Sponsored by

Equations involving indices, logarithms and others

Equations involving indices

This involves expressing the values raised to the powers into simplest form and thereafter making appropriate substitutions.

Example 1

Solve the following equations
(a) $3^{2 x+1}-3^{x+1}-3^{x}+1=0$
(b) $2^{2 x+1}-2^{x+1}+1=2^{x}$
(c) $3\left(3^{2 x}\right)+2\left(3^{x}\right)-1=0$

Solution
(a) $3^{2 x+1}-3^{x+1}-3^{x}+1=0$
$3^{2 x} \cdot 3^{1}-3^{x} \cdot 3^{1}-3^{x}+1=0$
Let $\mathrm{p}=3^{x}$
$3 p^{2}-4 p+1=0$
$(3 p-1)(p-1)=0$
$p=\frac{1}{3}$ or $p=1$
$\therefore 3^{x}=\frac{1}{3}=3^{-1} ; x=-1$
$\therefore 3^{x}=1=3^{0} ; x=0$
(b) $2^{2 x+1}-2^{x+1}+1=2^{x}$
$2\left(2^{x}\right)^{2}-2\left(2^{x}\right)+1=2^{x}$
Let $2^{x}=q$
$2 q^{2}-2 q+1=q$
$2 q^{2}-3 q+1=0$
$(2 q-1)(q-1)=0$
$q=\frac{1}{2}$ or $q=1$
$\therefore 2^{x}=\frac{1}{2}=2^{-1} ; x=-1$
$\therefore 2^{x}=1=2^{0} ; x=0$
Hence $x=0$ or $x=-1$
(c) $3\left(3^{2 x}\right)+2\left(3^{x}\right)-1=0$
$3\left(3^{x}\right)^{2}+2\left(3^{x}\right)-1=0$
Let $\mathrm{p}=3^{x}$
$3 p^{2}+2 p-1=0$
$(3 p-1)(p+1)=0$
$p=\frac{1}{3}$ or $p=-1$
$\therefore 3^{x}=3^{-1}$ or $\mathrm{x}=-1$
$3^{x}=-1$ (has no root)
Hence $x=-1$

Example 2

(a) Solve the simultaneous equations
$3^{x}=2^{3 y+1} ; 4^{x-1}=12^{2 y+1}$
Given $\frac{\log 3}{\log 2}=\frac{8}{5}$
Solution
$3^{x}=2^{3 y+1}$ \qquad
$4^{x-1}=12^{2 y+1}$
Introducing log to both sides of equation (i)
$x \log 3=3 y+1 \log 2$
$\frac{\log 3}{\log 2}=\frac{3 y+1}{x}=\frac{8}{5}$
$8 x-15 y=5$
From eqn. (ii)
$4^{x-1}=12^{2 y+1}$
$2^{2(x-1)}=\left(3^{1} \cdot 2^{2}\right)^{2 y+1}$
$2^{2(x-1)}=3^{2 y+1} \cdot 2^{2(2 y+1)}$
$3^{2 y+1}=2^{2 x-4 y-4}$
$\frac{\log 3}{\log 2}=\frac{2 x-4 y-4}{2 y+1}=\frac{8}{5}$
$10 x-36 y=28$
$5 x-18 y=14$
5eqn. (iii) - 8eqn (iv)
$69 y=-87$
$y=\frac{-29}{23}$
substituting for y in equation (iii)
$8 x=5+15\left(\frac{-29}{23}\right)$
$x=\frac{320}{23 \times 8}=\frac{-40}{23}$
$\therefore \mathrm{x}=\frac{-40}{23}$ and $\mathrm{y}=\frac{-29}{23}$
(b) Find the value of x to 2 decimal places if $2^{3 x+1}=3^{x+2}$
Solution
Introducing log
$(3 x+1) \log 2=(x+2) \log 3$
$x(3 \log 2-\log 3)=2 \log 3-\log 2$
$x=\frac{2 \log 3-\log 2}{(3 \log 2-\log 3)}=1.53$
(c) Evaluate
$3^{2 x+1}-26\left(3^{x}\right)=9$
Solution
$3^{2 x+1}-26\left(3^{x}\right)=9$
$3^{2 x+1}-26\left(3^{x}\right)=9$
$3^{1} .3^{2 x}-26\left(3^{x}\right)=9$
$3^{1} \cdot\left(3^{x}\right)^{2}-26\left(3^{x}\right)=9$
Let $q=3^{x}$
$3 q^{2}-26 q-9=0$
$(q-9)(3 q+1)=0$
$q=90 r q=-\frac{1}{3}$
$\therefore 3^{x}=9=3^{2} ; x=2$
$\therefore 3^{x}=-\frac{1}{3}$ (has no roots)
Hence $x=2$

