Surds

These are irrational numbers which cannot be expressed in terms of $\frac{a}{b}$ where a and b are rational. Irrational numbers may be defined as square roots of prime numbers.

Examples are $\sqrt{2}, \sqrt{3}, \sqrt{5} \ldots$

Expression of root of numbers in surd form

Example 1

Write the following as the simplest surds
(i) $\sqrt{32}$
(ii) $\sqrt{50}$ (iii) $\sqrt{8}$
(iv) $\sqrt{27}$

Solution
(i) $\sqrt{32}=\sqrt{16 \times 2}=\sqrt{16} \times \sqrt{2}=4 \sqrt{2}$
(ii) $\sqrt{50}=\sqrt{25 \times 2}=\sqrt{25} \times \sqrt{2}=5 \sqrt{2}$
(iii) $\sqrt{8}=\sqrt{4 x 2}=\sqrt{4} \times \sqrt{2}=2 \sqrt{2}$
(iv) $\sqrt{27}=\sqrt{9 \times 3}=\sqrt{9} x \sqrt{3}=3 \sqrt{3}$

Addition and subtraction of surds

This is done by expressing the surds in their simplest form

Example 2

(i) $\sqrt{75}-3 \sqrt{27}+2 \sqrt{12}$

$$
\begin{aligned}
& =\sqrt{25 \times 3}-3 \sqrt{9 x 3}+2 \sqrt{4 x 3} \\
& =\sqrt{25} \times \sqrt{3}-3 x \sqrt{9} \times \sqrt{3}+2 x \sqrt{4} x \sqrt{3} \\
& =5 x \sqrt{3}-3 \times 3 x \sqrt{3}+2 \times 2 x \sqrt{3}
\end{aligned}
$$

$$
(5-9+4) \sqrt{3}=0
$$

(ii) $\sqrt{50}+\sqrt{2}-3 \sqrt{18}+2 \sqrt{8}$

$$
\begin{aligned}
& =\sqrt{25 x 2}+\sqrt{2}-3 \sqrt{9 x 2}+2 \sqrt{4 x 2} \\
& =5 \sqrt{2}+\sqrt{2}-3 x 3 \sqrt{2}+2 x 2 \sqrt{2}
\end{aligned}
$$

$$
=(5+1-9+4) \sqrt{2}=\sqrt{2}
$$

Multiplication of surds

Finding the product of two surd numbers is the same as finding the root of the product of two numbers.
i.e. $\sqrt{a} x \sqrt{b}=\sqrt{a b}$

Example 3

Find the value of the following and give your answers in the simplest form
(i) $\sqrt{2} x \sqrt{2}$
(ii) $\sqrt{2} x \sqrt{20}$
(iii) $(3 \sqrt{2}-2 \sqrt{3})^{3}$

Solution
(i) $\sqrt{2} x \sqrt{2}=\sqrt{2 x 2}=\sqrt{4}=2$
(ii) $\sqrt{2} x \sqrt{30}=\sqrt{2 \times 30}=2 \sqrt{15}$
(iii) $(3 \sqrt{2}-2 \sqrt{3})^{3}$

Using Pascal's triangle; the coefficients of the terms in the expansion $(a+b)^{3}$ are 1331
$(3 \sqrt{2}-2 \sqrt{3})^{3}=$
$(3 \sqrt{2})^{3}+3(3 \sqrt{2})^{2}(-2 \sqrt{3})+3(2 \sqrt{3})(-2 \sqrt{3})^{2}+(-2 \sqrt{3})^{3}$
$=(54 \sqrt{2})+3(18)(-2 \sqrt{3})+3(12)(3 \sqrt{2})-24 \sqrt{3}$
$=162 \sqrt{2}-132 \sqrt{3}$

Division of surds

There are two types of division of surds;

- A fraction whose denominators has a single term such as $\frac{1}{\sqrt{2}}, \frac{1}{2 \sqrt{3}}$, etc.
- A fraction whose denominator has double terms, such as $\frac{1}{\sqrt{2}+\sqrt{3}}, \frac{2+\sqrt{3}}{2-\sqrt{3}}, \frac{1}{1+\sqrt{5}}$, etc.
- In both cases, first eliminate the surds from the denominator. The process of eliminating surds from the denominator is called rationalization.
- In the first case rationalize the fraction by multiplying the numerator and denominator by the surd term of the denominator.

