 2 \text{ or } q = \frac{5}{2}$$
When $q = 2$

$$x + \frac{1}{x} = 2$$

$$x^{2} - 2x + 1 = 0$$

$$(x - 1)(x - 1) = 0$$

$$x = 1$$
When $q = \frac{5}{2}$

$$x + \frac{1}{x} = \frac{5}{2}$$

$$2x^{2} - 5x + 2 = 0$$

(2x - 1)(x - 2) = 0
x = $\frac{1}{2}$ or x = 2
Hence [x:x = $\frac{1}{2}$, 1, or 2]

(b) By using the substitution $q = x + \frac{1}{x}$ solve the equation $4x^4 + 17x^3 + 8x^2 + 17x + 4 = 0$ $4x^2 + 17x + 8 + \frac{17}{x} + \frac{4}{x^2} = 0$ $4\left(x^2 + \frac{1}{x^2}\right) + 17\left(x + \frac{1}{x}\right) + 8 = 0$ $4(q^2 - 2) 17q + 8 = 0$ $4q^2 + 17q = 0$ q(4q + 17) = 0 $q = 0 \text{ or } q = -\frac{17}{4}$ When q = 0 $x + \frac{1}{x} = 0$ $x^2 + 1 = 0$ (no real roots) When $q = \frac{-17}{4}$

Equations with ratios

Hence $x = \frac{-1}{4}$ or x = -4

 $x + \frac{1}{x} = \frac{-17}{4}$

 $4x^2 + 17x + 4 = 0$

(4x + 1)(x + 4) = 0

 $x = \frac{-1}{4}$ or x = -4

The basis of these types of equations it the ration theorem

k

Given
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} =$$

Then $\frac{a+c+e}{b+d+f} = k$

This can

Then
$$\frac{a}{b} = k \Rightarrow a = bk$$

 $\frac{c}{d} = k \Rightarrow c = dk$
 $\frac{e}{f} = k \Rightarrow e = fk$
LHS: $\frac{bk+dk+fk}{b+d+f} = \frac{(b+d+f)k}{b+d+f} = k$

Example 6

Solve the equations

(a) $\frac{x+4z}{4} = \frac{y+z}{6} = \frac{3x+y}{5}; 4x + 2y + 5z = 30$ Solution Let $\frac{x+4z}{4} = \frac{y+z}{6} = \frac{3x+y}{5} = k$ Then $\frac{x+4z+y+z+3x+y}{4+6+5} = k$ $\frac{4x+2y+5z}{15} = \frac{30}{15} = 2 = k$ k = 2 $\therefore \frac{x+4z}{4} = 2; => x + 4z = 8$ (i) $\frac{y+z}{6} = 2; => y + z = 12$ (ii) $\frac{3x+y}{5} = 2; => 3x + y = 10$ (iii) From eqn. (i): x = 8 - 4zSubstituting for x into eqn. (iii) 3(8 - 4z) + y = 10 y - 12z = -14(iv) 13z = 26; z = 2Substituting for z into eqn. (i) x = 8 - 4x = 2 = 0substituting for x into eqn. (iii) y = 10 - 3x = 10 - 0 = 10Hence (x, y, z) = (0, 10, 2)

(b)
$$\frac{x+2y}{-3} = \frac{y+2z}{4} = \frac{2x+z}{5}$$
; $x + y + z = 2$

Solution

Let $\frac{x+2y}{-3} = \frac{y+2z}{4} = \frac{2x+z}{5} = k$ Then $\frac{3x+3y+3z}{6} = \frac{3(x+y+z)}{6} = \frac{3x2}{6} = 1 = k$ k = 1 $\therefore \frac{x+2y}{-3} = 1; x + 2y = -3.....(i)$ $\frac{y+2z}{4} = 1; y + 2z = 4....(ii)$ $\frac{2x+z}{5} = 1; 2x + z = 5....(iii)$ From eqn. (i) x = -3 - 2ySubstituting x into eqn. (iii) 2(-3 - 2y) + z = 5 4y - z = -11.....(iv) From eqn. (ii): y = 4 - 2zSubstituting for y in eqn. (iv) 4(4 - 2z) - z = -11 9z = 27; z = 3Substituting for z into eqn. (ii) $Y = 4 - 2 \times 3 = -2$ Substituting for y into eqn. (i) x = -3 - 2(-2) = 1Hence (x, y, z) = (1, -2, 3)

