Sponsored by

Surds

A logarithm is an exponent, an index or power
The logarithm of a positive quantity p to a given base q is defined as the index or power to which the bases q must be raised to make it equal to P. i.e. $\log _{q} p=x$ means that $q^{x}=$ p or x s the logarithm of p to base q

- $\quad x$ is the power (index, logarithm or exponent)
- q is the base
- $\quad \mathrm{p}$ is the number (which must be positive)

Example 1

Find the values of x in the following
(a) $\log _{2} 8=x$
(b) $\log _{x} 25=2$

Solution
(a) $8=2^{3}$
$\therefore \log _{2} 8=3 ; x=3$
(b) $x^{2}=25=5^{2}$

$$
\therefore x=5
$$

Example 2

Evaluate
(a) $\log _{27} 9 \sqrt{3}$
(b) $\log _{\frac{1}{2}} \frac{1}{4}$

Solution
Let $\log _{27} 9 \sqrt{3}=\mathrm{x}$
$27^{x}=9 \sqrt{3}$
$3^{3 x}=3^{2} \cdot 3^{\frac{1}{2}}=3^{\frac{5}{2}}$

Equating powers
$3 x=\frac{5}{2}$
$x=\frac{5}{6}$
$\therefore \log _{27} 9 \sqrt{3}=\frac{5}{6}$
(b) let $\log _{\frac{1}{2}} \frac{1}{4}=\mathrm{x}$

$$
\left(\frac{1}{2}\right)^{x}=\frac{1}{4}=\left(\frac{1}{2}\right)^{2}
$$

Equating powers $x=2$
$\therefore \log _{\frac{1}{2}} \frac{1}{4}=2$
Rules of logarithms
(a) (i) $\log _{a} a=1$

Proof
Let $\log _{a} a=x$
$a^{x}=a^{1}$
$x=1$
$\therefore \log _{a} a=1$
(ii) $\log _{a} 1=0$

Proof
Let $\log _{a} 1=x$
$a^{x}=a^{0}$
$x=0$
$\therefore \log _{a} 1=0$

(b) The power rule

$\log _{a} P^{q}=\operatorname{qlog}_{a} P$
Proof
Let $\log _{a} P=x$
$a^{x}=P$
Raising each to the power q
$a^{q x}=P^{q}$
$\Rightarrow \log _{a} P=\log _{a} a^{q x}=q x$
$\therefore \log _{a} P^{q}=\mathrm{qlog}_{a} P$
(c) The addition/multiplication rule
$\log _{a} p q=\log _{a} p+\log _{a} q$
Proof
Let $\log _{a} p=x$ and $\log _{a} q=y$
$p=a^{x}$ and $q=a^{y}$
$p q=a^{x} \cdot a^{y}=a^{x+y}$
$\log _{a} p q=\log _{a} a^{x+y}=x+y$
$\therefore \log _{a} p q=\log _{a} p+\log _{a} q$
(d) The subtraction/division rule
$\log _{a}\left(\frac{p}{q}\right)=\log _{a} p-\log _{a} q$
Proof
Let $\log _{a} p=x$ and $\log _{a} q=y$
$p=a^{x}$ and $q=a^{y}$
$\frac{p}{q}=\frac{a^{x}}{a^{y}}=a^{x-y}$
$\log _{a}\left(\frac{p}{q}\right)=\log _{a} a^{x-y}=x-y$
$\therefore \log _{a}\left(\frac{p}{q}\right)=\log _{a} p-\log _{a} q$
(e) Change of base
$\log _{a} p=\frac{\log _{q} p}{\log _{q} a}$
Let $\log _{a} p=x$, then $a^{x}=p$
$\Rightarrow \log _{q} a^{x}=\log _{q} p$
$\operatorname{xlog}_{q} a=\log _{q} p$

$$
x=\frac{\log _{q} p}{\log _{q} a}
$$

$\therefore \log _{a} p=\frac{\log _{q} p}{\log _{q} a}$

Example 3

Evaluate
(a) $\log _{2} 8 \sqrt{2}$
(b) $\log _{a} \frac{1}{a}$

Solution
(a) Either: let $\log _{2} 8 \sqrt{2}=x$

$$
\begin{aligned}
\Rightarrow & 2^{x}=8 \sqrt{2}=2^{3} \cdot 2^{\frac{1}{2}}=2^{\frac{7}{2}} \\
& x=\frac{7}{2} \\
& \therefore \log _{2} 8 \sqrt{2}=\frac{7}{2}
\end{aligned}
$$