Example 4

Rationalize the following
(i) $\frac{2}{3 \sqrt{5}}$
(ii) $\frac{1}{\sqrt{2}}$
(iii) $\frac{5}{\sqrt{3}}$

Solution
(i) $\frac{2}{3 \sqrt{5}}=\frac{2 \sqrt{5}}{3 \sqrt{5} \times \sqrt{5}}=\frac{2 \sqrt{5}}{3 \times 5}=\frac{2 \sqrt{5}}{15}$
(ii) $\frac{1}{\sqrt{2}}=\frac{1 x \sqrt{2}}{\sqrt{2} x \sqrt{2}}=\frac{\sqrt{2}}{2}$
(iii) $\frac{5}{\sqrt{3}}=\frac{5 \sqrt{3}}{\sqrt{3} x \sqrt{3}}=\frac{5 \sqrt{3}}{3}$

In the second case rationalize by multiplying the numerator and denominator by the conjugate of the denominator.

Note
(i) The conjugate $a+\sqrt{b}$ is $a-\sqrt{b}$ and that

$$
a-\sqrt{b} \text { is } a+\sqrt{b}
$$

(ii) The product of a surd function and its conjugate is equal to the difference of two squares. i.e. $(a+\sqrt{b})(a-\sqrt{b})=\left(a^{2}-(\sqrt{b})^{2}\right)$

Example 5

Rationalize the following
(i) $\frac{2}{2-\sqrt{2}}$
(ii) $\frac{1}{3-\sqrt{5}}$
(iii) $\frac{3-\sqrt{5}}{\sqrt{5-3}}$
solution
(i) $\frac{2}{2-\sqrt{2}}=\frac{2(2+\sqrt{2})}{(2-\sqrt{2})(2+\sqrt{2})}=\frac{2(2+\sqrt{2})}{4-2}=(2+\sqrt{2})$
(ii) $\frac{1}{3-\sqrt{5}}=\frac{1(3+\sqrt{5})}{(3-\sqrt{5})((3+\sqrt{5}))}=\frac{(3+\sqrt{5})}{9-5}=\frac{(3+\sqrt{5})}{4}$
(iv) $\frac{3-\sqrt{5}}{\sqrt{5-3}} x \frac{\sqrt{5+3}}{\sqrt{5+3}}=\frac{(3)^{2}-(\sqrt{5})^{2}}{(\sqrt{5})^{2}-(3)^{2}}=\frac{9-5}{5-9}=-1$

Set square angle $\left(30^{\circ}, 45^{\circ}\right.$ and $\left.60^{\circ}\right)$
(a) Consider an equilateral triangle $A B C$ of each side $=$ a units

$E D^{2}=a^{2}-\left(\frac{1}{2} a\right)^{2}=\frac{3 a^{2}}{4}$
$\mathrm{EC}=\frac{a \sqrt{3}}{2}$
$\cos 60^{\circ}=\frac{a}{2 a}=\frac{1}{2} ; \sin 60^{\circ}=\frac{a \sqrt{3}}{2 a}=\frac{\sqrt{3}}{2}$
$\tan 60^{\circ}=\frac{\sqrt{3}}{2} x \frac{2}{1}=\sqrt{3}$
$\cos 30^{\circ}=\frac{a \sqrt{3}}{2 a}=\frac{\sqrt{3}}{2} ; \sin 60^{\circ}=\frac{a}{2 a}=\frac{1}{2}$
$\tan 60^{\circ}=\frac{1}{2} x \frac{2}{\sqrt{3}}=\frac{1}{\sqrt{3}}$
(b) Given a right angled isosceles triangle $A B C$ with equal perpendicular sides each of length a units