Logarithmic equations

It convenient to convert logarithms to the same base before the calculations

Example 3

Solve the equations
(a) $\log _{x} 5+4 \log _{5} x=4$

Expressing terms on LHS to $\log _{5}$.

$$
\begin{aligned}
& \frac{\log _{5} 5}{\log _{5} x}+4 \log _{5} x=4 \\
& \frac{1}{\log _{5} x}+4 \log _{5} x=4
\end{aligned}
$$

Let $\log _{5} x=y$
$\frac{1}{y}+4 y=4$
$4 y^{2}-4 y+1=0$
$(2 y-1)(2 y-1)=0$

$$
\begin{gathered}
2 \mathrm{y}=1 \\
\mathrm{y}=\frac{1}{2} \\
\Rightarrow \log _{5} x=\frac{1}{2} \\
x=5^{\frac{1}{2}}=\sqrt{5}
\end{gathered}
$$

(b) Show that:

$$
2 \log 4+\frac{1}{2} \log 25-\log 20=2 \log 2
$$

$$
2 \log 4+\frac{1}{2} \log 25-\log 20
$$

$$
2 \log 2^{2}+\frac{1}{2} \log 5^{2}-(\log 4+\log 5)
$$

$$
2 \log 2^{2}+\frac{1}{2} \log 5^{2}-\log 4-\log 5
$$

$$
4 \log 2+\log 5-2 \log 2-\log 5
$$

$$
2 \log 2
$$

(c) Express $\log _{25}(x y)$ in terms of $\log _{5} x$ and $\log _{5} y$. Hence or otherwise solve the simultaneous equations:
$\log _{25}(x y)=4 \frac{1}{2}$
$\frac{\log _{5} x}{\log _{5} y}=-10$
Solution

$$
\begin{aligned}
& \log _{25} x y=\frac{\log _{5} x y}{\log _{5} 25}=\frac{\log _{5} x+\log _{5} y}{\log _{5} 5^{2}} \\
&=\frac{\log _{5} x+\log _{5} y}{2} \\
& \therefore \log _{25} x y=\frac{\log _{5} x+\log _{5} y}{2}
\end{aligned}
$$

Hence solving
$\log _{25} x y=4 \frac{1}{2}$
$\frac{\log _{5} x+\log _{5} y}{2}=\frac{9}{2}$
$\log _{5} x+\log _{5} y=9$
$\frac{\log _{5} x}{\log _{5} y}=-10$
$\log _{5} x=-10 \log _{5} y$
Substituting eqn. (ii) into eqn. (i)
$-10 \log _{5} y+\log _{5} y=9$
$\log _{5} y=-1$
$y=5^{-1}=\frac{1}{5}$
Substituting $\log _{5} y$ into equation (ii)
$\log _{5} x=10$
$x=5^{10}$
$\therefore x=5^{10}$ and $\mathrm{y}=\frac{1}{5}$

Equations with repeated terms (s)

Whenever a term or terms appear repeated in an equation make use of appropriate substitution.