(c) $2x = 3y = -4z; x^2 - 9y^2 - 4z = 0$ Solution Let 2x = 3y = -4z = k, constant $x = \frac{k}{2}; y = \frac{k}{3}; z = \frac{k}{-4}$ Substituting for x, y, z in $x^2 - 9y^2 - 4z = 0$ $\left(\frac{k}{2}\right)^2 - 9\left(\frac{k}{3}\right)^2 - 4\left(\frac{k}{-4}\right) = 0$ $3k^2 - 4k - 32 = 0$ (3k + 8)(k - 4) = 0 $k = -\frac{8}{3}$ or k = 4When $k = -\frac{8}{3}; x = 2, y = \frac{4}{3}; z = -1$ When $k = 4; x = -\frac{4}{3}; y = -\frac{8}{9}; z = \frac{2}{3}$ $\therefore (x, y, z) = (2, \frac{4}{3}; -1)$ or $(-\frac{4}{3}; -\frac{8}{9}; \frac{2}{3})$

Equations with repeated roots

If a function y = f(x) has a repeated root, then it is also a root of its derivative i.e. it is a root of $\frac{dy}{dx}f(x)$

In order to find other root, make use of the sum and product of roots

Note

digitalteachers.co.ug

Sum of roots = coefficient of the second term of the equation

Product of the roots= last term with the appropriate signs.

Example 7

- (a) Given that the following equations have repeated roots, solve them (i) $X^3 - x^2 - 8x + 12 = 0$ A repeated root is also a root of $\frac{d}{dx}(x^3 - x^2 - 8x + 12) = 0$ $3x^2 - 2x - 8 = 0$ (x-2)(3x+4) = 0 $x = 2 \text{ or } x = -\frac{4}{3}$ Testing for repeated root Sum of roots = 1Products of root = -12If x = 2 is the repeated root, then Sum = 2 + 2 + n = 1n = -3 where n is the third root Product of roots = $2 \times 2 \times -3 = -12$ which is correct If $x = -\frac{4}{3}$ is the repeated root, then $Sum = -\frac{4}{3} - \frac{4}{3} + n = 1$ $n = \frac{11}{2}$ where n is the third root Product of roots = $-\frac{4}{3}x - \frac{4}{3}x\frac{11}{3} \neq -12$ which is not correct Hence the roots are 2, 2, -3
- (ii) $2x^3 11x^2 + 12x + 9 = 0$

A repeated root is also a root of

$$\frac{d}{dx}(2x^3 - 11x^2 + 12x + 9) = 0$$

$$6x^2 - 22x + 12 = 0$$

$$3x^2 - 11x + 6 = 0$$

$$(x - 3)(3x - 2) = 0$$

$$x = 3 \text{ or } x = \frac{2}{3}$$

Testing for repeated root;

$$2x^{3} - 11x^{2} + 12x + 9 = 0$$
$$x^{3} - \frac{11}{2}x^{2} + 6x + \frac{9}{2} = 0$$

Sum of roots = $\frac{11}{2}$ Product of roots = $-\frac{9}{2}$ If x = 3 is the repeated root, then Sum = 3 + 3 + n = $\frac{11}{2}$ n = $-\frac{1}{2}$ where n is the third root Product of roots = 3 x 3 x $-\frac{1}{2} = -\frac{9}{2}$ which is correct Hence the roots are 3, 3, $-\frac{1}{2}$

(b) Find the value of k for which the equation $\frac{x^2-x+1}{x-1}$ = k has repeated roots. What are the repeated roots? Solution $\frac{x^{2}-x+1}{x^{-1}} = k$ $x^{2} - x + 1 = kx - k$ $x^{2} - (1 + k)x + (1 + k) = 0$ Since a quadratic equation has only two roots, therefore the roots will be equal if they are repeated The condition for equal roots: $b^2 = 4ac$ $\Rightarrow (1+k)^2 = 4(1+k)$ $k^2 + 2x + 1 = 4 + 4k$ $k^2 - 2k - 3 = 0$ (k + 1)(k - 3) = 0k = -1 and k = 3 If k = -1; $x^2 - (0)x + 0 = 0$ x = 0 If k = 3: $x^2 - 4x + 4 = 0$ (x-2)(x-2) = 0x = 2