Or $\log _{2} 8 \sqrt{2}=\log _{2} 2^{3} \cdot 2^{\frac{1}{2}}=\log _{2} 2^{\frac{7}{2}}$

$$
\begin{aligned}
& =\frac{7}{2} \log _{2} \\
& =\frac{7}{2}
\end{aligned}
$$

(b) Let $\log _{a} \frac{1}{a}=\mathrm{x}$
$a^{x}=a^{-1}$
$x=-1$
$\therefore \log _{a} \frac{1}{a}=-1$

Example 4

Express each of the following as a single logarithm
(a) $\log 4+\log 3$
(b) $\log 5+\log 18-\log 3$

Solution
(a) $\log 4+\log 3=\log (4 \times 3)=\log 12$
(b) $\log 5+\log 18-\log 3=\log \left(\frac{5 \times 18}{3}\right)=\log 30$

Example 5

Show that $\log _{a} p=\frac{1}{\log _{p} a}$. Hence solve the equation $\log _{5} x+2 \log _{x} 5=3$

Solution
Let $\log _{a} p=x$
$\Rightarrow a^{x}=p$
Introducing log to base p on both sides
$\log _{p} a^{x}=\log _{p} p$
$x \log _{p} a=1$
$x=\frac{1}{\log _{p} a}$
$\therefore \log _{a} p=\frac{1}{\log _{p} a}$
Then,

$$
\begin{aligned}
& \log _{5} x+2 \log _{x} 5=3 \\
& \log _{5} x+\frac{2}{\log _{5} x}=3 \\
& \text { Let } \mathrm{y}=\log _{5} x
\end{aligned} \begin{aligned}
& \Rightarrow \mathrm{y}+\frac{2}{y}=3 \\
& \quad y^{2}-3 y+2=0 \\
& \quad(y-1)(\mathrm{y}-2)=0 \\
& \text { Either } \mathrm{y}=1 \text { or } \mathrm{y}=2 \\
& \text { When } \mathrm{y}=1: \log _{5} x=1 ; \mathrm{x}=5^{1}=5
\end{aligned}
$$

When $y=2: \log _{5} x=2 ; x=5^{2}=25$
$x=5$ and $x=25$
Example 6

$$
\begin{aligned}
& \text { Solve } \log _{x} 5+4 \log _{5} x= \\
& \text { Expressing terms on LHS to } \log _{5} \text {. } \\
& \frac{\log _{5} 5}{\log _{5} x}+4 \log _{5} x=4 \\
& \frac{1}{\log _{5} x}+4 \log _{5} x=4 \\
& \text { Let } \log _{5} x=y \\
& \frac{1}{y}+4 y=4 \\
& 4 y^{2}-4 y+1=0 \\
& (2 y-1)(2 y-1)=0 \\
& 2 \mathrm{y}=1 \\
& y=\frac{1}{2} \\
& \Rightarrow \log _{5} x=\frac{1}{2} \\
& x=5^{\frac{1}{2}}=\sqrt{5}
\end{aligned}
$$

Example 7

Show that $2 \log 4+\frac{1}{2} \log 25-$
$\log 20=2 \log 2$.
$2 \log 4+\frac{1}{2} \log 25-\log 20$
$2 \log 2^{2}+\frac{1}{2} \log 5^{2}-(\log 4+\log 5)$
$2 \log 2^{2}+\frac{1}{2} \log 5^{2}-\log 4-\log 5$
$4 \log 2+\log 5-2 \log 2-\log 5$
$2 \log 2$

Example 8

(a) (i) Find $\log _{9} 27 \sqrt{3}$ without using tables
(ii) Simplify $\left(\log _{a} b^{2}\right)\left(\log _{b} a^{3}\right)$
(b) Express $\log _{25} x y$ in terms of $\log _{5} x$ and $\log _{5} y$. Hence solve the simultaneous equation s :

$$
\log _{25} x y=4 \frac{1}{2}
$$

$\frac{\log _{5} x}{\log _{5} y}=-10$

Solution

(a)(i) Changing the base from 9 to 3

$$
\begin{aligned}
& \log _{9} 27 \sqrt{3}=\frac{\log _{3} 27 \sqrt{3}}{\log _{3} 9} \\
& =\frac{\log _{3} 27+\log _{3} \sqrt{3}}{\log _{3} 9}
\end{aligned}
$$