Example 4

(a) Solve the simultaneous equations
$2^{x}+4^{y}=12$
$3\left(2^{x}\right)-2\left(2^{y}\right)=16$
Solution
$2^{x}+4^{y}=12$
$2^{x}=12-4^{y}$ \qquad
$3\left(2^{x}\right)-2\left(2^{y}\right)=16$
Substituting eqn.(i) into eqn. (ii)
$3\left(12-4^{y}\right)-2\left(2^{y}\right)=16$
$36-3\left(2^{2 y}\right)-2\left(2^{y}\right)=16$
$5\left(2^{2 y}\right)=20$
$\left(2^{2 y}\right)=4=2^{2}$
$2 y=2 ;>y=1$
Substituting y into eqn. (i)
$2^{x}=12-4^{1}=8=2^{3}$
$x=3$
Hence $x=3$ and $y=1$
(b) Solve the equations
(i) $9 x^{\frac{2}{3}}+5 x^{-\frac{2}{3}}=37$

Solution
$9 x^{\frac{2}{3}}+\frac{4}{x^{\frac{2}{3}}}=37$
Let $\mathrm{q}=x^{\frac{2}{3}}$
$9 q+\frac{5}{q}=37$
$9 q^{2}-37 q+4=0$
$(9 q-1)(q-4)=0$
$q=\frac{1}{9}$ or $q=4$
When $\mathrm{q}=\frac{1}{9}$;
$x^{\frac{2}{3}}=\frac{1}{9}=\frac{1}{3^{2}}=3^{-2}$
$x=\left(3^{-2}\right)^{\frac{3}{2}}=\frac{1}{27}$

When $\mathrm{q}=4$
$x^{\frac{2}{3}}=4=2^{2}$
$x=\left(2^{2}\right)^{\frac{3}{2}}=2^{3}=8$
Hence $x=\frac{1}{27}$ and $x=8$
(ii) $\left(x^{2}-2 x\right)^{2}+24=11\left(x^{2}-2 x\right)$

Solution
Let $\mathrm{t}=x^{2}-2 x$
$t^{2}-11 t+24=0$
$(\mathrm{t}-8)(\mathrm{t}-3)=0$
$t=8$ or $t=3$
When $\mathrm{t}=8$
$x^{2}-2 x=8$
$x^{2}-2 x-8=0$
$(x-4)(x+2)=0$
$x=4$ or $x=-2$
When $\mathrm{t}=3$
$x^{2}-2 x=3$
$x^{2}-2 x-3=0$
$(x-3)(x+1)=0$
$x=3$ or $x=-1$
hence $x=-2,-1,3$ or 4

Symmetrical equations

These are equations whose coefficients are symmetrical

Example 5

(a) (i) If $x+\frac{1}{x}=q, x^{2}+\frac{1}{x^{2}}, x^{3}+\frac{1}{x^{3}}$ and $x^{4}+\frac{1}{x^{4}}$ in terms of q
Solution
$x+\frac{1}{x}=q$
Squaring both sides
$\left(x+\frac{1}{x}\right)^{2}=q^{2}$
$x^{2}+\frac{1}{x^{2}}+2=q^{2}$
$x^{2}+\frac{1}{x^{2}}=q^{2}-2$
$x+\frac{1}{x}=q$
Cubing both sides
$\left(x+\frac{1}{x}\right)^{3}=q^{3}$

$$
\begin{aligned}
& x^{3}+\frac{1}{x^{3}}+3 x^{2}\left(\frac{1}{x}\right)+3 x\left(\frac{1}{x}\right)=q^{3} \\
& x^{3}+\frac{1}{x^{3}}+3\left(x+\frac{1}{x}\right)=q^{3} \\
& x^{3}+\frac{1}{x^{3}}=q^{3}-3 q=q\left(q^{2}-3\right) \\
& x+\frac{1}{x}=q
\end{aligned}
$$

