

Sponsored by

Approximations

The Maclaurin's Theorem

The polynomial of Maclaurin's series of any infinitely differentiable function, $f(x) m$ whose value and all values of all its derivatives, exist at $x=0$
$f(x)=f(0) x+\frac{f \prime(0)}{2!} x^{2}+\frac{f \prime \prime(0)}{3!} x^{3}+\cdots$

Maclaurin's series of $\sin x$

Let $f(x)=\sin x=>f(0)=\sin (0)=0$
$f^{\prime}(x)=\cos x=>f^{\prime}(0)=\cos (0)=1$
$f^{\prime \prime}(x)=-\sin x=>f^{\prime \prime}(0)-\sin (0)=0$
$f^{\prime \prime \prime}(x)=-\cos x=>f^{\prime \prime \prime}(0)=-\cos (0)=-1$
$f^{i v}(x)=\sin x=>f^{\prime \prime \prime}(0)=\sin (0)=-1$
Note that the fourth derivative takes us back to the starting point. So these values repeat in a cycle of four as $0,1,0,-1 ; 0,1,0,-1$; etc.

By substitution, we have
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$
The Maclaurin's series of $\sin x$ is valid for all values of x.

Maclaurin series of $\cos \mathbf{x}$

$$
\begin{aligned}
\cos x & =\frac{d}{d x}(\sin x) \\
& =\frac{d}{d x}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right) \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{3!}-\frac{x^{6}}{6!}+\cdots
\end{aligned}
$$

The Maclaurin's series of $\cos x$ is valid for all values of x.

Maclaurin's series of e^{x}

$$
\text { Let } \mathrm{f}(\mathrm{x})=e^{x} \Rightarrow \mathrm{f}(0)=e^{0}=1
$$

$\mathrm{f}^{\prime}(\mathrm{x})=e^{x}=>\mathrm{f}^{\prime}(0)=e^{0}=1$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=e^{x}=>\mathrm{f}^{\prime \prime}(0)=e^{0}=1$
$\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=e^{x}=>\mathrm{f}^{\prime \prime \prime}(0)=e^{0}=1$ etc.
Here we see that the function and all its derivatives are the same, so these values repeat themselves indefinitely at $1,1,1,1$, etc. by substitution we have
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}-\frac{x^{4}}{4!}+\cdots$
The Maclaurin's series of e^{x} is valid for all values of x

Maclaurin series of Inx

Let $f(x)=\ln x=>f(0)=\ln (0)=$?
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{x}=>\mathrm{f}^{\prime}(0)=\frac{1}{0}=$?
$f^{\prime \prime}(x)=-\frac{1}{x^{2}}=>f^{\prime \prime}(0)=\frac{1}{0^{2}}=$?
Here we notice that neither the function nor any of the derivatives exist as $x=0$, so there is no polynomial Maclaurin's expansion of natural logarithm, Inx.

Maclaurin series of $\operatorname{In}(1+x)$

Let $f(x)=\ln (1+x)=>f(0)=\ln (1+0)=0$
$f^{\prime}(x)=-\frac{1}{1+x}=>f^{\prime}(0)=-\frac{1}{1+0}=1$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=\frac{-1}{(1+x)^{2}}=>\mathrm{f}^{\prime \prime}(0)=\frac{1}{(1+0)^{2}}=-1$
$\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=\frac{2}{(1+x)^{3}}=>\mathrm{f}^{\prime \prime \prime}(0)=\frac{2}{(1+0)^{3}}=2$
$f^{i v}(\mathrm{x})=-\frac{3 x 2}{(1+x)^{4}}=>f^{i v}(0)=\frac{-3 \times 2}{(1+0)^{4}}=-3 \times 2$ etc
by substitution we have
$\operatorname{In}(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}$
The Maclaurin's series of $\ln (1+x)$ is valid for $-1<x \leq 1$

Note the validity of Maclaurin series is arrived at by using ratio test theorem whose derivation is outside the scope of our coverage