$=\frac{\log _{3} 3^{3}+\log _{3} 3^{\frac{1}{2}}}{\log _{3} 3^{2}}=\frac{3+\frac{1}{2}}{2}=\frac{7}{4}=1.75$
Or
Let $\log _{9} 27 \sqrt{3}=\mathrm{x}$
$9^{x}=27 \sqrt{3}$
$\left(3^{2}\right)^{x}=3^{3} \cdot 3^{\frac{1}{2}}$
$3^{2 x}=3^{\frac{7}{2}}$
Equating indices
$2 x=\frac{7}{2}$
$x=1.75$
(ii) $\left(\log _{a} b^{2}\right)\left(\log _{b} a^{3}\right)=\left(\log _{a} b^{2}\right) \frac{\left(\log _{a} a^{3}\right)}{\log _{a} b}$
$=\left(2 \log _{a} b\right) \frac{\left(3 \log _{a} a\right)}{\log _{a} b}$

$$
=2 \times 3=6
$$

$\operatorname{Or}\left(\log _{a} b^{2}\right)\left(\log _{b} a^{3}\right)=\left(2 \log _{a} b\right)\left(3 \log _{b} a\right)$
$=\left(\frac{2 \log _{b a} b}{\log _{b} a}\right)\left(3 \log _{b} a\right)$
$=2 \times 3=6$
(b) By change of base rule

$$
\begin{gathered}
\log _{25} x y=\frac{\log _{5} x y}{\log _{5} 25}=\frac{\log _{5} x+\log _{5} y}{\log _{5} 5^{2}} \\
=\frac{\log _{5} x+\log _{5} y}{2} \\
\therefore \log _{25} x y=\frac{\log _{5} x+\log _{5} y}{2}
\end{gathered}
$$

Hence solving

$$
\begin{align*}
& \log _{25} x y=4 \frac{1}{2} \\
& \frac{\log _{5} x+\log _{5} y}{2}=\frac{9}{2} \\
& \log _{5} x+\log _{5} y=9 \tag{i}
\end{align*}
$$

\qquad
$\frac{\log _{5} x}{\log _{5} y}=-10$
$\log _{5} x=-10 \log _{5} y$
Substituting eqn. (ii) into eqn. (i)
$-10 \log _{5} y+\log _{5} y=9$
$\log _{5} y=-1$
$y=5^{-1}=\frac{1}{5}$
Substituting $\log _{5} y$ into equation (ii)
$\log _{5} x=10$
$x=5^{10}$
$\therefore x=5^{10}$ and $\mathrm{y}=\frac{1}{5}$

Example 9

(a) Given that $\log _{b} a=x$ show that $\mathrm{b}=a^{\frac{1}{x}}$ and deduce $\log _{b} a=\frac{1}{\log _{a} b}$
(b) Find the value of x and y such that
(i) $\log _{10} x+\log _{10} y=1.0$

$$
\log _{10} x-\log _{10} y=\log _{10} 2.5
$$

(ii) Simplify $2^{x} \cdot 2^{y}=432$
(c) Simplify $\frac{1+\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}$

Solution
$\log _{b} a=x$
$b^{x}=a$
$\sqrt[x]{b^{x}}=\sqrt[x]{a}$
$b=a^{\frac{1}{x}}$
Taking log to bas a on both sides
$\log _{a} b=\log _{a} a^{\frac{1}{x}}$
$\log _{a} b=\frac{1}{x} \log _{a} a=\frac{1}{x}$
But $\mathrm{x}=\log _{b} a$
$\therefore \log _{b a} b=\frac{1}{\log _{b} a}$
(b)(i) $\log _{10} x+\log _{10} y=1.0$ \qquad

$$
\begin{equation*}
\log _{10} x-\log _{10} y=\log _{10} 2.5 \tag{i}
\end{equation*}
$$

Eqn. (i) + eqn. (ii)

$$
2 \log _{10} x=\log _{10} 10+\log _{10} 2.5
$$

$\log _{10} x^{2}=\log _{10} 25$
$\Rightarrow x^{2}=25$

$$
x=5
$$

Substituting x into eqn. (i)
$\log _{10} 5+\log _{10} y=1.0$
$\log _{10} y=\log _{10} 10-\log _{10} 5$
$\log _{10} y=\log _{10} 10 \div 5=\log _{10} 2$
$y=2$
Hence $x=5$ and $y=2$
(ii) $2^{x} \cdot 2^{y}=432=2^{4} \cdot 3^{3}$