Raising both sides to power four
$\left(x+\frac{1}{x}\right)^{4}=q^{4}$
$x^{4}+\frac{1}{x^{4}}+4 x^{3}\left(\frac{1}{x}\right)+6 x^{2}\left(\frac{1}{x}\right)^{2}+4 x\left(\frac{1}{x}\right)^{3}$

$$
=q^{4}
$$

$x^{4}+\frac{1}{x^{4}}+4\left(x^{2}-\frac{1}{x^{2}}\right)+6=q^{4}$
$x^{4}+\frac{1}{x^{4}}=q^{4}-4\left(q^{2}-2\right)-6$
$x^{4}+\frac{1}{x^{4}}=q^{4}-4 q^{2}+2$
(a)(ii) Solve the equation
$2 x^{4}-9 x^{3}+14 x^{2}-9 x+2=0$
Solution
Dividing through by x^{2}
$2 x^{2}-9 x+14-\frac{9}{x}+\frac{2}{x^{2}}=0$
$2\left(x^{2}+\frac{1}{x^{2}}\right)-9\left(x+\frac{1}{x}\right)+14=0$
Let $\mathrm{q}=x+\frac{1}{x}$
$2\left(q^{2}-2\right)-9 q+14=0$
$2 q^{2}-9 q+10=0$
$(q-2)(2 q-5)=0$
$q=2$ or $q=\frac{5}{2}$
When $\mathrm{q}=2$
$x+\frac{1}{x}=2$
$x^{2}-2 x+1=0$
$(x-1)(x-1)=0$
$x=1$
When $\mathrm{q}=\frac{5}{2}$
$x+\frac{1}{x}=\frac{5}{2}$
$2 x^{2}-5 x+2=0$
$(2 x-1)(x-2)=0$
$x=\frac{1}{2}$ or $x=2$
Hence [$\mathrm{x}: \mathrm{x}=\frac{1}{2}, 1$, or 2]
(b) By using the substitution $\mathrm{q}=x+\frac{1}{x}$ solve the equation

$$
\begin{aligned}
& 4 x^{4}+17 x^{3}+8 x^{2}+17 x+4=0 \\
& 4 x^{2}+17 x+8+\frac{17}{x}+\frac{4}{x^{2}}=0 \\
& 4\left(x^{2}+\frac{1}{x^{2}}\right)+17\left(x+\frac{1}{x}\right)+8=0 \\
& 4\left(q^{2}-2\right) 17 q+8=0 \\
& 4 q^{2}+17 q=0 \\
& q(4 q+17)=0 \\
& q=0 \text { or } q=-\frac{17}{4}
\end{aligned}
$$

When $q=0$
$x+\frac{1}{x}=0$
$x^{2}+1=0$ (no real roots)
When $\mathrm{q}=\frac{-17}{4}$
$x+\frac{1}{x}=\frac{-17}{4}$
$4 x^{2}+17 x+4=0$
$(4 x+1)(x+4)=0$
$x=\frac{-1}{4}$ or $x=-4$
Hence $x=\frac{-1}{4}$ or $x=-4$

Equations with ratios

The basis of these types of equations it the ration theorem

Given $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=k$
Then $\frac{a+c+e}{b+d+f}=k$
This can

Then $\frac{a}{b}=k=>\mathrm{a}=\mathrm{bk}$

$$
\begin{aligned}
& \frac{c}{d}=k=>\mathrm{c}=\mathrm{dk} \\
& \frac{e}{f}=k=\mathrm{e}=\mathrm{fk}
\end{aligned}
$$

LHS: $\frac{b k+d k+f k}{b+d+f}=\frac{(b+d+f) k}{b+d+f}=k$

Example 6

Solve the equations
(a) $\frac{x+4 z}{4}=\frac{y+z}{6}=\frac{3 x+y}{5} ; 4 x+2 y+5 z=30$

