

Sponsored by

Integration (A-level)

It the reverse of differentiation.
During integration the following concepts should be considered.
(a) Polynomial functions; $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+1$ where $n \neq-1$ i.e. increase the power by 1 and divide the term by the new power, e.g.
(i) $\int 1 d x=\int\left(x^{0}\right) d x=x+c$
(ii) $\int x d x=\int x^{1} d x$

$$
\begin{aligned}
& =\frac{1}{1+1} x^{1+1} \\
& =\frac{1}{2} x^{2}
\end{aligned}
$$

(iii) $\int x^{4} d x=\frac{1}{4+1} x^{4+1}=\frac{1}{4} x^{5}$
(iv) $\int 4 x^{3} d x=4 \int x^{3} d x=\frac{4}{(3+1)} x^{4}=x^{4}$
(v) $\int x^{-3}=\frac{1}{-3+1} x^{-3+1}=-\frac{1}{2} x^{-2}=\frac{-1}{2 x^{2}}$
(b) Trigonometric functions, e.g.
(i) $\frac{d}{d x}(\cos x)=-\sin x+c$

- $\int \sin x d x=-\cos x+c$
(ii) $\frac{d}{d x}(\sin x)=\cos x$

$$
-\int \cos x d x=\sin x+c
$$

(iii) $\frac{d}{d x}(\tan x)=\sec ^{2}+c$
$-\int \sec ^{2} d x=\tan x+c$
(iv) $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$

$$
-\int \operatorname{cosec}^{2} x=-\cot x+c
$$

Methods of integration

The choice of the method depends on judgement. Below are some of the methods:

Integration by change of variable where a derivative exist/integration by recognition or inspection

Example 1

(i) $\int x \sqrt{\left(x^{2}-2\right)} \mathrm{dx}$

Solution

$$
\begin{aligned}
& \text { Let } \mathrm{u}=\mathrm{x}^{2}-2 \\
& -\quad d u=2 u \text { i.e. } x d x=\frac{1}{2} d u
\end{aligned}
$$

$$
\begin{aligned}
& \int x \sqrt{\left(x^{2}-3\right)} d x=\int \sqrt{\left(x^{2}-3\right)} x d x \\
&= \int \sqrt{u} \cdot \frac{1}{2} d u \\
&= \frac{1}{2} \int u^{\frac{1}{2}} d u \\
&= \frac{1}{2} \cdot \frac{2}{3} u^{\frac{3}{2}}+c \\
&= \frac{1}{3}\left(x^{2}-3\right)^{\frac{3}{2}}+c \\
&= \frac{1}{3}\left(x^{2}-3\right) \sqrt{\left(x^{2}-3\right)}+c
\end{aligned}
$$

Or let $u=\sqrt{\left(x^{2}-32\right)} \Rightarrow u^{2}=x^{2}-3$
$2 d u=2 x d x$ i.e. $x d x=u d u$
$\int x \sqrt{\left(x^{2}-3\right)} d x=\int \sqrt{\left(x^{2}-3\right)} x d x$

$$
\int u . u d u=\int u^{2} d u
$$

$$
=\frac{1}{3} u^{3}+c
$$

$$
=\frac{1}{3}\left(x^{2}-3\right) \sqrt{\left(x^{2}-3\right)}+c
$$

(ii) $\int x \operatorname{cosec}^{2}\left(x^{2}\right) d x$

Solution

Let $\mathrm{u}=\mathrm{x}^{2}=>\mathrm{du}=2 \mathrm{xdx}$ i.e. $\mathrm{xdx}=\frac{1}{2} d u$
$\int x \operatorname{cosec}^{2}\left(x^{2}\right) d x=\int \operatorname{cosec}^{2}\left(x^{2}\right) x d x$
$=\frac{1}{2} \int \operatorname{cosec}^{2} u d u$
$=-\cot u+c$
$=-\cot x^{2}+c$
(iii) $\int_{0}^{1} \frac{x^{2}-1}{\sqrt{\left(x^{3}-3 x+5\right)}} d x$

Solution

Let $\mathrm{u}=x^{3}-3 x+5 \Rightarrow>d u=\left(3 x^{2}-3\right) d x$

$$
\text { i.e. }(3 x 2-3) d x=\frac{1}{3} d u
$$

$$
\therefore \int_{0}^{1} \frac{x^{2}-1}{\sqrt{\left(x^{3}-3 x+5\right)}} d x=\frac{1}{3} \int_{0}^{1} \frac{1}{\sqrt{u}} d x
$$

$$
=\frac{1}{3} u^{\frac{1}{2}}(2)+c
$$

$$
=\frac{2}{3} \sqrt{\left(x^{3}-3 x+5\right)}
$$

- $\int_{0}^{1} \frac{x^{2}-1}{\sqrt{\left(x^{3}-3 x+5\right)}} d x=\frac{2}{3}{\sqrt{\left(x^{3}-3 x+5\right)}}_{0}^{1}$

$$
\begin{aligned}
& =\frac{2}{3}(\sqrt{1-3+5}-\sqrt{5}) \\
& =\frac{2}{3}(\sqrt{3}-\sqrt{5})=0.336
\end{aligned}
$$

(iv) $\int_{0}^{\frac{\pi}{4}} \sec ^{2} x \sqrt{\tan x} d x$

Solution

Let $\mathrm{u}=\tan x=>\mathrm{du}=\sec ^{2} \mathrm{xdx}$

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \sec ^{2} x \sqrt{\tan x} d x & =\int_{0}^{\frac{\pi}{4}} u^{\frac{1}{2}} d u \\
& =\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{0}^{\frac{\pi}{4}} \\
& =\left[\frac{2}{3}(\tan x)^{\frac{3}{2}}\right]_{0}^{\frac{\pi}{4}} \\
& =\frac{2}{3}
\end{aligned}
$$

(v) $\int \cos x \sqrt{1-2 \sin x} d x$

Solution

Let $u=1-2 \sin x=>d u=-2 \cos x$
i.e. $\cos x d x=-\frac{1}{2} d u$
$\therefore \int \cos x \sqrt{1-2 \sin x} d x=-\frac{1}{2} \int u^{\frac{1}{2}} d x$

$$
\begin{gathered}
=\frac{1}{2} \cdot \frac{2}{3} u^{\frac{3}{2}}+c \\
=\frac{1}{3}(1-2 \sin x)^{\frac{3}{2}}+c \\
=\frac{1}{3}(1-2 \sin x) \sqrt{(1-2 \sin x)}+c
\end{gathered}
$$

Integration by change of variable where a

 derivative is given
Example 2

(a) Using the substation $x=\cos 2 \theta$ or otherwise, prove that

$$
\int_{0}^{1} \sqrt{\left(\frac{1-x}{1+x}\right)} d x=\frac{\pi}{2}-1
$$

Solution

Given $x=\cos 2 \theta \Rightarrow d x=-2 \sin 2 \theta d \theta$
Changing limits

X	θ
0	$\frac{1}{4} \pi$
1	0

$\int_{0}^{1} \sqrt{\left(\frac{1-x}{1+x}\right)} d x=-2 \int_{\frac{\pi}{4}}^{0} \sqrt{\left(\frac{1-\cos 2 \theta}{1+\cos \theta}\right)} \sin 2 \theta d \theta$
$=2 \int_{0}^{\frac{\pi}{4}} \sqrt{\left(\frac{2 \sin ^{2} \theta}{2 \cos ^{2} \theta}\right)} \sin 2 \theta d \theta$
$=2 \int_{0}^{\frac{\pi}{4}}\left(\frac{\sin \theta}{\cos \theta}\right) 2 \sin \theta \cos \theta d \theta$
$=4 \int_{0}^{\frac{\pi}{4}} \sin ^{2} \theta d \theta$
$=\frac{4}{2} \int_{0}^{\frac{\pi}{4}}(1-\cos 2 \theta) d \theta$
(double angle form

$$
\begin{aligned}
& =2\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{0}^{\frac{\pi}{4}} \\
& =2\left(\frac{\pi}{4}-\frac{1}{2}\right)=\frac{\pi}{2}-1
\end{aligned}
$$

(b) Use the substitution $x=\sin \theta$ to evaluate $\int_{\frac{1}{2}}^{\sqrt{\frac{1}{2}}} \frac{d x}{x^{2}\left(1-x^{2}\right)}$

Solution

Given $\mathrm{x}=\sin \theta=>\mathrm{dx}=\cos \theta \mathrm{d} \theta$
Changing limits

$$
\begin{array}{|l|l|}
\hline \mathrm{x} & \theta \\
\hline \frac{1}{2} & \frac{1}{6} \pi \\
\hline \sqrt{\frac{1}{2}} & \frac{1}{4} \pi \\
\begin{aligned}
\therefore \int_{\frac{1}{2}}^{\sqrt{\frac{1}{2}}} \frac{d x}{x^{2}\left(1-x^{2}\right)} & =\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\cos \theta d \theta}{\sin ^{2} \theta\left(1-\sin ^{2} \theta\right)} \\
& =\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{d \theta}{\sin ^{2} \theta}=\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec}^{2} \theta d \theta \\
& =[-\cot \theta]_{\frac{\pi}{6}}^{\frac{\pi}{4}}=[\cot \theta]_{\frac{\pi}{4}}^{\frac{\pi}{6}} \\
& =\cot \frac{\pi}{6}-\cot \frac{\pi}{4}=\sqrt{3}-1
\end{aligned} \\
& \\
& \\
& \\
& \\
\hline
\end{array}
$$

Revision exercise 1

Integrate the following using the suggested substitution in each case.