Comparing
$x=4$ and $y=3$
(c) By rationalizing

$$
\frac{(1+\sqrt{2}+\sqrt{3})(\sqrt{2}+\sqrt{3})}{(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})}=1+\sqrt{3}-\sqrt{2}
$$

Example 10
Prove that $\log _{6} x=\frac{\log _{3} x}{1+\log _{3} 2}$. Given that $\log _{3} 2=0.631$, find without using tables or calculator $\log _{6} 4$ correct to 3 significant figures

Solution

$$
\begin{aligned}
\log _{6} x & =\frac{\log _{3} x}{\log _{3} 6}=\frac{\log _{3} x}{\log _{3}(2 x 3)}=\frac{\log _{3} x}{\log _{3} 3+\log _{3} 2} \\
& =\frac{\log _{3} x}{1+\log _{3} 2}
\end{aligned}
$$

Substituting for $\log _{3} 2=0.631$

$$
\begin{aligned}
\log _{6} x & =\frac{\log _{3} 2^{2}}{1+\log _{3} 2}=\frac{2 \log _{3} 2}{1+\log _{3} 2}=\frac{2 \times 0.631}{1+0.631} \\
& =0.774
\end{aligned}
$$

Revision exercise

1. Evaluate
(a) $\log _{\frac{1}{5}} 25 \sqrt{5}\left[-\frac{5}{2}\right]$
(b) $\log _{3} 27$ [3]
2. Express the following as a single logarithm
(i) $\log 15-\frac{1}{2} \log 9[\log 5]$
(ii) $3 \log 2+2 \log 5-\log 20[\log 10]$
3. Given that $\log _{b} a$ and $\log _{c} b=a$, show that $\log _{c} a=a c$
4. (a) solve the equation
(i) $\log _{a} 4+\log _{4} a^{2}$

$$
[a=2 \text { and } a=4]
$$

(ii) $\log _{14} x=\log _{7} 4 x\left[\frac{1}{196}\right]$
5. Without using tables or calculator show that $\frac{2 \log 9+\log 8-\log 375}{\frac{1}{3} \log 6-\log 5^{\frac{1}{3}}}=9$
6. Iflog $2 x+\log _{4} x+\log _{16} x=\frac{21}{16}$. Find the value of $x[x=1.6818]$
7. Givenlog $a=\log _{d} c$, show that $\log _{c} a=\log _{d} b$. Hence or otherwise solve the equation $\log _{9 x} 64=\log _{x} 4$. $[x=3]$
8. Solve the simultaneous equations $\log _{10}(y-x)=0$
$2 \log _{10}(21+x)[(\mathrm{x}, \mathrm{y})=(-5,-4)$ or $(4,5)$
9. Given that $\log _{2} x+2 \log _{4} y=4$. Show that $\mathrm{xy}=16$. Solve simultaneous equations
$10 \log _{10}(x+y)=1$
$\log _{2} x+2 \log _{4} y=4 .[(\mathrm{x}, \mathrm{y})=(2,8)$ or $(8,2)$
10. (a) If $\log _{b} a=x$, show that $\mathrm{b}=a^{\frac{1}{x}}$ and deduce that $\frac{1}{\log _{a} b}$.
(b) Solve
(i) $\log _{x} 4+\log _{4} x^{2}=3[x=2$ or 4$]$
(ii) $2^{2 x-1}+\frac{3}{2}=2^{x+1}[\mathrm{x}=0$ or 1.585]
11. Prove that $\log _{8} x=\frac{2}{3} \log _{4} x$. Hence without using tables or calculator, evaluate $\log _{8} 6$ correct to three significant figure, if $\log _{4} 3=0.7925[0.862$]
12. Given that $\log _{3} x=p$ and $\log _{18} x=q$, show that $\log _{6} 3=\frac{q}{p-q}$
13. Solve for x in the equation
$\log _{4}(6-x)=\log _{2} x$
[$\mathrm{x}=2$ since there is no negative log]
14. Solve the equation $\log _{2} x-\log _{x} 8=2$ [$\mathrm{x}=8$ or $\mathrm{x}=\frac{1}{2}$]
15. Solve the equation

$$
\log _{25} 4 x^{2}=\log _{5}\left(3-x^{2}\right)[x=1]
$$

Thank you
Dr. Bbosa Science

