

Sponsored by The Science Foundation College Uganda East Africa Senior one to sinior six +256 778 633 682, 753 802709 Based On, best for science

digitalteachers.co.ug

Approximations

The Maclaurin's Theorem

The polynomial of Maclaurin's series of any infinitely differentiable function, f(x)m whose value and all values of all its derivatives, exist at x = 0

$$f(x) = f(0)x + \frac{f'(0)}{2!}x^2 + \frac{f''(0)}{3!}x^3 + \cdots$$

Maclaurin's series of sinx

Let
$$f(x) = sinx \implies f(0) = sin(0) = 0$$

 $f'(x) = cosx \implies f'(0) = cos(0) = 1$
 $f''(x) = -sinx \implies f''(0) - sin(0) = 0$
 $f'''(x) = -cosx \implies f'''(0) = -cos(0) = -1$
 $f^{iv}(x) = sinx \implies f'''(0) = sin(0) = -1$

Note that the fourth derivative takes us back to the starting point. So these values repeat in a cycle of four as 0, 1, 0, -1; 0, 1, 0, -1; etc.

By substitution, we have

 $sinx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$

The Maclaurin's series of sin x is valid for all values of x.

Maclaurin series of cos x

$$cosx = \frac{d}{dx}(sinx)$$
$$= \frac{d}{dx}(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots)$$
$$= 1 - \frac{x^2}{2!} + \frac{x^4}{3!} - \frac{x^6}{6!} + \cdots$$

The Maclaurin's series of cos x is valid for all values of x.

digitalteachers.co.ug

Maclaurin's series of e^x

Let
$$f(x) = e^x \Rightarrow f(0) = e^0 = 1$$

 $f'(x) = e^x \Rightarrow f'(0) = e^0 = 1$
 $f''(x) = e^x \Rightarrow f''(0) = e^0 = 1$
 $f'''(x) = e^x \Rightarrow f'''(0) = e^0 = 1$ etc.

Here we see that the function and all its derivatives are the same, so these values repeat themselves indefinitely at 1, 1, 1, 1, etc. by substitution we have

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} - \frac{x^{4}}{4!} + \cdots$$

The Maclaurin's series of e^x is valid for all values of x

Maclaurin series of Inx

Let
$$f(x) = \ln x \Rightarrow f(0) = \ln(0) = ?$$

 $f'(x) = \frac{1}{x} \Rightarrow f'(0) = \frac{1}{0} = ?$
 $f''(x) = -\frac{1}{x^2} \Rightarrow f''(0) = \frac{1}{0^2} = ?$

Here we notice that neither the function nor any of the derivatives exist as x=0, so there is no polynomial Maclaurin's expansion of natural logarithm, Inx.

Maclaurin series of In(1+x)

Let
$$f(x) = \ln(1+x) => f(0) = \ln(1+0) = 0$$

 $f'(x) = -\frac{1}{1+x} => f'(0) = -\frac{1}{1+0} = 1$
 $f''(x) = \frac{-1}{(1+x)^2} => f''(0) = \frac{1}{(1+0)^2} = -1$
 $f'''(x) = \frac{2}{(1+x)^3} => f'''(0) = \frac{2}{(1+0)^3} = 2$
 $f^{iv}(x) = -\frac{3x^2}{(1+x)^4} => f^{iv}(0) = \frac{-3x^2}{(1+0)^4} = -3x^2$ etc

by substitution we have

$$In(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5}$$

The Maclaurin's series of In(1+x) is valid for $-1 < x \le 1$

Summary

f(x)	Expansion	Validity
e ^x	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$	for all x
e^{-x}	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$	for all x
sinx	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	for all x
cosx	$1 - \frac{x^2}{3!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	for all x
tan ⁻¹ x	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	for -1< x ≤ 1
ln(1+x)	$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	for -1< x ≤ 1
$(1+x)^k$	$1 + kx - \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \cdots$	for -1< x ≤ 1
$\frac{1}{1-x}$	$1 + x + x^2 + x^3 + \dots$	for -1< x ≤ 1
$\frac{1}{(1-x)^2}$	$1+2x+3x^2+4x^3+$	for -1< x ≤ 1

Answering questions

The questions usually require to produce Maclaurin's series of a function to a specifies nth term and then its application.