$A C^{2}=a^{2}+a^{2}=2 a^{2}$
$A C=a \sqrt{2}$
$\cos 45^{\circ}=\sin 45^{\circ}=\frac{a}{a \sqrt{2}}=\frac{1}{\sqrt{2}}$
$\tan 45^{\circ}=\frac{a}{a}=1$

Example 6

Express without a surd in the denominator each of the following
(a) $\frac{1+\tan 30^{\circ}}{1-\tan 30^{\circ}}$
(d) $\frac{3 \sqrt{50}}{5 \sqrt{27}}\left[\frac{\sqrt{6}}{3}\right]$
(e) $\frac{4 \sqrt{45}}{5 \sqrt{8}}\left[\frac{3 \sqrt{10}}{5}\right]$
6. Express the following in the form $\mathrm{a}+\mathrm{b} \sqrt{c}$
(a) $\frac{2 \sqrt{3}-3 \sqrt{2}}{2 \sqrt{3}+3 \sqrt{2}}[-5+2 \sqrt{6}]$
(b) $\frac{4+3 \sqrt{2}}{4-3 \sqrt{2}}[-17-12 \sqrt{2}]$
(c) $\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}+1}\left[\frac{1}{2}-\frac{1}{4} \sqrt{2}+\frac{1}{4} \sqrt{6}\right]$
7. Show that $\left(\frac{2+\sqrt{3}}{2-\sqrt{3}}\right)^{2}+\left(\frac{2-\sqrt{3}}{2+\sqrt{3}}\right)^{2}=194$
8. Express without a surd in the denominator each of the following
(a) $\frac{1}{1-\sin 30^{0}}$ [2]
(b) $\frac{1+\tan 60^{\circ}}{1-\tan 60^{\circ}}[-2-\sqrt{3}]$
9. Express each of the following in the form $\frac{a+b \sqrt{c}}{d}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are integers
(a) $\frac{3}{6+\sqrt{3}}\left[\frac{6-\sqrt{3}}{11}\right]$
(b) $\frac{3+\sqrt{2}}{5-\sqrt{2}}\left[\frac{17+8 \sqrt{2}}{23}\right]$
(c) $\frac{3+\sqrt{24}}{2+\sqrt{6}}\left[\frac{6-\sqrt{6}}{2}\right]$
10. Solve the equation

$$
\sqrt{2 x+3}-\sqrt{x+1}=\sqrt{x-2}[3]
$$

11. Without using mathematical tables or calculators, find the value of

$$
\frac{(\sqrt{5}+2)^{2}-(\sqrt{5}-2)^{2}}{8 \sqrt{5}}[1]
$$

(a) $\sqrt{8}+\sqrt{200}-4 \sqrt{18}[2 \sqrt{2}]$
(b) $5 \sqrt{20}+2 \sqrt{45}+2 \sqrt{5}[18 \sqrt{5}]$
(c) $3 \sqrt{50}+2 \sqrt{32}-2 \sqrt{75}+2 \sqrt{12}-\sqrt{27}$ $[23 \sqrt{2}-7 \sqrt{3}]$

Thank you
Dr. Bbosa Science
3. Given that $4 \sqrt{20}+3 \sqrt{5}-5 \sqrt{125}=x \sqrt{5}$, find the value of $x[-14]$
4. Find the value of the following simplifying the answer as much as possible
(a) $(5 \sqrt{2}-\sqrt{5})(3 \sqrt{5}-2 \sqrt{2})[5+13 \sqrt{10}]$
5. Express each of the following in the form $\frac{a \sqrt{b}}{c}$ where a, b and c are integers
(a) $\frac{2}{\sqrt{7}}\left[\frac{2 \sqrt{7}}{7}\right]$
(b) $\frac{3}{\sqrt{2}}\left[\frac{3 \sqrt{2}}{2}\right]$
(c) $\frac{14 \sqrt{5}}{\sqrt{7}}[2 \sqrt{35}]$