Summary

$\mathrm{f}(\mathrm{x})$	Expansion	Validity
e^{x}	$1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$	for all x
e^{-x}	$1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$	for all x
$\sin \mathrm{x}$	$x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$	for all x
$\cos \mathrm{x}$	$1-\frac{x^{2}}{3!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$	for all x
$\tan ^{-1} x$	$x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$	for $-1<\mathrm{x} \leq 1$
$\ln (1+\mathrm{x})$	$x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$	for $-1<\mathrm{x} \leq 1$
$(1+x)^{k}$	$1+k x-\frac{k(k-1)}{2!} x^{2}+\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots$	for $-1<\mathrm{x} \leq 1$
$\frac{1}{1-x} 1$	$1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}+\ldots \ldots$	for $-1<\mathrm{x} \leq 1$
$\frac{1+2 \mathrm{x}+3 \mathrm{x}^{2}+4 \mathrm{x}^{3}+\ldots \ldots .}{(1-x)^{2}}$	$1+\ldots$	for $-1<\mathrm{x} \leq 1$

Answering questions

The questions usually require to produce
Maclaurin's series of a function to a specifies nth term and then its application.

Examples

1. Find the Maclaurin series for $(1+x)^{-1}$ as far as x^{4}.
Deduce the Maclaurin series for
(i) $\ln (1+x)$
(ii) $\ln (1-x)$
(iii) $\operatorname{In}\left(\frac{1-x}{1+x}\right)$

Solution
Maclaurin expansion series is given by
$f(x)=f(0)+f^{\prime(0)} x+\frac{f^{\prime \prime}(0)}{2!}+\frac{f^{\prime \prime \prime}(0)}{3!}+.$.
Let $f(x)=(1+x)^{-1}=>f(0)=(1+0)^{-1}=0$
$f^{\prime}(x)=-1(1+x)^{-2}=>f^{\prime}(0)=-1(1+0)^{-2}=-1$
$f^{\prime \prime}(x)=2(1+x)^{-3}=>f^{\prime}(0)=2(1+0)^{-3}=2$
$f^{\prime \prime \prime}(x)=-6(1+x)^{-4}=>f^{\prime \prime \prime}(0)=-6(1+0)^{-4}=-6$
$f^{i v}(x)=14(1+x)^{-5} \Rightarrow f^{i v}(0)=24(1+0)^{-5}=24$
By substitution we have
$(1+x)^{-1}=1-x+x^{2}-x^{3}+x^{4}$
(i) We know the $\int \frac{d x}{1+x}=\ln (1+x)$

$$
\begin{aligned}
\Rightarrow & \ln (1+\mathrm{x})=\int\left(1-x+x^{2}-x^{3}+x^{4}\right) d x \\
& =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}
\end{aligned}
$$

This valid for- $1<x \leq 1$
(ii) Replacing x by $-x$ in (i)

$$
\ln (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\frac{x^{5}}{5}
$$

This valid for- $1<x \leq 1$
(iii) Subtracting (ii) from (i)

$$
\ln (1+x)-\ln (1-x)=2 x+\frac{2 x^{3}}{3}+\frac{2 x^{5}}{5}
$$

2. Find the Maclaurin series for ($1+\mathrm{x}$)-1 as far as x^{4}.
Deduce the Maclaurin series for
(i) $\frac{1}{1+x^{2}}$ as far as x^{6}.
(ii) $\tan ^{-1} x$ as far as x^{7}.

$$
\text { Show that } \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{4}
$$