1. $\int x(x+4)^{3} d x, \mathrm{u}=\mathrm{x}+4$
$\left[\frac{1}{5}(x-1)(x+4)^{4}+c\right]$
2. $\int(x-4)(x-1)^{3} d x, \mathrm{u}=\mathrm{x}-1$ $\left[\frac{1}{4}(4 x-19)(x-1)^{4}+c\right]$
3. $\int x(2 x-3)^{2} d x, \mathrm{u}=2 \mathrm{x}-3$

$$
\left[\frac{1}{16}(2 x+1)(2 x-3)^{3}+c\right]
$$

4. $\int(3 x+1)(2 x-5)^{2} d x, \mathrm{u}=2 \mathrm{x}-5$
$\left[\frac{1}{48}(18 x+23)(2 x-5)^{3}+c\right]$
5. $\int \frac{x}{x+3} d x, \mathrm{u}=\mathrm{x}+3 \quad[x-3 \operatorname{In}(x+3)+c]$
6. $\int \frac{x}{(x+1)^{2}} d x, \mathrm{u}=\mathrm{x}+1\left[\frac{1}{x+1}+\operatorname{In}(x+1)+c\right]$
7. $\int \frac{x+1}{(2 x-3)^{3}} d x, \mathrm{u}=2 \mathrm{x}-1\left[-\frac{4 x+1}{8(2 x-3)^{2}}\right]$
8. $\int \sqrt{(x+1)} d x, \mathrm{u}=\mathrm{x}+1$
$\left[\frac{2}{15}(3 x-2) \sqrt{(x+1)^{2}}+c\right]$
9. $\int x \sqrt{(x-1)} d x, u=\sqrt{(x-1)}$
$\left[\frac{2}{15}(3 x+2) \sqrt{(x-1)^{2}}+c\right]$
10. $\int(x-4) \sqrt{(x+5)}, \mathrm{u}=\mathrm{x}+5$
$\left[\frac{2}{5}(x-10) \sqrt{(x+1)^{3}}+c\right]$
11. $\int(3 x-2) \sqrt{(1-2 x)} d x, u=\sqrt{(1-2 x)}$
$\left[\frac{1}{15}(7-9 x) \sqrt{(1-2 x)^{2}}+c\right]$
12. $\int \frac{x}{\sqrt{x+1}} d x, \mathrm{u}=\mathrm{x}+1$
$\left[\frac{2}{3}(x-2) \sqrt{x+1}+c\right]$
13. $\int \frac{x}{\sqrt{x-3}} d x, \mathrm{u}=\sqrt{x-3}$
$\left[\frac{2}{3}(x+6) \sqrt{x-3}+c\right]$
14. $\int \frac{x-2}{\sqrt{x-4}} d x, \mathrm{u}=x-4$

$$
\left[\frac{2}{3}(x+2) \sqrt{x-4}+c\right]
$$

15. $\int \frac{x+3}{\sqrt{5-x}} d x, \mathrm{u}=\sqrt{5-x}$

$$
\left[-\frac{2}{3}(x+19) \sqrt{5-x}+c\right]
$$

16. Use the substitution $x=\frac{1}{u}$ to
evaluate $\int_{1}^{2} \frac{d x}{x \sqrt{x^{2}-1}} \quad\left[\frac{\pi}{3}\right]$
17. Use the substitution $\mathrm{u}=\sqrt{x-2}$ to evaluate $\int_{3}^{4} \frac{3 x}{\sqrt{x-2}} d x$
$[16 \sqrt{2}-4]$
(b) $\int_{4}^{7} \frac{5-x}{\sqrt{x-3}} \mathrm{~d} x$
(c) $\int_{1}^{3}(3 x+1)(2-x)^{4} d x$
18. By using the substitution $\mathrm{u}=\sqrt{1+x^{2}}$, show that $\int_{0}^{\sqrt{3}} x^{2} \sqrt{\left(1+x^{2}\right)} d x=3 \frac{13}{15}$

Integration by change of variable where a derivative not exist

Here a term is solved by changing it to another variable

Example 3

Find
(a) $\int_{5}^{6} x \sqrt{(x-5)} d x$

Solution

Let $\mathrm{u}=\sqrt{(x-5)}$ hence $u^{2}=x-5=>\mathrm{x}=\mathrm{u}^{2}+5$
$d x=2 u d u$
Changing limits

x	θ
6	1
5	0

$$
\begin{aligned}
\therefore \int_{5}^{6} x \sqrt{(x-5)} d x & =\int_{0}^{1}\left(u^{2}+5\right) u .2 u d u \\
& =2 \int_{0}^{1}\left(u^{4}+5 u^{2}\right) d u \\
& =2\left[\frac{1}{5} u^{5}+\frac{5}{3} u^{3}\right]_{0}^{1} \\
& =\frac{2}{15}(3+25)=\frac{56}{15}
\end{aligned}
$$

(b) $\int \frac{x-3}{\sqrt{x+1}} d x$

Solution

$$
\begin{aligned}
& \text { Let } \mathrm{u}=\sqrt{x+1} \text { i.e. } u^{2}=x+1 \\
& \qquad \begin{aligned}
& \mathrm{x}=\mathrm{u}^{2}-1 \text { and } \mathrm{dx}=2 \mathrm{udu} \\
& \therefore \int \frac{x-3}{\sqrt{x+1}} d x=\int \frac{\left(u^{2}-1\right)}{u} \cdot 2 u d u \\
&=2 \int\left(u^{2}-4\right) d u \\
&=2\left(\frac{1}{3} u^{3}-4 u\right)+c \\
&=\frac{2}{3} u\left(u^{2}-12\right)+c \\
&=\frac{2}{3} \sqrt{(x+1)}(x+1-12)+c \\
&=\frac{2}{3}(x-11) \sqrt{(x+1)}+c
\end{aligned}
\end{aligned}
$$

18. Evaluate
(a) $\int_{3}^{5} x(x-3)^{2} d x$
(c) $\int(2 \mathrm{x}-1)(\mathrm{x}+2)^{3} d x$

Solution

$$
\begin{aligned}
& \text { Let } \mathrm{u}=\mathrm{x}+2=>\mathrm{x}=\mathrm{u}-2 \text { and } \mathrm{dx}=\mathrm{du} \\
& \begin{aligned}
\therefore \int(2 \mathrm{x}-1)(\mathrm{x}+2)^{3} d x
\end{aligned} \\
& \qquad \begin{aligned}
& =\int\left[2(u-2)-1 u^{3} d u\right] \\
& =\frac{2}{5} u^{5}-\frac{5}{4} u^{4}+c \\
& =\frac{1}{20} u^{4}(8 u-25)+c \\
& =\frac{1}{20}(x+2)^{4}(8(x+2+-25)+c \\
\quad & \frac{1}{20}(8 x-9)(x+2)^{4}+c
\end{aligned}
\end{aligned}
$$