Solution

Let $\frac{x+4 z}{4}=\frac{y+z}{6}=\frac{3 x+y}{5}=k$
Then $\frac{x+4 z+y+z+3 x+y}{4+6+5}=k$
$\frac{4 x+2 y+5 z}{15}=\frac{30}{15}=2=k$
$k=2$
$\therefore \frac{x+4 z}{4}=2 ; \Rightarrow \mathrm{x}+4 \mathrm{z}=8$ \qquad
$\frac{y+z}{6}=2 ; \Rightarrow y+z=12$
$\frac{3 x+y}{5}=2 ;=>3 x+y=10$
From eqn. (i): $x=8-4 z$
Substituting for x into eqn. (iii)
$3(8-4 z)+y=10$
$y-12 z=-14$ \qquad
eqn. (ii) - eqn. (iv)
$13 z=26 ; z=2$
Substituting for z into eqn. (i)
$x=8-4 \times 2=0$
substituting for x into eqn. (iii)
$y=10-3 x=10-0=10$
Hence $(x, y, z)=(0,10,2)$
(b) $\frac{x+2 y}{-3}=\frac{y+2 z}{4}=\frac{2 x+z}{5} ; x+y+z=2$

Solution
Let $\frac{x+2 y}{-3}=\frac{y+2 z}{4}=\frac{2 x+z}{5}=k$
Then $\frac{3 x+3 y+3 z}{6}=\frac{3(x+y+z)}{6}=\frac{3 x 2}{6}=1=k$
$k=1$
$\therefore \frac{x+2 y}{-3}=1 ; \mathrm{x}+2 \mathrm{y}=-3$.
$\frac{y+2 z}{4}=1 ; y+2 z=4$
$\frac{2 x+z}{5}=1 ; 2 x+z=5$ \qquad

From eqn. (i) $x=-3-2 y$
Substituting x into eqn. (iii)
$2(-3-2 y)+z=5$
$4 y-z=-11$.
From eqn. (ii): $y=4-2 z$
Substituting for y in eqn. (iv)
$4(4-2 z)-z=-11$
$9 z=27 ; z=3$
Substituting for z into eqn. (ii)
$Y=4-2 \times 3=-2$
Substituting for y into eqn. (i)
$x=-3-2(-2)=1$
Hence $(x, y, z)=(1,-2,3)$
(c) $2 x=3 y=-4 z ; x^{2}-9 y^{2}-4 z=0$

Solution
Let $2 x=3 y=-4 z=k$, constant
$x=\frac{k}{2} ; y=\frac{k}{3} ; z=\frac{k}{-4}$
Substituting for x, y, z in $x^{2}-9 y^{2}-4 z=0$
$\left(\frac{k}{2}\right)^{2}-9\left(\frac{k}{3}\right)^{2}-4\left(\frac{k}{-4}\right)=0$
$3 k^{2}-4 k-32=0$
$(3 k+8)(k-4)=0$
$\mathrm{k}=-\frac{8}{3}$ or $\mathrm{k}=4$
When $\mathrm{k}=-\frac{8}{3} ; \mathrm{x}=2, \mathrm{y}=\frac{4}{3}, \mathrm{z}=-1$
When $\mathrm{k}=4 ; \mathrm{x}=-\frac{4}{3}, \mathrm{y}=-\frac{8}{9}, \mathrm{z}=\frac{2}{3}$
$\therefore(x, y, z)=\left(2, \frac{4}{3},-1\right)$ or $\left(-\frac{4}{3},-\frac{8}{9}, \frac{2}{3}\right)$
Equations with repeated roots
If a function $y=f(x)$ has a repeated root, then it is also a root of its derivative i.e. it is a root of $\frac{d y}{d x} f(x)$

In order to find other root, make use of the sum and product of roots

Note

Sum of roots = coefficient of the second term of the equation

Product of the roots= last term with the appropriate signs.