Solution
Maclaurin expansion series is given by
$f(x)=f(0)+f^{\prime(0)} x+\frac{f^{\prime \prime}(0)}{2!}+\frac{f^{\prime \prime \prime}(0)}{3!}+\ldots$
Let $f(x)=(1+x)^{-1}=>f(0)=(1+0)^{-1}=0$
$f^{\prime}(x)=-1(1+x)^{-2}=>f^{\prime}(0)=-1(1+0)^{-2}=-1$
$f^{\prime \prime}(x)=2(1+x)^{-3}=>f^{\prime}(0)=2(1+0)^{-3}=2$
$f^{\prime \prime \prime}(x)=-6(1+x)^{-4}=>f^{\prime \prime \prime}(0)=-6(1+0)^{-4}=-6$
$f^{i v}(\mathrm{x})=14(1+\mathrm{x})^{-5}=>f^{i v}(0)=24(1+0)^{-5}=24$
By substitution we have
$(1+x)^{-1}=1-x+x^{2}-x^{3}+x^{4}$
(i) Replacing x by x^{2} gives

$$
\frac{1}{1+x^{2}}=1-\mathrm{x}^{2}+\mathrm{x}^{4}-\mathrm{x}^{6}
$$

(ii) We know that $\int \frac{d x}{1+x^{2}}=\tan ^{-1} x$

$$
\begin{aligned}
\Rightarrow \tan ^{-1} x & =\int\left(1-\mathrm{x}^{2}+\mathrm{x}^{4}-\mathrm{x}^{6}\right) d x \\
& =x-\frac{\mathrm{x}^{3}}{3}+\frac{\mathrm{x}^{5}}{5}-\frac{\mathrm{x}^{7}}{7}
\end{aligned}
$$

We also know that

$$
\begin{aligned}
& \tan ^{-1} A+\tan ^{-1} B=\frac{A+B}{1-A \cdot B} \\
& \begin{aligned}
\Rightarrow \tan ^{-1}\left(\frac{1}{2}\right) & +\tan ^{-1}\left(\frac{1}{3}\right)=\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \cdot \frac{1}{3}} \\
& =\tan ^{-1}(1)=\frac{\pi}{4}
\end{aligned}
\end{aligned}
$$

3. Use Maclaurin theorem to expand e^{x} up to the term x^{4}, use your expansion to evaluate e correct to 4 decimal places.

Let $\mathrm{f}(\mathrm{x})=e^{x}=>\mathrm{f}(0)=e^{0}=1$
$\mathrm{f}^{\prime}(\mathrm{x})=e^{x}=>\mathrm{f}^{\prime}(0)=e^{0}=1$
$\mathrm{f}^{\prime \prime}(\mathrm{x})=e^{x}=>\mathrm{f}^{\prime \prime}(0)=e^{0}=1$
$\mathrm{f}^{\prime \prime \prime}(\mathrm{x})=e^{x}=>\mathrm{f}^{\prime \prime \prime}(0)=e^{0}=1$ etc.
by substitution we have
$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}$

Evaluating e
$e=e^{1}$, substituting for $x=1$

$$
\begin{aligned}
& e^{1}=1+(1)+\frac{(1)^{2}}{2!}+\frac{(1)^{3}}{3!}+\frac{(1)^{4}}{4!} \\
& \quad=2+\frac{1}{6}+\frac{1}{24}=\frac{65}{24}=2.7083(4 d . p)
\end{aligned}
$$

4. Expand $\sqrt{\left(\frac{1+2 x}{1-x}\right)}$ up to the term x^{2}. Hence find the value of $\sqrt{\left(\frac{1.04}{0.98}\right)}$ to four significant figures. (12marks)

$$
\sqrt{\left(\frac{1+2 x}{1-x}\right)}=(1+2 x)^{\frac{1}{2}}(1-x)^{\frac{-1}{2}}
$$

Using $(1+x)^{n}=1+n x+\frac{n(n-1) x^{2}}{2!}+\cdots$

$$
\begin{aligned}
\sqrt{\left(\frac{1+2 x}{1-x}\right)} & =\left(1+x-\frac{1}{2} x^{2}\right)\left(1+\frac{1}{2} x+\frac{3}{8} x^{2}\right) \\
& =1+\frac{1}{2} x+\frac{3}{8} x^{2}+x+\frac{1}{2} x^{2}-\frac{1}{2} x^{2} \\
& =1+\frac{3}{2} x+\frac{3}{8} x^{2} \\
& \therefore \sqrt{\left(\frac{1+2 x}{1-x}\right)} \approx 1+\frac{3}{2} x+\frac{3}{8} x^{2}
\end{aligned}
$$