(d) $\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x$

Solution

Let $\mathrm{u}=\sqrt{x}=>x=u^{2}$ and $\mathrm{d} \mathrm{x}=2 \mathrm{u}$
$\therefore \int \frac{\sin u}{u} .2 u d x=2 \int \sin u d u$

$$
\begin{aligned}
& =-2 \cos u+c \\
& =-2 \cos \sqrt{x}+c
\end{aligned}
$$

Revision exercise 2

1. Integrate each of the following with respect to x using suitable substitution
(a) $x(x+3)^{3}$

$$
\left[\frac{1}{20}\left(4 x-3 x+3^{4}\right)+c\right]
$$

(b) $x \sqrt{5-x}$

$$
\left[-\frac{2}{15}\left(3 x+10 \sqrt{(5-3)^{3}}+c\right)\right]
$$

(c) $\frac{x-3}{(x+2)^{2}} \quad\left[\frac{5}{x+2}+\operatorname{In}(x+2)+c\right]$
(d) $\frac{x}{\sqrt{2 x+1}} \quad\left[\frac{1}{3}(x-1) \sqrt{2 x+1}+c\right]$
(e) $(x-3)(5-2 x)^{4}$
$\left[\frac{1}{120}(31-10 x)(5-2 x)^{5}+c\right]$
(f) $\frac{x}{\sqrt{(x+1)^{3}}} \quad\left[\frac{2(x+2)}{\sqrt{x+1}}+c\right]$
(g) $\frac{x+3}{(3-x)^{2}} \quad\left[\frac{6}{3-x}+\operatorname{In}(3-x)+c\right]$
(h) $x^{2}(x-1)^{4}$

$$
\left[\frac{1}{105}\left(15 x^{2}+5 x+1\right)(x-1)^{5}+c\right]
$$

(i) $x \sqrt{(1-x)^{3}}$

$$
\left[-\frac{2}{35}(5 x+2) \sqrt{(1-x)^{5}}\right]
$$

Integrations involving trigonometric functions

A. The double formulae, i.e.

- $\quad \cos 2 x=2 \cos ^{2} x-1=1-2 \sin ^{2} x$
- $\quad 1+\cos 2 x=2 \cos ^{2} x$
- $\quad 1-\cos 2 x=2 \sin ^{2} x$
- $\quad \operatorname{Sin} 2 x=2 \sin x \cos 2$

Example 4

Find the following integrals
(a) $\frac{\tan \theta}{\sqrt{1+\cos 2 \theta}} d \theta$

Solution

$$
\frac{\tan \theta}{\sqrt{1+\cos 2 \theta}} d \theta=\int \frac{\tan \theta}{\sqrt{2 \cos ^{2} \theta}} d \theta=\int \frac{\sin \theta}{\sqrt{2}\left(\cos ^{2} \theta\right)} d \theta
$$

Let $u=\cos \theta=>d u=-\sin \theta d \theta$

$$
-\quad d \theta=\frac{d u}{-\sin \theta}
$$

$$
\frac{1}{\sqrt{2}} \int \frac{\sin \theta}{\left(\cos ^{2} \theta\right)} d \theta=\frac{1}{\sqrt{2}} \int \frac{\sin \theta}{u^{2}} \cdot \frac{d u}{-\sin \theta}
$$

$$
\begin{aligned}
& =-\frac{1}{\sqrt{2}} \int \frac{d u}{u^{2}}=-\frac{1}{\sqrt{2}} \int u^{-2} d u \\
& =-\frac{1}{\sqrt{2}}\left(-u^{-1}\right)+c \\
& =\frac{1}{\sqrt{2} \cos \theta}+c
\end{aligned}
$$

(b) $\int \sqrt{1-\cos 4 \theta} d \theta$

Solution

$$
\begin{aligned}
\int \sqrt{1-\cos 4 \theta} d \theta & =\int \sqrt{2 \sin ^{2} 2 \theta} d \theta \\
& =\sqrt{2} \int \sin 2 \theta d \theta \\
& =\frac{-\sqrt{2}}{2} \cos 2 \theta+c
\end{aligned}
$$

(c) $\int \sin 3 \theta \cos 3 \theta d \theta=\frac{1}{2} \int 2 \sin 3 \theta \cos 3 \theta d \theta$

$$
\begin{aligned}
& =\frac{1}{2} \int \sin 6 \theta \\
& =-\frac{1}{12} \cos 6 \theta+c
\end{aligned}
$$

B. The factor formulae, i.e.

- $\cos \alpha+\cos \beta=2 \cos \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
- $\cos \alpha-\cos \beta=-2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$
- $\sin \alpha+\sin \beta=2 \sin \left(\frac{\alpha+\beta}{2}\right) \cos \left(\frac{\alpha-\beta}{2}\right)$
- $\sin \alpha-\sin \beta=-2 \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)$

Example 5

Find the following integrals
(a) $\int \cos 2 \theta \cos \theta d \theta$ Solution

$$
\begin{aligned}
\int \cos 2 \theta \cos \theta d \theta & =\frac{1}{2} \int 2 \cos 2 \theta \cos \theta d \theta \\
& =\frac{1}{2} \int(\cos 3 \theta+\cos \theta) d \theta \\
& =\frac{1}{2}\left(\frac{1}{3} \sin 3 \theta+\sin \theta\right)+c \\
& =\frac{1}{6} \sin 3 \theta+\frac{1}{2} \sin \theta+c
\end{aligned}
$$

(b) $\int \sin 4 \theta \sin 3 \theta d \theta$

Solution

$$
\begin{aligned}
\int \sin 4 \theta \sin 3 \theta d \theta & =\frac{1}{2} \int 2 \sin 4 \theta \sin 3 \theta d \theta \\
& =\frac{1}{2} \int(\cos 7 \theta-\cos \theta) d \theta \\
& =\frac{1}{2}\left(\frac{1}{7} \sin 7 \theta-\sin \theta\right)+c \\
& =\frac{1}{14} \sin 7 \theta+\frac{1}{2} \sin \theta+c
\end{aligned}
$$

(c) $\int \cos 3 \theta \sin \theta d \theta$

Solution

$$
\begin{aligned}
\int \cos 3 \theta \sin \theta d \theta & =\frac{1}{2} \int 2 \cos 3 \theta \sin \theta d \theta \\
& =\frac{1}{2} \int(\sin 4 \theta-\sin 2 \theta) d \theta \\
& =\frac{1}{2}\left(-\frac{1}{4} \cos 4 \theta+\frac{1}{2} \cos 2 \theta\right)+c \\
& =\frac{1}{4} \cos 2 \theta-\frac{1}{8} \cos 4 \theta+c
\end{aligned}
$$

(d) $\int \sin \frac{3}{2} \theta \cos \frac{1}{2} \theta d \theta$

Solution

$$
\begin{aligned}
\int \sin \frac{3}{2} \theta \cos \frac{1}{2} \theta d \theta & =\frac{1}{2} \int 2 \sin \frac{3}{2} \theta \cos \frac{1}{2} \theta d \theta \\
& =\frac{1}{2} \int(\sin 2 \theta+\sin \theta) d \theta \\
& =\frac{1}{2}\left(-\frac{1}{2} \cos 2 \theta-\cos \theta\right)+c \\
& =-\frac{1}{4}(\cos 2 \theta+\cos \theta)+c
\end{aligned}
$$

(e) $\int \sin 2 \theta \cos \theta d \theta$

Solution

$$
\begin{aligned}
\int \sin 2 \theta \cos \theta d \theta & =\frac{1}{2} \int 2 \sin 2 \theta \cos \theta d \theta \\
& =\frac{1}{2} \int(\sin 3 \theta+\sin \theta) d \theta \\
& =\frac{1}{2}\left(-\frac{1}{3} \cos 3 \theta-\cos \theta\right)+c \\
& =-\frac{1}{6}(\cos 2 \theta+3 \cos \theta)+c
\end{aligned}
$$

Note
(i) The integral $\int \sin 2 \theta \cos 2 \theta d \theta$, where the angles are the same can be solved in two ways.

Method I: double angle formula

$$
\begin{aligned}
\int \sin 2 \theta \cos 2 \theta d \theta & =\frac{1}{2} \int \sin 4 \theta d \theta \\
& =-\frac{1}{8} \cos 4 \theta+c
\end{aligned}
$$

Method II: the factor formula

$$
\begin{aligned}
\int \sin 2 \theta \cos 2 \theta d \theta & =\frac{1}{2} \int(\sin 4 \theta+\sin 0) d \theta \\
& =-\frac{1}{8} \cos 4 \theta+c
\end{aligned}
$$

(ii) The integral of $\int \sin 4 \theta \cos 2 \theta$ where the angles are different, use method I because method II is inapplicable.