Example 7

(a) Given that the following equations have repeated roots, solve them
(i) $x^{3}-x^{2}-8 x+12=0$

A repeated root is also a root of
$\frac{d}{d x}\left(x^{3}-x^{2}-8 x+12\right)=0$
$3 x^{2}-2 x-8=0$
$(x-2)(3 x+4)=0$
$x=2$ or $x=-\frac{4}{3}$
Testing for repeated root
Sum of roots = 1
Products of root $=-12$
If $x=2$ is the repeated root, then
Sum $=2+2+n=1$
$\mathrm{n}=-3$ where n is the third root
Product of roots $=2 \times 2 \times-3=-12$ which is correct
If $x=-\frac{4}{3}$ is the repeated root, then
Sum $=-\frac{4}{3}-\frac{4}{3}+n=1$
$\mathrm{n}=\frac{11}{3}$ where n is the third root
Product of roots $=-\frac{4}{3} x-\frac{4}{3} \times \frac{11}{3} \neq-12$
which is not correct
Hence the roots are 2, 2, -3
(ii) $2 x^{3}-11 x^{2}+12 x+9=0$

A repeated root is also a root of
$\frac{d}{d x}\left(2 x^{3}-11 x^{2}+12 x+9\right)=0$
$6 x^{2}-22 x+12=0$
$3 x^{2}-11 x+6=0$
$(x-3)(3 x-2)=0$
$\mathrm{x}=3$ or $\mathrm{x}=\frac{2}{3}$
Testing for repeated root;
$2 x^{3}-11 x^{2}+12 x+9=0$
$x^{3}-\frac{11}{2} x^{2}+6 x+\frac{9}{2}=0$

Sum of roots $=\frac{11}{2}$
Product of roots $=-\frac{9}{2}$
If $x=3$ is the repeated root, then
Sum $=3+3+n=\frac{11}{2}$
$\mathrm{n}=-\frac{1}{2}$ where n is the third root
Product of roots $=3 \times 3 \times-\frac{1}{2}=-\frac{9}{2}$ which is correct
Hence the roots are $3,3,-\frac{1}{2}$
(b) Find the value of k for which the equation $\frac{x^{2}-x+1}{x-1}=\mathrm{k}$ has repeated roots. What are the repeated roots?

Solution

$\frac{x^{2}-x+1}{x-1}=\mathrm{k}$
$x^{2}-x+1=k x-k$
$x^{2}-(1+k) x+(1+k)=0$
Since a quadratic equation has only two roots, therefore the roots will be equal if they are repeated
The condition for equal roots: $\mathrm{b}^{2}=4 \mathrm{ac}$

$$
\text { If } k=-1 ; x^{2}-(0) x+0=0
$$

$$
x=0
$$

If $k=3 ; x^{2}-4 x+4=0$
$(x-2)(x-2)=0$

$$
x=2
$$

Hence repeated roots are 0 and 2

Example 8

Show that if the equations
$x^{2}+p x+q=0$ and $x^{2}+m x+k=0$ have a repeated root, then
$(q-k)^{2}=(m-p)(p k-m q)$
Let the common root be x_{1}

$$
\begin{aligned}
& \Rightarrow(1+k)^{2}=4(1+k) \\
& k^{2}+2 x+1=4+4 k \\
& k^{2}-2 k-3=0 \\
& (k+1)(k-3)=0 \\
& \mathrm{k}=-1 \text { and } \mathrm{k}=3
\end{aligned}
$$

The two equations become
$\mathrm{x}_{1}{ }^{2}+\mathrm{px}_{1}+\mathrm{q}=0$
$x_{1}{ }^{2}+m x_{1}+k=0$ \qquad
Eqn. (i) - eqn. (ii)
$(p-m) x_{1}+(q-k)=0$
$\mathrm{x}_{1}=-\left(\frac{q-k}{p-m}\right)$
Substituting x^{1} into equation (i)
$\left(\frac{q-k}{p-m}\right)^{2}-\mathrm{p}\left(\frac{q-k}{p-m}\right)+\mathrm{q}=0$
Thus, $(q-k)^{2}=(m-p)(p k-m q)$

Equations with square roots

(i) In this context, \sqrt{x} means the positive square root of x.
(ii) The solution should be checked to discard off the unwanted root might emerge due to squaring.

Illustration
Suppose the root of the equation is $x=5$
By squaring $x 2=52$ i.e. $x^{2}-5^{2}=0$
$(x-5)(x+5)=0$
Now solution is $x=-5$ and $x=5$ where -5 is unwanted.