Examples

1. Find the Maclaurin series for $(1+x)^{-1}$ as far as x^4 .

Deduce the Maclaurin series for

- (i) In(1+x)
- (ii) In(1-x)

(iii)
$$In\left(\frac{1-x}{1+x}\right)$$

() (1

Solution

Maclaurin expansion series is given by

$$f(x) = f(0) + f'^{(0)}x + \frac{f''^{(0)}}{2!} + \frac{f''^{(0)}}{3!} + \dots$$

Let $f(x) = (1+x)^{-1} => f(0) = (1+0)^{-1} = 0$
 $f'(x) = -1(1+x)^{-2} => f'(0) = -1(1+0)^{-2} = -1$
 $f''(x) = 2(1+x)^{-3} => f'(0) = 2(1+0)^{-3} = 2$

 $f^{\prime\prime\prime}(x) = -6(1+x)^{-4} => f^{\prime\prime\prime}(0) = -6(1+0)^{-4} = -6$ $f^{i\nu}(x) = 14(1+x)^{-5} => f^{i\nu}(0) = 24(1+0)^{-5} = 24$

By substitution we have

 $(1+x)^{-1} = 1 - x + x^2 - x^3 + x^4$

(i) We know the $\int \frac{dx}{1+x} = \ln(1+x)$ $\Rightarrow \ln(1+x) = \int (1-x+x^2-x^3+x^4) dx$ $= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5}$

This valid for- $1 < x \le 1$

(ii) Replacing x by –x in (i)

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5}$$

This valid for- $1 < x \le 1$

(iii) Subtracting (ii) from (i)

$$\ln(1+x) - \ln(1-x) = 2x + \frac{2x^3}{3} + \frac{2x^5}{5}$$

 Find the Maclaurin series for (1+x)-1 as far as x⁴.

Deduce the Maclaurin series for

Note the validity of **Maclaurin series** is arrived at by using ratio test theorem whose derivation is outside the scope of our coverage (i) $\frac{1}{1+x^2}$ as far as x^6 . (ii) $tan^{-1}x$ as far as x^7 . Show that $tan^{-1}\left(\frac{1}{2}\right) + tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$

Solution

Maclaurin expansion series is given by

$$f(x) = f(0) + f'^{(0)}x + \frac{f''^{(0)}}{2!} + \frac{f'''^{(0)}}{3!} + ...$$

Let $f(x) = (1+x)^{-1} => f(0) = (1+0)^{-1} = 0$
 $f'(x) = -1(1+x)^{-2} => f'(0) = -1(1+0)^{-2} = -1$
 $f''(x) = 2(1+x)^{-3} => f'(0) = 2(1+0)^{-3} = 2$
 $f'''(x) = -6(1+x)^{-4} => f'''(0) = -6(1+0)^{-4} = -6$
 $f^{iv}(x) = 14(1+x)^{-5} => f^{iv}(0) = 24(1+0)^{-5} = 24$

By substitution we have

$$(1+x)^{-1} = 1 - x + x^2 - x^3 + x^4$$

(i) Replacing x by
$$x^2$$
 gives

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6$$
(ii) We know that $\int \frac{dx}{1+x^2} = tan^{-1}x$
 $\Rightarrow tan^{-1}x = \int (1 - x^2 + x^4 - x^6) dx$

$$= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7}$$

We also know that

$$\tan^{-1}A + \tan^{-1}B = \frac{A+B}{1-A.B}$$

$$\Rightarrow \ \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}}$$

$$= \tan^{-1}(1) = \frac{\pi}{4}$$

3. Use Maclaurin theorem to expand e^x up to the term x^4 , use your expansion to evaluate e correct to 4 decimal places.

Let
$$f(x) = e^x \Rightarrow f(0) = e^0 = 1$$

 $f'(x) = e^x \Rightarrow f'(0) = e^0 = 1$
 $f''(x) = e^x \Rightarrow f''(0) = e^0 = 1$
 $f'''(x) = e^x \Rightarrow f'''(0) = e^0 = 1$ etc.

by substitution we have

 $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!}$

digitalteachers.co.ug

Evaluating e
e =e¹, substituting for x = 1

$$e^{1} = 1 + (1) + \frac{(1)^{2}}{2!} + \frac{(1)^{3}}{3!} + \frac{(1)^{4}}{4!}$$