Revision exercise 3

1. Evaluate
(a) $\int_{0}^{\frac{\pi}{2}} \sin 2 x \cos x d x$
(b) $\int_{0}^{\frac{\pi}{6}} \sin 3 x \sin x d x$
2. Integrate the following using appropriate substitution.
(a) $\int 6 x \sin \left(x^{2}-4\right) d x$ $\left[-3 \cos \left(x^{2}-4\right)+c\right]$
(b) $\int 5 x \cos \left(5-x^{2}\right) d x$ $\left[-\frac{5}{2} \sin \left(5-x^{2}\right)+c\right]$
(c) $\int 3 x \sqrt{1+x^{2}} d x$ $\left[\left(1+x^{2}\right) \sqrt{1+x^{2}}+c\right]$
(d) $\int 3 x\left(x^{2}+6\right)^{5} d x\left[\frac{1}{4}\left(x^{2}+6\right)^{6}+c\right]$
(e) $\int \frac{x}{\sqrt{\left(2 x^{2}-5\right)}} d x \quad\left[\frac{1}{2} \sqrt{\left(2 x^{2}-5\right)}\right]+c$

Integrations of odd and even powers of trigonometric functions

$(\sin x, \cos x, \tan x, \cot x, \sec x$ and $\operatorname{cosec} x)$

Integration of trigonometric functions rose to odd powers

The Pythagoras theorem in trigonometry is handy namely

$$
\begin{array}{ll}
- & \cos ^{2} x+\sin ^{2} x=1 \\
- & 1+\tan ^{2} x=\sec ^{2} x \\
- & 1+\cot ^{2} x=\operatorname{cosec}^{2} x
\end{array}
$$

Example 6

Integrate the following
(a) $\int \cos ^{5} x d x$

Solution

$\int \cos ^{5} x d x=\int \cos ^{4} x \cos x d x$
$=\int\left(1-\sin ^{2} x\right)^{2} \cos x d x$
$=\int\left(\cos x-2 \sin ^{2} x \cos x+\sin ^{4} x \cos x\right) d x$
$=\sin x-\frac{2}{3} \sin ^{3} x+\frac{1}{5} \sin ^{5} x+c$
(b) $\int \cos ^{3} 2 x d x$

Solution

$$
\begin{aligned}
\int \cos ^{3} 2 x d x & =\int \sin ^{2} 2 x \sin 2 x d x \\
& =\int\left(1-\cos ^{2} 2 x\right) \sin 2 x d x \\
& =\int \sin 2 x-\cos ^{2} 2 \operatorname{csin} 2 x d x \\
& =-\frac{1}{2} \cos 2 x+\frac{1}{2}\left(\frac{1}{3}\right) \cos ^{3} 2 x+c \\
& =\frac{1}{6} \cos ^{3} 2 x-\frac{1}{2} \cos 2 x+c
\end{aligned}
$$

(c) $\int_{0}^{\frac{\pi}{12}} \cos ^{3} 6 x d x$

Solution

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{12}} \cos ^{3} 6 x d x & =\int_{0}^{\frac{\pi}{12}}\left(1-\sin ^{2} 6 x\right) \cos 6 x d x \\
& =\int_{0}^{\frac{\pi}{12}}\left(\cos 6 x-\sin ^{2} 6 x \cos 6 x\right) d x \\
= & {\left[\frac{1}{6} \sin 6 x-\frac{1}{6}\left(\frac{1}{3}\right) \sin ^{3} 6 x\right]_{0}^{\frac{\pi}{12}} } \\
& =\frac{1}{6} \sin \frac{\pi}{2}-\frac{1}{18}\left(\sin \frac{\pi}{2}\right)^{3}=\frac{1}{9}
\end{aligned}
$$

(d) $\int \sin ^{3} x d x$

Solution

$$
\begin{aligned}
\int \sin ^{3} x d x & =\int \sin x\left(1-\cos ^{2} x\right) d x \\
& =\int\left(\sin x-\sin ^{2} \cos ^{2} x\right) d x \\
& =-\cos x-\left(-\frac{1}{3} \cos ^{3} x\right)+c \\
& =\frac{1}{3} \cos ^{3} x-\cos x
\end{aligned}
$$

(e) $\int \tan ^{3} x d x$

Solution
$\int \tan ^{3} x d x=\int \tan x \tan ^{2} x d x$

$$
\begin{aligned}
& =\int \tan x\left(\sec ^{2} x-1\right) d x \\
& =\int \tan x \sec ^{2} x d x-\int \tan x d x
\end{aligned}
$$

By inspection
$\frac{d}{d x}(\operatorname{In}(\cos x)=-\tan x$
$=>\int-\tan x d x=\operatorname{In}(\cos x)$
Also
$\frac{d}{d x}\left(\tan ^{2} x\right)=2 \tan x \sec ^{2} x$
$=>\int \tan x \sec ^{2} x d x=\frac{1}{2} \tan ^{2} x$
$\therefore \int \tan ^{3} x d x=\frac{1}{2} \tan ^{2} x+\operatorname{In}(\cos x)+c$
Or
$\frac{d}{d x} \operatorname{In}(\sec x)=\tan x$
$=>\int \tan x d x=\operatorname{In}(\sec x)$

> Also $\frac{d}{d x}\left(\sec ^{2} x\right)=2 \tan x \sec ^{2} x$
> $=>\int \tan x \sec ^{2} x d x=\frac{1}{2} \sec ^{2} x$
> $\therefore \int \tan ^{3} x d x=\frac{1}{2} \sec ^{2} x+\operatorname{In}(\sec x)+c$
(f) $\int \tan ^{5} 2 x d x$

Solution

$\int \tan ^{5} 2 x d x=\int \tan 2 x \tan ^{4} 2 x d x$
$=\int \tan 2 x\left(\sec ^{2} 2 x-1\right)^{2} d x$
$\left.=\int \tan 2 x\left(\sec ^{4} 2 x-2 \sec ^{2} 2 x\right)-1\right) d x$
$=\int t\left(\operatorname{an} 2 x \sec ^{4} 2 x-2 \tan 2 x \sec ^{2} 2 x-\tan 2 x\right) d x$
$=\frac{1}{8} \sec ^{4} 2 x-\frac{1}{2} \sec ^{2} 2 x+\frac{1}{2} \operatorname{In}(\sec 2 x)+c$
Or
$\int \tan ^{5} 2 x d x=\int \tan ^{3} 2 x \tan ^{2} 2 x d x$
$=\int \tan ^{3} 2 x\left(\sec ^{2} 2 x-1\right) d x$
$=\int \tan ^{3} 2 x \sec ^{2} 2 x d x-\int \tan ^{3} 2 x d x$
$=\frac{1}{8} \tan ^{4} 2 x-\int \tan 2 x\left(\sec ^{2} 2 x-1\right) d x$
$=\frac{1}{8} \tan ^{4} 2 x-\int \tan 2 x \sec ^{2} 2 x d x+\int \tan 2 x d x$

$$
=\frac{1}{8} \tan ^{4} 2 x-\frac{1}{4} \tan ^{2} 2 x+\frac{1}{2} \operatorname{In}(\sec 2 x)+c
$$

(g) $\int \cot ^{3} x d x$

Solution

$$
\begin{aligned}
\int \cot ^{3} x d x & =\int \cot x \cot ^{2} x d x \\
& =\int \cot x\left(\operatorname{cosec}^{2} x-1\right) d x \\
& =\int \cot x \operatorname{cosec}^{2} x d x-\int \cot x d x \\
& =\frac{1}{2} \cot 2 x-\operatorname{In}(\sin x)+c
\end{aligned}
$$

Note: the integration of odd powers of secx and cosec x are done using integration by parts.

Integration of trigonometric functions rose to even powers

These are worked out using double angle formulae.

Example 7

Find the integrals of the following
(a) $\int \cos ^{2} x d x$

Solution

$\int \cos ^{2} x d x=\int \frac{1}{2}(1+\cos 2 x) d x$

$$
\begin{aligned}
& =\int\left(\frac{1}{2}+\frac{1}{2} \cos 2 x\right) d x \\
& =\frac{x}{2}+\frac{1}{4} \sin 2 x+c
\end{aligned}
$$

(b) $\int \cos ^{4} x d x$

Solution

$\int \cos ^{4} x d x=\int\left(\cos ^{2} x\right)^{2} d x$
$=\int \frac{1}{4}((1+\cos 2 x))^{2} d x$
$=\int \frac{1}{4}\left(1+2 \cos 2 x+\cos ^{2} 2 x\right) d x$
$=\int\left(\frac{1}{4}+\frac{1}{2} \cos 2 x\right) d x+\frac{1}{4} \int \frac{1}{2}(1+\cos 4 x) d x$
$=\frac{1}{4} x+\frac{1}{4} \sin 2 x+\frac{1}{8} x+\frac{1}{32} \sin 4 x+c$
(c) $\int \sin ^{2} 3 x d x$

Solution

$\int \sin ^{2} 3 x d x=\frac{1}{2} \int(1-\cos 6 x) d x$
$=\frac{1}{2} x-\frac{1}{12} \sin 6 x+c$
(d) $\int \tan ^{4} x d x$