Example 9

Solve the equations
(a) $\sqrt{(x-5)}+\sqrt{x}=5$

Solution
$(\sqrt{(x-5)})^{2}=(5-\sqrt{x})^{2}$
$x-5=25-10 \sqrt{x}+x$
$\Rightarrow 10 \sqrt{x}=30$
$\sqrt{x}=3 ; \mathrm{x}=9$ (upon squaring)
(c) $\sqrt{(1-20 x)}-2 \sqrt{x+1}=3$

Solution
$(\sqrt{1-20 x})^{2}=(3+2 \sqrt{x+1})^{2}$
$1-20 x=9+12 \sqrt{x+1}+4(x+1)$
$24 x+12=-12 \sqrt{x+1}$
$2 x+1=-\sqrt{x+1}$
Squaring both sides
$4 x^{2}+4 x+1=x+1$
$4 x^{2}+3 x=0$
$x(4 x+3)=0$
$x=0$ or $x=-\frac{3}{4}$
When $\mathrm{x}=0 ; \sqrt{1}-2 \sqrt{1} \neq 3 ; \therefore \mathrm{x}=0$ is not a root
When $x=-\frac{3}{4} ; \sqrt{16}-2 \sqrt{\frac{1}{4}}=3$ which is consistent. $\therefore x=-\frac{3}{4}$

Other equations

Example 10

Given that $x^{2}+2 x y+y^{2}-8 x-8 y+15=0$, find x in terms of y

Hence or otherwise solve the pair of equations:
$x^{2}+2 x y+y^{2}-8 x-8 y+15=0$ and $x^{2}+y^{2}=17$
Solution
$x^{2}+2 x y+y^{2}-8 x-8 y+15=0$ \qquad
$(x+y)^{2}-8(x+y)+15=0$
Let $\mathrm{q}=(\mathrm{x}+\mathrm{y})$
$q^{2}-8 q+15=0$
$(q-5)(q-3)=0$
$\mathrm{q}=5$ and $\mathrm{q}=3$
When $q=5 ; x=5-y$
When $q=3 ; x=3-y$

Now $x^{2}+y^{2}=17$
Eqn. (ii) into eqn. (iv)
$(5-y)^{2}+y^{2}=17$
$2 y^{2}-10 y+8=0$
$(y-4)(y-1)=0 ; \Rightarrow y=4$ or $y=1$
When $y=4: x=5-4=1$
When $y=1: x=5-1=4$
Eqn. (iii) into eqn. (iv)
$(3-y)^{2}+y^{2}=17$
$2 y^{2}-6 y-8=0$
$(y-4)(y+1)=0 ;=>y=4$, or $y=-1$
When $y=4: x=3-4=-1$
When $y=-1: x=3+1=4$
$\therefore(x, y)=(1,4),(4,1),(-1,4),(4,-1)$

Example 11

Solve the simultaneous equations
$\frac{1}{x}-\frac{1}{y}=\frac{1}{6}, x(5-x)=2 y$
Solution
From $\frac{1}{x}-\frac{1}{y}=\frac{1}{6}$
$\frac{1}{y}=\frac{1}{x}-\frac{1}{6}=\frac{6-x}{6 x}$
$y=\frac{6 x}{6-x}$.
$x(5-x)=2 y$
Substituting eqn. (i) into eqn. (ii)
$x(5-x)=\frac{12 x}{6-x}$
$\mathrm{x}(5-\mathrm{x})(6-\mathrm{x})-12 \mathrm{x}=0$
$x[(5-x)(6-x)-12]=0$
$x\left(x^{2}-11 x+18\right)=0$
$x(x-2)(x-9)=0 ; x=0, x=2, x=9$
Substituting for x in eqn. (i)
digitalteachers.co.ug