Hence repeated roots are 0 and 2

Example 8

Show that if the equations

 $x^{2} + px + q = 0$ and $x^{2} + mx + k = 0$ have a repeated root, then

$$(q-k)^2 = (m-p)(pk-mq)$$

Let the common root be x_1

The two equations become

$$x_1^2 + px_1 + q = 0$$
(i)
 $x_1^2 + mx_1 + k = 0$(ii)
Eqn. (i) – eqn. (ii)

 $(p-m)x_1 + (q-k) = 0$

$$\mathbf{x}_1 = -\left(\frac{q-k}{p-m}\right)$$

Substituting x¹ into equation (i)

$$\left(\frac{q-k}{p-m}\right)^2 - p\left(\frac{q-k}{p-m}\right) + q = 0$$

Thus, $(q-k)^2 = (m-p)(pk-mq)$

Equations with square roots

- (i) In this context, \sqrt{x} means the positive square root of x.
- (ii) The solution should be checked to discard off the unwanted root might emerge due to squaring.

Illustration

Suppose the root of the equation is x = 5

By squaring $x^2 = 52$ i.e. $x^2 - 5^2 = 0$

(x - 5)(x + 5) = 0

Now solution is x = -5 and x = 5 where -5 is unwanted.

Example 9

Solve the equations

(a)
$$\sqrt{(x-5)} + \sqrt{x} = 5$$

Solution

$$\left(\sqrt{(x-5)}\right)^2 = \left(5 - \sqrt{x}\right)^2$$
$$x - 5 = 25 - 10\sqrt{x} + x$$
$$=> 10\sqrt{x} = 30$$
$$\sqrt{x} = 3; x = 9 \text{ (upon squaring)}$$

(c)
$$\sqrt{(1-20x)} - 2\sqrt{x+1} = 3$$

Solution
 $(\sqrt{1-20x})^2 = (3+2\sqrt{x+1})^2$
 $1-20x = 9+12\sqrt{x+1}+4(x+1)$
 $24x+12 = -12\sqrt{x+1}$
 $2x+1 = -\sqrt{x+1}$
Squaring both sides
 $4x^2 + 4x + 1 = x + 1$
 $4x^2 + 3x = 0$
 $x(4x+3) = 0$
 $x = 0 \text{ or } x = -\frac{3}{4}$

When $x = 0; \sqrt{1} - 2\sqrt{1} \neq 3; \therefore x = 0$ is not a root

When
$$x = -\frac{3}{4}$$
; $\sqrt{16} - 2\sqrt{\frac{1}{4}} = 3$ which is consistent. $\therefore x = -\frac{3}{4}$

Other equations

Example 10

Given that $x^2 + 2xy + y^2 - 8x - 8y + 15 = 0$, find x in terms of y

Hence or otherwise solve the pair of equations:

$$x^{2} + 2xy + y^{2} - 8x - 8y + 15 = 0$$
 and $x^{2} + y^{2} = 17$

Solution

$$x^{2} + 2xy + y^{2} - 8x - 8y + 15 = 0 \dots (i)$$

(x + y)² - 8(x + y) + 15 = 0
Let q = (x + y)
q² - 8q + 15 = 0
(q - 5)(q - 3) = 0
q = 5 and q = 3
When q = 5; x = 5 - y \dots (ii)
When q = 3; x = 3 - y \dots (iii)

Now $x^2 + y^2 = 17$ (iv) Eqn. (ii) into eqn. (iv) $(5 - y)^2 + y^2 = 17$ $2y^2 - 10y + 8 = 0$ (y - 4)(y - 1) = 0; => y = 4 or y = 1When y = 4: x = 5 - 4 = 1When y = 1: x = 5 - 1 = 4Eqn. (iii) into eqn. (iv) $(3 - y)^2 + y^2 = 17$ $2y^2 - 6y - 8 = 0$ (y - 4)(y + 1) = 0; => y = 4, or y = -1When y = 4: x = 3 - 4 = -1When y = -1: x = 3 + 1 = 4 $\therefore (x, y) = (1, 4), (4, 1), (-1, 4), (4, -1)$