 $= 2 + \frac{1}{6} + \frac{1}{24} = \frac{65}{24} = 2.7083 \ (4d. p)$

4. Expand $\sqrt{\left(\frac{1+2x}{1-x}\right)}$ up to the term x^2 . Hence find the value of $\sqrt{\left(\frac{1.04}{0.98}\right)}$ to four significant figures. (12marks) $\sqrt{\left(\frac{1+2x}{1-x}\right)} = (1+2x)^{\frac{1}{2}}(1-x)^{\frac{-1}{2}}$ Using $(1+x)^n = 1 + nx + \frac{n(n-1)x^2}{2!} + \cdots$ $\sqrt{\left(\frac{1+2x}{1-x}\right)} = (1+x-\frac{1}{2}x^2)(1+\frac{1}{2}x+\frac{3}{8}x^2)$ $= 1+\frac{1}{2}x+\frac{3}{8}x^2+x+\frac{1}{2}x^2-\frac{1}{2}x^2$ $= 1+\frac{3}{2}x+\frac{3}{8}x^2$ $\therefore \sqrt{\left(\frac{1+2x}{1-x}\right)} \approx 1+\frac{3}{2}x+\frac{3}{8}x^2$

Substituting for x = 0.02

$$\sqrt{\left(\frac{1.04}{0.98}\right)} = \sqrt{\frac{1+2(0.02)}{1-0.02}}$$
$$= 1 + \frac{3}{2}(0.02) + \frac{3}{8}(0.02)^2$$
$$= 1.030$$

5. Obtain the first two non-zero terms of Maclaurin's series for sec x

$$f(x) = f(0) + f'^{(0)}x + \frac{f''(0)}{2!} + \frac{f'''(0)}{3!} + \dots$$

$$f(x) = \sec x \Rightarrow f(0) = \sec 0 = 1$$

$$f'(x) = \sec x \Rightarrow f'(0) = \sec 0 = 0$$

$$f''(x) = \sec x \sec^2 x + \tan x \sec x \tan x$$

 \Rightarrow f''(0)=sec0sec²0+tan0sec0tan0= 1+0 = 1

Hence the first two non-zero terms of Maclaurin series of sec $x = 1 + \frac{x^2}{2}$

Revision exercise

- 1. Use Maclaurin theorem to expand the following up to
 - (i) $In\left(\frac{1+x}{1-x}\right)$ up to x³. Hence, find the approximation of In2 correct to 3 significant figure

$$\left[In\left(\frac{1+x}{1-x}\right) = 2x + \frac{2}{3}x^3; 0.691\right]$$

(ii)
$$e^{-x}sinx$$

 $\left[x - x^2 + \frac{1}{3}x^3\right]$
(iii) $In\sqrt{\left(\frac{1+sinx}{1-sinx}\right)}$ $\left[2x + \frac{x^3}{6}\right]$
(iv) $In(1 + sinx)$ $\left[x - \frac{x^2}{2} + \frac{x^3}{6}\right]$
(v) $In(1 + x)^2$ $\left[2x - x^2 + \frac{2x^3}{3} - \frac{x^4}{2}\right]$
(vi) $\frac{1}{\sqrt{(1+x)}}$ $\left[1 - \frac{x}{2} + \frac{3x^2}{8} - \frac{5x^3}{16}\right]$

2. Given $y = tan^{-1}\sqrt{1-x}$ show that

(i)
$$(2-x)\frac{dy}{dx} + \frac{1}{2\sqrt{(1-x)}} = 0$$

(ii) $(2-x)\frac{d^2y}{dx^2} - \frac{dy}{dx} + \frac{1}{4}(1-x)^{-\frac{1}{2}} = 0$

3. Use Maclaurin theorem to show that

(i)
$$\frac{\cos x}{1-x^2} = 1 + \frac{1}{2}x^2 + \frac{11}{24}x^4$$

(ii) $e^{-x}\sin x = \frac{x}{3}(x^2 - 3x + 3)$. Hence
evaluate $e^{-x}\sin \frac{\pi}{3}$ to 4d.p [0.3334]

- 4. Given that $y = e^{tan^{-1}x}$, show that $(1 + x^2)\frac{d^2y}{dx^2} + (2x - 1)\frac{dy}{dx} = 0$. Hence or otherwise, determine the first four non-zero terms of the Maclaurin expansion of y $\left[1 + x + \frac{x^2}{2} + \frac{x^3}{6}\right]$
- 5. Given that $y = In\left\{e^{x}\left(\frac{x-2}{x+2}\right)^{\frac{3}{4}}\right\}$, show that $\frac{dy}{dx} = \frac{x^2-1}{x^2-4}$
- 6. Use Maclaurin's theorem to express In(sinx+cosx) as a power series up to the term x^2 .[x - x^2]

Thank you

Dr. Bbosa Science