Solution

$$
\begin{aligned}
\int \tan ^{4} x d x & =\int \tan ^{2} x \cdot \tan ^{2} x d x \\
& =\int \tan ^{2} x\left(\sec ^{2} x-1\right) d x \\
& =\int \tan ^{2} x \sec ^{2} x d x-\int \tan ^{2} x d x \\
& =\frac{1}{3} \tan ^{3} x-\int\left(\sec ^{2}-1\right) d x \\
& =\frac{1}{3} \tan ^{3} x-\tan x+x+c
\end{aligned}
$$

(e) $\int \sec ^{4} x d x$

Solution

$\int \sec ^{4} x d x=\int \sec ^{2} x \cdot \sec ^{2} x d x$

$$
\begin{aligned}
& =\int \sec ^{2} x\left(\tan ^{2} x+1\right) d x \\
& =\int\left(\sec ^{2} \tan ^{2} x+\sec ^{2} x\right) d x \\
& =\frac{1}{3} \tan ^{3} x+\tan x+c
\end{aligned}
$$

(f) $\int \operatorname{cosec}^{2}\left(\frac{1}{2} x\right) d x$

Solution

$\int \operatorname{cosec}^{2}\left(\frac{1}{2} x\right) d x=-2 \cot \frac{1}{2} x+c$
(g) $\int \cot ^{4} x d x$

Solution

$$
\begin{aligned}
\int \cot ^{4} x d x & =\int \cot ^{2} x \cdot \cot ^{2} x d x \\
& =\int \cot ^{2} x\left(\operatorname{cosec}^{2} x-1\right) d x \\
& =\int \cot ^{2} x \operatorname{cosec}^{2} x-\int \cot ^{2} x d x \\
& =\frac{1}{3} \cot ^{3} x-\int\left(\operatorname{cosec}^{2} x-1\right) d x \\
& =\frac{1}{3} \cot ^{3} x+\cot x+x+c
\end{aligned}
$$

Exercise 4

1. Integrate each of the following
(a) $\sin x \cos ^{5} x \quad\left[-\frac{1}{6} \cos ^{6} x+c\right]$
(b) $\cos ^{3} 4 x$ $\left[\frac{1}{4} \sin 4 x-\frac{1}{2} \sin ^{3} 4 x+c\right]$
(c) $\sin ^{3} x \cos ^{2} x \quad\left[-\frac{1}{3} \cos ^{3} x+\frac{1}{5} \cos ^{5} x+c\right]$
(d) $\cos ^{3} x \sin ^{4} x \quad\left[\frac{1}{5} \sin ^{5} x-\frac{1}{7} \sin ^{7} x+c\right]$
(e) $\cos ^{3} 2 x \sin ^{2} 2 x\left[\frac{1}{6} \sin ^{3} 2 x-\frac{1}{10} \sin ^{5} 2 x+c\right]$
(f) $\sin 2 x \sin ^{2} x \quad\left[\frac{1}{2} \sin ^{4}+c\right]$
(g) $\cos ^{3} x \sin ^{3} x \quad\left[\frac{1}{4} \sin ^{4} x-\frac{1}{6} \sin ^{6} x+c\right]$
2. Integrate each of the following
(a) $\cot ^{2} 2 x$ $\left[\frac{1}{2} x+\frac{1}{8} \sin 4 x+c\right]$
(b) $\cos ^{2} 3 \mathrm{x} \quad\left[\frac{1}{2} x+\frac{1}{8} \sin 6 x+c\right]$
(c) $\sin ^{3} x \cos ^{2} x \quad\left[\frac{1}{2} x+\frac{1}{16} \sin 8 x+c\right]$
(d) $\cos ^{2} 6 x \quad\left[\frac{1}{2} x+\frac{1}{24} \sin 12 x+c\right]$
(e) $\sin ^{2}\left(\frac{1}{2} x\right) \quad\left[\frac{1}{2} x-\frac{1}{2} \sin x+c\right]$
(f) $\cos ^{4} \mathrm{x} \quad\left[\frac{3}{8} x+\frac{1}{4} \sin 2 x+\frac{1}{32} \sin 4 x+c\right]$
(g) $\sin ^{4} 2 \mathrm{x} \quad\left[\frac{3}{8} x-\frac{1}{4} \sin 4 x+\frac{1}{64} \sin 8 x+c\right]$
3. Integrate each of the following
(a) $\cot ^{2} x \quad[-\cot x-x+c]$
(b) $\tan ^{2} 2 x \quad\left[\frac{1}{2} \tan 2 x+c\right]$
(c) $\sec ^{2} x \tan ^{3} x \quad\left[\frac{1}{4} \tan ^{4} x+c\right]$
(d) $\operatorname{cosec}^{2} 2 x \cot ^{4} 2 x\left[-\frac{1}{10} \cot ^{5} 2 x\right]$
(e) $\tan ^{3} x \quad\left[\frac{1}{2} \tan ^{2} x+\operatorname{In}(\cos x)\right]$
(f) $\cot ^{4} 3 \mathrm{x}\left[-\frac{1}{9} \cot ^{3} 3 x+\frac{1}{3} \cot 3 x+c\right]$
(g) $\tan ^{4} 5 x\left[\frac{1}{15} \tan ^{3} 5 x-\frac{1}{5} \tan 5 x+x+c\right]$
(h) $\tan ^{5} 2 x$
$\left[\frac{1}{8} \tan ^{4} 2 x-\frac{1}{4} \tan ^{2} 2 x+\frac{1}{2} \operatorname{In}(\sec 2 x)+c\right]$

(j) $\tan ^{5} x \sec x$

$$
\left[\sec x-\frac{2}{3} \sec ^{3} x+\frac{1}{5} \sec ^{5} c+c\right]
$$

4. Find the Integral of each of the following
(a) $\operatorname{cosec}^{2} x$
$[-\cot x+c]$
(b) $\sec ^{2} 3 x$
$\left[\frac{1}{3} \tan 3 x+c\right]$
(c) $\operatorname{cosec}^{2}\left(\frac{1}{3} x\right) \quad\left[-3 \cot \left(\frac{1}{3} x\right)+c\right]$
(d) $\sec ^{4} x$
$\left[\frac{1}{3} \tan ^{3} x+\tan x+c\right]$
(e) $\operatorname{cosec}^{4} 5 x$

$$
\left[-\frac{1}{15} \cot ^{3} 5 x-\frac{1}{5} \cot 5 x+c\right]
$$

(f) $\sec ^{4} 3 \mathrm{x} \quad\left[\frac{1}{9} \tan ^{3} 3 x+\frac{1}{3} \tan 3 x+c\right]$
(g) $\sec ^{6} x\left[\frac{1}{5} \tan ^{5} x+\frac{2}{3} \tan ^{3} x+\tan x+c\right]$

Integration involving inverse trigonometric functions
A. From $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$

- $\int \frac{1}{\sqrt{1-x^{2}}}=\sin ^{-1} x+c$

This result enables the integration of the form $\int \frac{1}{\sqrt{a^{2}-b^{2} x^{2}}} d x$ to be workout, i.e.
$\int \frac{1}{\sqrt{a^{2}-b^{2} x^{2}}} d x=\int \frac{1}{a \sqrt{1-\frac{b^{2} x^{2}}{a^{2}}}} d x=\int \frac{1}{a \sqrt{1-\left(\frac{b x}{a}\right)^{2}}} d x$
Let $\frac{b x}{a}=\sin u ; d x=\frac{a}{b} \cos u d u$

- $\quad \int \frac{1}{\sqrt{a^{2}-b^{2} x^{2}}} d x=\int \frac{1}{a \sqrt{1-\sin ^{2} u}} \cdot \frac{a}{b} \cos u d u$

$$
\begin{aligned}
& =\int \frac{1}{a \cos u} \cdot \frac{a}{b} \cos u d u \\
& =\frac{1}{b} \int d u=\frac{1}{b} u+c \\
& =\frac{1}{b} \sin ^{-1}\left(\frac{b x}{a}\right)+c
\end{aligned}
$$

Example 8

Integrate the following
(a) $\int \frac{1}{\sqrt{4-9 x^{2}}} d x$

Solution

$\int \frac{1}{\sqrt{4-9 x^{2}}} d x=\int \frac{1}{2 \sqrt{\left(1-\left(\frac{3 x}{2}\right)^{2}\right)}} d x$
Let $\sin \mathrm{u}=\frac{3 x}{2}, \mathrm{dx}=\frac{2}{3} \cos u d u$
$-\quad \int \frac{1}{\sqrt{4-9 x^{2}}} d x=\int \frac{1}{2 \sqrt{\left(1-\sin ^{2} u\right)}} \cdot \frac{2}{3} \cos u d u$

$$
\begin{aligned}
& =\int \frac{1}{2 \cos u} \cdot \frac{2}{3} \cos u d u \\
& =\frac{1}{3} \int d u=\frac{1}{3} u+c \\
& =\frac{1}{3} \sin ^{-1}\left(\frac{3 x}{2}\right)+c
\end{aligned}
$$