Example 11

Solve the simultaneous equations

$$\frac{1}{x} - \frac{1}{y} = \frac{1}{6}$$
, x(5 - x) = 2y

Solution

From $\frac{1}{x} - \frac{1}{y} = \frac{1}{6}$ $\frac{1}{y} = \frac{1}{x} - \frac{1}{6} = \frac{6-x}{6x}$ $y = \frac{6x}{6-x}$(i) x(5-x) = 2y.....(ii) Substituting eqn. (i) into eqn. (ii) $x(5-x) = \frac{12x}{6-x}$ x(5-x)(6-x) - 12x = 0 x[(5-x)(6-x) - 12] = 0 $x(x^2 - 11x + 18) = 0$ x(x - 2)(x - 9) = 0; x = 0, x = 2, x = 9Substituting for x in eqn. (i) digitalteachers.co.ug

When x = 0; y = 0When x = 2; y = 3When x = 9; y = -18 \therefore (x, y) = (0, 0), (2, 3) or (9, -18) Example 12 Given that the equations $y^2 + py + q = 0$ and $y^2 + my + k = 0$ have common root. Show $(q - k)^{2} = (m - p)(pk - mq)$ Solution Let α be the common root For $v^2 + pv + q = 0$ $\alpha^2 + p\alpha + q = 0$ (i) For $y^2 + my + k = 0$ $\alpha^{2} + m\alpha + k = 0$ (ii) Eqn. (i) – eqn. (ii) (p-m)k + (q-k) = 0 $\alpha = \frac{q-k}{m-n}$ Substituting α into eqn. (i) $\left(\frac{q-k}{m-n}\right)^2 + \left(\frac{q-k}{m-n}\right)p + q = 0$ $\frac{(q-k)^2}{(m-n)^2} = -q - \left(\frac{q-k}{m-p}\right)p$ $(q-k)^2 = -q(m-p)^2 - (q-k)(m-p)p$ $(q-k)^2 = (m-p)[-q(m-p) - p(q-k)]$ $(q-k)^{2} = (m-p)[-qm + qp - pq + pk]$ $(q-k)^2 = (m-p)(pk-qm)$ as required

Revision questions

- 1. Solve the equations (a) $\log_x 8 - \log_x 2 = 16[x = 2]$
- (b) $\log_2 x + \log_4 x + \log_{16} x = \frac{21}{16}$ $\left[x = 8^{\frac{1}{4}} = 1.6818 \right]$
- 2. (a) Given that $\log_2 x + 2 \log_4 y = 4$, show that xy = 16. Hence solve the simultaneous equations $\log_{10}(x + y) = 1$ $\log_2 x + 2 \log_4 y = 4$ [(x, y) = (8, 2) or (2, 8)]
- (b) Show that $\log_a b = \frac{1}{\log_b a}$. Hence solve the simultaneous equations $\log_a b + 2\log_b a = 3$ $\log_9 a + 2\log_9 b = 3$ $\therefore (x, y) = (27, 27)or (9, 81)$
- 3. Show that if the expressions
 (i) x² + px + q and 3x² + q have a common root, then 3p² + 4q = 0
 - (ii) $x^2 + bx + c$ and $x^2 + px + q$ have a common root, then $(z - z)^2 = (b - z)(cz - bz)$
- $(c-q)^2 = (b-p)(cp-bq)$ 4. Solve the simultaneous equations
 - (a) 2x+ y = 1

$$5x^{2} + 2xy = y + 2x - 1[(x, y)=(0, 1), (-2, 5)]$$

- (b) x + 2y = 1 $3x^2 + 5xy - 2y^2 = 10 [(x, y) = (3, -1)]$
- 5. Solve the simultaneous equation $2^{x}+4^{y}=12$ $3(2)^{x}-2(2)^{2y}=16 [x=2, y=1]$ Hence show that $(4)^{x}+4(3)^{2y}=100$
- 6. Solve $4^x 2^{x+1} 15 = 0$ [x=2.322]
- Show that if the expressions:
 x² + bx + c and x² + px + q have a common factor. Then (c -q)² = (b p)(cp -bq)
- 8. Solve $2\sqrt{(x-1)} \sqrt{(x+4)} = 1$ [x = 5 or x = $\frac{13}{9}$]
- 9. Solve the simultaneous equations x + y + z = 2 $\frac{x+2y}{-3} = \frac{y+2z}{4} = \frac{2x+z}{5} [x = 1, y = -2, z = 3]$
- 10. Solve the simultaneous equations $x^{2} - 10x + y^{2} = 25$ y - x = 1 [(x, y) =(6, 7) or (-2, -1)
- 11. Solve for x in the equation $\log_4(6 - x) = \log_2 x [x = 2]$

Thank you

Dr. Bbosa Science