When $x=0 ; y=0$
When $x=2 ; y=3$
When $x=9 ; y=-18$
$\therefore(\mathrm{x}, \mathrm{y})=(0,0),(2,3)$ or $(9,-18)$
Example 12
Given that the equations $y^{2}+p y+q=0$ and $y^{2}+m y+k=0$ have common root. Show
$(q-k)^{2}=(m-p)(p k-m q)$

Solution

Let α be the common root
For $y^{2}+p y+q=0$
$\alpha^{2}+p \alpha+q=0$
For $y^{2}+m y+k=0$
$\alpha^{2}+m \alpha+k=0$ \qquad
Eqn. (i) - eqn. (ii)
$(p-m) k+(q-k)=0$
$\alpha=\frac{q-k}{m-p}$
Substituting α into eqn. (i)
$\left(\frac{q-k}{m-p}\right)^{2}+\left(\frac{q-k}{m-p}\right) p+q=0$
$\frac{(q-k)^{2}}{(m-p)^{2}}=-q-\left(\frac{q-k}{m-p}\right) p$
$(q-k)^{2}=-q(m-p)^{2}-(q-k)(m-p) p$
$(q-k)^{2}=(m-p)[-q(m-p)-p(q-k)]$
$(q-k)^{2}=(m-p)[-q m+q p-p q+p k]$
$(q-k)^{2}=(m-p)(p k-q m)$ as required

Revision questions

1. Solve the equations
(a) $\log _{x} 8-\log _{x} 2=16[x=2]$
(b) $\log _{2} x+\log _{4} x+\log _{16} x=\frac{21}{16}$

$$
\left[x=8^{\frac{1}{4}}=1.6818\right]
$$

2. (a) Given that $\log _{2} x+2 \log _{4} y=4$, show that $x y=16$. Hence solve the simultaneous equations
$\log _{10}(x+y)=1$
$\log _{2} x+2 \log _{4} y=4$
$[(\mathrm{x}, \mathrm{y})=(8,2)$ or $(2,8)]$
(b) Show that $\log _{a} b=\frac{1}{\log _{b} a}$. Hence solve the simultaneous equations
$\log _{a} b+2 \log _{b} a=3$
$\log _{9} a+2 \log _{9} b=3$
$\therefore(x, y)=(27,27)$ or $(9,81)$
3. Show that if the expressions
(i) $x^{2}+p x+q$ and $3 x^{2}+q$ have a common root, then $3 p^{2}+4 q=0$
(ii) $x^{2}+b x+c$ and $x^{2}+p x+q$ have a common root, then

$$
(c-q)^{2}=(b-p)(c p-b q)
$$

4. Solve the simultaneous equations
(a) $2 x+y=1$
$5 x^{2}+2 x y=y+2 x-1[(x, y)=(0,1),(-2,5)]$
(b) $x+2 y=1$
$3 x 2+5 x y-2 y 2=10[(x, y)=(3,-1)$
5. Solve the simultaneous equation
$2^{x}+4^{y}=12$
$3(2)^{x}-2(2)^{2 y}=16[x=2, y=1]$
Hence show that $(4)^{x}+4(3)^{2 y}=100$
6. Solve $4^{x}-2^{x+1}-15=0[x=2.322]$
7. Show that if the expressions:
$x^{2}+b x+c$ and $x^{2}+p x+q$ have a common factor. Then $(c-q)^{2}=(b-p)(c p-b q)$
8. Solve $2 \sqrt{(x-1)}-\sqrt{(x+4)}=1$
[$\mathrm{x}=5$ or $\mathrm{x}=\frac{13}{9}$]
9. Solve the simultaneous equations
$x+y+z=2$
$\frac{x+2 y}{-3}=\frac{y+2 z}{4}=\frac{2 x+z}{5}[\mathrm{x}=1, \mathrm{y}=-2, \mathrm{z}=3]$
10. Solve the simultaneous equations $x^{2}-10 x+y^{2}=25$
$y-x=1[(x, y)=(6,7)$ or $(-2,-1)$
11. Solve for x in the equation
$\log _{4}(6-x)=\log _{2} x[x=2]$

Thank you
Dr. Bbosa Science