(b) $\int \frac{1}{\sqrt{\left.1-16 x^{2}\right)}} d x$

Solution

$\int \frac{1}{\sqrt{1-16 x^{2}}} d x=\int \frac{1}{\sqrt{\left(1-(4 x)^{2}\right)}} d x$
Let $\sin u=4 x, \mathrm{dx}=\frac{1}{4} \cos u d u$

- $\quad \int \frac{1}{\sqrt{\left(1-(4 x)^{2}\right)}} d x=\int \frac{1}{\sqrt{\left(1-\sin ^{2} u\right)}} \cdot \frac{1}{4} \cos u d u$

$$
=\int \frac{1}{\cos u} \cdot \frac{1}{4} \cos u d u
$$

$$
\begin{aligned}
& =\frac{1}{4} \int d u=\frac{1}{4} u+c \\
& =\frac{1}{4} \sin ^{-1}(4 x)+c
\end{aligned}
$$

(c) $\int \frac{4 x^{2}}{\sqrt{\left.1-x^{6}\right)}} d x$

Solution

$\int \frac{4 x^{2}}{\sqrt{\left.1-x^{6}\right)}} d x=\int \frac{4 x^{2}}{\sqrt{\left(1-\left(x^{3}\right)^{2}\right)}} d x$
Let $\sin \mathrm{u}=x^{3}, \mathrm{dx}=\frac{1}{3 x^{2}} \cos u d u$

- $\int \frac{4 x^{2}}{\sqrt{\left(1-\left(x^{3}\right)^{2}\right)}} d x=\int \frac{4 x^{3}}{\sqrt{\left(1-\sin ^{2} u\right)}} \cdot \frac{1}{3 x^{2}} \cos u d u$

$$
\begin{aligned}
& =\int \frac{1}{\cos u} \cdot \frac{4}{3} \cos u d u \\
& =\frac{4}{3} \int d u=\frac{4}{3} u+c \\
& =\frac{4}{3} \sin ^{-1}\left(x^{3}\right)+c
\end{aligned}
$$

(d) $\int \frac{1}{\sqrt{36-4 x^{2}}} d x$

Solution

$\int \frac{1}{\sqrt{36-4 x^{2}}} d x=\int \frac{1}{6 \sqrt{\left(1-\left(\frac{2 x}{6}\right)^{2}\right)}} d x$
Let $\sin \mathrm{u}=\frac{2 x}{6}=\frac{1}{3} x, \mathrm{dx}=3 \cos u d u$
$-\int \frac{1}{\sqrt{36-4 x^{2}}} d x=\int \frac{1}{6 \sqrt{\left(1-\sin ^{2} u\right)}} \cdot 3 \cos u d u$

$$
\begin{aligned}
& =\int \frac{1}{6 \cos u} \cdot 3 \cos u d u \\
& =\frac{1}{2} \int d u=\frac{1}{2} u+c \\
& =\frac{1}{3} \sin ^{-1}\left(\frac{x}{3}\right)+c
\end{aligned}
$$

(e) $\int \frac{1}{\sqrt{25-9 x^{2}}} d x$

Solution

$\int \frac{1}{\sqrt{25-9 x^{2}}} d x=\int \frac{1}{\sqrt[5]{\left(1-\left(\frac{3 x}{5}\right)^{2}\right)}} d x$
Let $\sin \mathrm{u}=\frac{3 x}{5}, \mathrm{dx}=\frac{5}{3} \cos u d u$

- $\quad \int \frac{1}{\sqrt{25-9 x^{2}}} d x=\int \frac{1}{5 \sqrt{\left(1-\sin ^{2} u\right)}} \cdot \frac{5}{3} \cos u d u$

$$
=\int \frac{1}{5 \cos u} \cdot \frac{5}{3} \cos u d u
$$

$$
=\frac{1}{3} \int d u=\frac{1}{3} u+c
$$

$$
=\frac{1}{3} \sin ^{-1}\left(\frac{3 x}{5}\right)+c
$$

(f) $\int \frac{1}{\sqrt{3-2 x-x^{2}}} d x$

Solution

$3-2 x-x^{2}=-\left(x^{2}+2 x-3\right)$
By completing squares

$$
\begin{aligned}
-\left(x^{2}+2 x-3\right) & =-\left[(x+1)^{2}-3-1\right] \\
& =4-(x+1)^{2}
\end{aligned}
$$

$$
\int \frac{1}{\sqrt{3-2 x-x^{2}}} d x=\int \frac{1}{\sqrt{4-(x+1)^{2}}} d x
$$

$$
\int \frac{1}{\sqrt{4-(x+1)^{2}}} d x=\int \frac{1}{2 \sqrt{1-\left(\frac{x+1}{2}\right)^{2}}}
$$

Let $\sin \mathrm{u}=\frac{x+1}{2}, \mathrm{dx}=2 \cos u d u$
$-\quad \int \frac{1}{\sqrt{4-(x+1)^{2}}} d x=\int \frac{1}{2 \sqrt{\left(1-\sin ^{2} u\right)}} \cdot 2 \cos u d u$

$$
\begin{aligned}
& =\int \frac{1}{2 \cos u} \cdot 2 \cos u d u \\
& =\int d u=u+c \\
& =\sin ^{-1}\left(\frac{x+1}{2}\right)+c
\end{aligned}
$$

B. From $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$

- $\int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+c$

This result enables the integration of the form $\int \frac{1}{\sqrt{a^{2}+b^{2} x^{2}}} d x$ to be workout, i.e

$$
\begin{aligned}
\int \frac{1}{a^{2}+b^{2} x^{2}} d x & =\int \frac{1}{a^{2}\left(1+\frac{b^{2} x^{2}}{a^{2}}\right)} d x \\
& =\int \frac{1}{a^{2}\left(1+\left(\frac{b x}{a}\right)^{2}\right)} d x
\end{aligned}
$$

Let $\frac{b x}{a}=\tan \mathrm{u}, \mathrm{dx}=\frac{a}{b} \sec ^{2} u d u$
$=>\int \frac{1}{a^{2}\left(1+\left(\frac{b x}{a}\right)^{2}\right)} d x=\int \frac{1}{a^{2}\left(1+\tan ^{2} u\right)} \cdot \frac{a}{b} \sec ^{2} u d u$

$$
\begin{aligned}
& =\frac{1}{a b} \int \frac{1}{\sec ^{2} u} \cdot \sec ^{2} u d u \\
& =\frac{1}{a b} \int d u=\frac{1}{a b} u+c \\
& =\frac{1}{a b} \tan ^{-1}\left(\frac{b x}{a}\right)+c
\end{aligned}
$$

Example 9

Find

(a) $\int \frac{1}{9+25 x^{2}} d x$

Solution

Comparing $\int \frac{1}{9+25 x^{2}}$ with $\int \frac{1}{a^{2}+b^{2} x^{2}} d x$ $a=3$ and $b=5$

$$
\begin{aligned}
\int \frac{1}{9+25 x^{2}} & =\frac{1}{3 x 5}\left[\tan ^{-1}\left(\frac{5}{3} x\right)\right]+c \\
& =\frac{1}{15}\left[\tan ^{-1}\left(\frac{5}{3} x\right)\right]+c
\end{aligned}
$$

(b) $\int \frac{1}{5+9 x^{2}} d x$

Solution

Comparing $\int \frac{1}{5+9 x^{2}}$ with $\int \frac{1}{a^{2}+b^{2} x^{2}} d x$
$\mathrm{a}=\sqrt{5}$ and $\mathrm{b}=3$

$$
\begin{aligned}
\int \frac{1}{9+25 x^{2}} & =\frac{1}{\sqrt{5} x 3}\left[\tan ^{-1}\left(\frac{3}{\sqrt{5}} x\right)\right]+c \\
& =\frac{1}{3 \sqrt{5}}\left[\tan ^{-1}\left(\frac{3 \sqrt{5}}{5} x\right)\right]+c
\end{aligned}
$$