Substituting for $\mathrm{x}=0.02$

$$
\begin{aligned}
\sqrt{\left(\frac{1.04}{0.98}\right)} & =\sqrt{\frac{1+2(0.02)}{1-0.02}} \\
& =1+\frac{3}{2}(0.02)+\frac{3}{8}(0.02)^{2} \\
& =1.030
\end{aligned}
$$

5. Obtain the first two non-zero terms of Maclaurin's series for sec x
$f(x)=f(0)+f^{\prime(0)} x+\frac{f^{\prime \prime}(0)}{2!}+\frac{f^{\prime \prime \prime}(0)}{3!}+\ldots$
$f(x)=\sec x=>f(0)=\sec 0=1$
$f^{\prime}(x)=\sec x \tan x=>f^{\prime}(0)=\sec 0 \tan 0=0$
$f^{\prime \prime}(x)=\sec ^{\prime} \sec ^{2} x+\tan x \sec x \tan x$
$\Rightarrow f^{\prime \prime}(0)=\sec 0 \sec ^{2} 0+\tan 0 \sec 0 \tan 0=1+0=1$
Hence the first two non-zero terms of
Maclaurin series of $\sec x=1+\frac{x^{2}}{2}$

Revision exercise

1. Use Maclaurin theorem to expand the following up to
(i) In $\left(\frac{1+x}{1-x}\right)$ up to x^{3}. Hence, find the approximation of $\operatorname{In} 2$ correct to 3 significant figure

$$
\left[\operatorname{In}\left(\frac{1+x}{1-x}\right)=2 x+\frac{2}{3} x^{3} ; 0.691\right]
$$

(ii) $e^{-x} \sin x$
$\left[x-x^{2}+\frac{1}{3} x^{3}\right]$
(iii) $\operatorname{In} \sqrt{\left(\frac{1+\sin x}{1-\sin x}\right)} \quad\left[2 x+\frac{x^{3}}{6}\right]$
(iv) $\operatorname{In}(1+\sin x) \quad\left[x-\frac{x^{2}}{2}+\frac{x^{3}}{6}\right]$
(v) $\operatorname{In}(1+x)^{2} \quad\left[2 x-x^{2}+\frac{2 x^{3}}{3}-\frac{x^{4}}{2}\right]$
(vi) $\frac{1}{\sqrt{(1+x)}} \quad\left[1-\frac{x}{2}+\frac{3 x^{2}}{8}-\frac{5 x^{3}}{16}\right]$
2. Given $y=\tan ^{-1} \sqrt{1-x}$ show that
(i) $(2-x) \frac{d y}{d x}+\frac{1}{2 \sqrt{(1-x)}}=0$
(ii) $(2-x) \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}+\frac{1}{4}(1-x)^{-\frac{1}{2}}=0$
3. Use Maclaurin theorem to show that
(i) $\frac{\cos x}{1-x^{2}}=1+\frac{1}{2} x^{2}+\frac{11}{24} x^{4}$
(ii) $\quad e^{-x} \sin x=\frac{x}{3}\left(x^{2}-3 x+3\right)$. Hence evaluate $e^{-x} \sin \frac{\pi}{3}$ to 4d.p [0.3334]
4. Given that $y=e^{\tan ^{-1} x}$, show that $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}=0$. Hence or otherwise, determine the first four non-zero terms of the Maclaurin expansion of y $\left[1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}\right]$
5. Given that $\mathrm{y}=\operatorname{In}\left\{e^{x}\left(\frac{x-2}{x+2}\right)^{\frac{3}{4}}\right\}$, show that $\frac{d y}{d x}=\frac{x^{2}-1}{x^{2}-4}$
6. Use Maclaurin's theorem to express $\ln (\sin x+\cos x)$ as a power series up to the term x^{2}. $\left[x-x^{2}\right]$

Thank you
Dr. Bbosa Science