(c) $\int \frac{1}{1+2 x+4 x^{2}} d x$

Solution

$$
\begin{aligned}
1+2 x+4 x^{2} & =4 x^{2}+2 x+1 \\
& =4\left(x^{2}+\frac{1}{2} x+\frac{1}{4}\right) \\
& =4\left[\left(x+\frac{1}{4}\right)^{2}+\frac{1}{4}-\frac{1}{16}\right] \\
& =4\left(x+\frac{1}{4}\right)^{2}+\frac{3}{4}
\end{aligned}
$$

$$
\int \frac{1}{1+2 x+4 x^{2} d x}=\int \frac{1}{4\left(x+\frac{1}{4}\right)^{2}+\frac{3}{4}} d x=\int \frac{1}{\frac{3}{4}+4\left(x+\frac{1}{4}\right)^{2}} \mathrm{dx}
$$

$$
\text { Comparing } \int \frac{1}{\frac{3}{4}+4\left(x+\frac{1}{4}\right)^{2}} \text { with } \int \frac{1}{a^{2}+b^{2} x^{2}} d x
$$

$$
a=\frac{\sqrt{3}}{2} \text { and } b=2
$$

$$
\int \frac{1}{\frac{3}{4}+4\left(x+\frac{1}{4}\right)^{2}}=\frac{1}{\frac{\sqrt{3}}{2} x 2}\left[\tan ^{-1}\left(\frac{2\left(x+\frac{1}{4}\right)}{\frac{\sqrt{3}}{2}} x\right)\right]+c
$$

$$
=\frac{\sqrt{3}}{3}\left[\tan ^{-1}\left(\frac{4 x+1}{\sqrt{3}} x\right)\right]+c
$$

(d) $\int_{0}^{1} \frac{1}{3 x^{2}+6 x+4} d x$

Solution

$$
\begin{aligned}
3 x^{2}+6 x+4 & =3\left(x^{2}+2 x+\frac{4}{3}\right) \\
& =3\left[(x+1)^{2}+\frac{4}{3}-1\right] \\
& =3\left[(x+1)^{2}+\frac{1}{3}\right] \\
& =3(x+1)^{2}+1 \\
\int \frac{1}{3 x^{2}+6 x+4} d x & =\int \frac{1}{1+3(x+1)^{2}}
\end{aligned}
$$

$$
\text { Comparing } \int \frac{1}{1+3(x+1)^{2}} \text { with } \int \frac{1}{a^{2}+b^{2} x^{2}} d x
$$

$$
a=1 \text { and } b=\sqrt{3}
$$

$$
\int \frac{1}{1+3(x+1)^{2}}=\frac{1}{\sqrt{3}}\left[\tan ^{-1}\left(\frac{\sqrt{3}(x+1)}{1} x\right)\right]+c
$$

$$
=\frac{1}{\sqrt{3}}\left[\tan ^{-1}(\sqrt{3}(x+1))\right]+c
$$

$$
\begin{aligned}
\therefore \int_{0}^{1} \frac{1}{3 x^{2}+6 x+4} & d x=\left[\frac{1}{\sqrt{3}}\left[\tan ^{-1}(\sqrt{3}(x+1))\right]\right]_{0}^{1} \\
& =\frac{1}{\sqrt{3}}\left[\tan ^{-1}(2 \sqrt{3})-\tan ^{-1}(\sqrt{3})\right] \\
& =0.44
\end{aligned}
$$

Revision exercise 5

Find
(a) $\int \frac{1}{9+x^{2}} d x \quad\left[\frac{1}{3} \tan ^{-1}\left(\frac{1}{3} x\right)+c\right]$
(b) $\int_{-2}^{2} \frac{1}{4+x^{2}} d x$
(c) $\int_{-\sqrt{3}}^{3} \frac{1}{x^{2}+3} d x$
[0.7854]
(d) $\int \frac{1}{4-x^{2}} d x$
[1.833]
(e) $\int \frac{1}{\sqrt{16-x^{2}}} d x \quad\left[\sin ^{-1}\left(\frac{x}{4}\right)+c\right]$
(f) $\int \frac{1}{\sqrt{49-x^{2}}} d x \quad\left[\sin ^{-1}\left(\frac{x}{7}\right)+c\right]$
(g) $\int \frac{1}{\sqrt{25-4 x^{2}}} d x \quad\left[\frac{1}{2} \sin ^{-1}\left(\frac{2}{4} x\right)+c\right]$
(h) $\int \frac{3}{9+x^{2}} d x$
$\left[\tan ^{-1}\left(\frac{x}{3}\right)+c\right]$
(i) $\int \frac{1}{25+x^{2}} d x$
$\left[\frac{1}{5} \tan ^{-1}\left(\frac{x}{5}\right)+c\right]$
(j) $\int \frac{2}{100+9 x^{2}} d x \quad\left[\frac{1}{15} \tan ^{-1}\left(\frac{3}{10} x\right)+c\right]$
(k) $\int \frac{1}{3-2 x+x^{2}} d x \quad\left[\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x-1}{\sqrt{2}}\right)+c\right]$
(I) $\int \frac{1}{x^{2 \sqrt{4-x^{2}}}} d x \quad\left[-\frac{1}{4} \cot \sin ^{-1}\left(\frac{x}{2}\right)+c\right]$

Integration of exponential and logarithmic

 functions.A. From $\frac{d}{d x} e^{x}=e^{x}$

- $\int e^{x} d x=e^{x}+c$

Example 10

Find
(a) $\int x e^{x^{2}} d x$

Solution
Let $\mathrm{u}=3 x^{2} \Rightarrow \mathrm{du}=6 \mathrm{xdx}$ i.e. $\mathrm{xdx}=\frac{1}{6} d u$
$\int x e^{x^{2}} d x=\frac{1}{6} \int e^{u} d u=\frac{1}{6} e^{u}+c$
$\therefore \int x e^{x^{2}} d x=\frac{1}{6} e^{x^{2}}+c$
(b) $\int \sec x \tan x e^{\sec x} d x$

Solution

Let $\mathrm{u}=\sec \mathrm{x}=>\mathrm{du}=\sec \mathrm{xtan} \mathrm{d} \mathrm{dx}$
$\int \sec x \operatorname{tanx} e^{\sec x} d x=\int e^{u} d u=e^{u}+c$
$\therefore \int \sec x \operatorname{tanx} e^{\sec x} d x=e^{\sec x}+c$
(c) $\int \frac{e^{\cot x}}{\sin ^{2} x} d x$

Solution
Let $\mathrm{u}=\cot \mathrm{x}$

- $\quad \mathrm{Du}=-\operatorname{cosec}^{2} \mathrm{x}=-\frac{1}{\sin ^{2} x}$
$\int \frac{e^{\cot x}}{\sin ^{2} x} d x=-\int e^{u} d u=-e^{u}+c$
$\therefore \int \frac{e^{\cot x}}{\sin ^{2} x} d x=-e^{\cot x}+c$
(d) $\int \frac{e^{-\frac{1}{x}}}{x^{2}} d x$

Solution

Let $\mathrm{u}=-\frac{1}{x}=>\mathrm{du}=\frac{1}{x^{2}} d x$
$\int \frac{e^{-\frac{1}{x}}}{x^{2}} d x=\int e^{u} d u=-e^{u}+c$
$\therefore \int \frac{e^{-\frac{1}{x}}}{x^{2}} d x=e^{-\frac{1}{x}}+c$
B. From $\frac{d}{d x}(\operatorname{In} x)=\frac{1}{x}$
$\int \frac{1}{x} d x=\operatorname{In} x+c \equiv \operatorname{In} A x$

This result shows that

$$
\int \frac{f \cdot(x)}{f(x)} d x=\operatorname{In}[f(x)]+c \text { i.e. }
$$

$-\int \cot 2 x d x=\int \frac{\cos 2 x}{\sin 2 x} d x$

$$
=\frac{1}{2} \operatorname{In}(\sin 2 x)+c
$$

$\int \frac{a}{b+c x} d x=\frac{a}{c} \operatorname{In}(b+c x)+k$

Example 11

Find
(a) $\int \frac{1}{3 x+4} d x$

Solution

Let $\mathrm{u}=3 \mathrm{x}+4=>\mathrm{du} 3 \mathrm{dx}$ i.e. $\mathrm{dx}=\frac{1}{3} d u$
$\therefore \int \frac{1}{3 x+4} d x=\frac{1}{3} \int d u=\frac{1}{3} \operatorname{In} u+c$

$$
=\frac{1}{3} \operatorname{In}(3 x+4)+c
$$

(b) $\int \frac{x}{1-5 x^{2}} d x$

Solution

Let $\mathrm{u}=1-5 x^{2}$
\Rightarrow du -10 xdx i.e. $\mathrm{dx}=-\frac{1}{10 x} d u$
$\therefore \int \frac{x}{1-5 x^{2}} d x=\frac{1}{10} \int \frac{1}{u} d u=\frac{1}{10} \operatorname{In} u+c$

$$
=\frac{1}{3} \operatorname{In}\left(1-5 x^{2}\right)+c
$$

(c) $\int \tan ^{3} x d x$

Solution

$\int \tan ^{3} x d x=\int \tan ^{2} x \tan x d x$ (an odd power)

$$
\begin{aligned}
& =\int\left(\sec ^{2} x-1\right) \tan x d x \\
& =\int \sec ^{2} x \tan x d x-\int \tan x d x
\end{aligned}
$$

For $\int \sec ^{2} x \tan x d x$
Let $u=\tan x,=>d u=\sec ^{2} x d x$
$\therefore \int \sec ^{2} x \tan x d x=\int u d u=\frac{1}{2} \tan ^{2} x+c$
For $\int \tan x d x=\int \frac{\sin x}{\cos x} d x$
Let $u=\cos x,=>d u=-\sin x d x$
$\therefore \int \tan x d x=-\int \frac{1}{u} d u=-\operatorname{In} u+c$
$=-\ln (\cos x)+c=\ln (\sec x)+c$
$\therefore \int \tan ^{3} x d x=\frac{1}{2} \tan ^{2} x+\operatorname{In}(\sec x)+c$
(d) $\int_{0}^{1} \frac{x+1}{3+4 x^{2}} d x$

Solution

$$
\begin{aligned}
& \int_{0}^{1} \frac{x+1}{3+4 x^{2}} d x=\int_{0}^{1} \frac{1}{3+4 x^{2}} d x+\int_{0}^{1} \frac{1}{3+4 x^{2}} d x \\
& \quad=\left[\frac{1}{8} \operatorname{In}\left(3+4 x^{2}+\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)\right]_{0}^{1}\right. \\
& \quad=\frac{1}{8} \operatorname{In}\left(\frac{7}{3}\right)+\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)
\end{aligned}
$$

(e) $\int_{a}^{2 a} \frac{x^{3}}{x^{4}+a^{4}} d x$

Solution

$$
\begin{aligned}
\int_{a}^{2 a} \frac{x^{3}}{x^{4}+a^{4}} d x & =\frac{1}{4}\left[\operatorname{In}\left(x^{4}+a^{4}\right]_{a}^{2 a}\right. \\
& =\frac{1}{4}\left(\operatorname{In} 17 a^{4}-\operatorname{In} 2 a^{4}\right) \\
& =\frac{1}{4} \operatorname{In}\left(\frac{17}{2}\right)=0.535
\end{aligned}
$$

C. From $\frac{d}{d x} a^{x}=a^{x}$ In a
$\Rightarrow \int a^{x} d x=\frac{1}{\operatorname{In} a} a^{x}+c$
It follows that $\int 2^{x} d x=\frac{2^{x}}{\operatorname{In2}}+c$

Example 12

Integrate
(a) $\int x^{2} 2^{3 x^{2}} d x$

Solution
Let $\mathrm{u}=3 \mathrm{x}^{3}, \Rightarrow \mathrm{du}=9 x^{2}$ i.e. $x^{2} d x=\frac{1}{9} d u$
$\int x^{2} 2^{3 x^{2}} d x=\frac{1}{9} \int 2^{u} d u=\frac{1}{9} \frac{2^{u}}{\operatorname{In} 2}+c$

$$
=\frac{1}{9} \frac{2^{3 x^{2}}}{I n 2}+c
$$

(b) $\int \cos x \cdot 5^{\sin x} d x$

Solution

Let $\mathrm{u}=\sin \mathrm{x},=>\mathrm{du}=\cos \mathrm{xdx}$
$\int \cos x .5^{\sin x} d x=\int 5^{u} d u=\frac{5^{u}}{\operatorname{In} 5}+c$

$$
=\frac{5^{\sin x}}{\operatorname{In} 5}+c
$$

(c) $\int \frac{3^{\cot x}}{\sin ^{2} x} d x$

Solution

Let $u=\cot x,=>d u=-\operatorname{cosec}^{2} x$

$$
\begin{aligned}
\int \frac{3^{\cot x}}{\sin ^{2} x} d x & =-\int 3^{\cot x} \operatorname{cosec}^{2} x d x \\
& =\int 3^{u} d u=\frac{3^{u}}{\operatorname{In} 3}+c \\
& =\frac{3^{\cot x}}{\operatorname{In} 3}+c
\end{aligned}
$$

Revision exercise 6

1. Find the following integrals
(a) $\int e^{x}\left(3+e^{x}\right)^{2} d x \quad\left[\frac{1}{3}\left(3+e^{x}\right)^{3}+c\right]$
(b) $\int 2 e^{x}\left(e^{x}-4\right)^{3} d x \quad\left[\frac{1}{2}\left(e^{x}-4\right)^{4}+c\right]$
(c) $\int \frac{4 e^{-2 x}}{\left(1+e^{-2 x}\right)^{2}} d x \quad\left[\frac{2}{1+e^{-2 x}}+c\right]$
(d) $\int \frac{\left(e^{-x}+7\right)^{2}}{e^{x}} d x \quad\left[-\frac{1}{3}\left(e^{-x}+7\right)^{3}+c\right]$
(e) $\int e^{x} \sqrt{4+e^{x}} d x \quad\left[\frac{2}{3} \sqrt{\left(4+e^{x}\right)^{3}+c}\right]$
(f) $\int e^{5 x} \sqrt{e^{5 x}+2} d x\left[\frac{2}{15} \sqrt{\left(e^{5 x}+2\right)^{3}}+c\right]$
(g) $\int \frac{e^{3 x}}{\sqrt{e^{3 x}-1}} \quad\left[\frac{2}{3} \sqrt{e^{3 x}-1}+c\right]$
(h) $\int \frac{1}{2 e^{x} \sqrt{1-e^{-x}}} d x \quad\left[\sqrt{1-e^{-x}}+c\right]$
(i) $\int 5^{x} d x \quad\left[\frac{5^{x}}{\ln 5}+c\right]$
(j) $\int 3^{2 x} \quad\left[\frac{3^{2 x}}{\ln 9}+c\right]$
(k) $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} \quad\left[2 e^{\sqrt{x}}+c\right]$
(I) $\int x^{2} e^{x^{3}} \quad\left[\frac{1}{3} e^{x^{3}}\right]$
(m) $\int 4^{x} d x \quad\left[\frac{4 x}{\operatorname{In} 4}\right]$
(n) $\int x 10^{x} d x \quad\left[\frac{x 10^{x}}{\operatorname{In} 10}-\frac{10^{x}}{(\operatorname{In} 10)^{2}}+c\right]$
2. Evaluate
(a) $\int_{1}^{3} e^{x} d x$
$\left[e\left(e^{2}-1\right)\right]$
(b) $\int_{0}^{3} e^{-x} d x$
$\left[1-\frac{1}{e^{3}}\right]$
(c) $\int_{1}^{2} 2 e^{(2 x+1)}$
$\left[e^{3}\left(e^{2}-1\right)\right]$
(d) $\int_{-1}^{1} 2 e^{(1-2 x)}$
$\left[e^{3}-\frac{1}{e}\right]$
(e) $\int_{0}^{1}\left(4 x e^{x^{2}}+1\right) d x$
$[2 e-1]$

Integration involving partial fractions

There are three established types of partial fractions depending on the nature of the denominator.
A. Denominators with linear factors e.g. 3x$1, x+2$ and $3 x-4$.
Each linear factor $(a x+b)$ in the denominator has a corresponding partial fraction of the form $\frac{c}{(a x+b)}$, where a, b and c are constants.

Example 13

(a) Express each of the following in partial fraction. Hence find the integral of each with respect to x .
(i) $\frac{x-1}{(x+1)(x-2)}$

Solution

Let $\frac{x-1}{(x+1)(x-2)}=\frac{A}{(x+1)}+\frac{B}{(x-2)}$
Multiplying by $(x+1)(x-2)$
$\Rightarrow x-1=A(x-2)+B(x+1)$
then we find the values of A and B
Putting $x=2: 1=3 B, \Rightarrow B=\frac{1}{3}$
Putting $x=-1:-2=-3 A, \Rightarrow A=\frac{2}{3}$

$$
\begin{aligned}
\therefore \frac{x-1}{(x+1)(x-2)} & =\frac{\frac{2}{3}}{(x+1)}+\frac{\frac{2}{3}}{(x-2)} \\
& =\frac{2}{3(x+1)}+\frac{1}{3(x-2)}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\int \frac{x-1}{(x+1)(x-2)} d x & =\frac{2}{3} \int \frac{1}{(x+1)} d x+\frac{1}{3} \int \frac{1}{(x-2)} d x \\
& =\frac{2}{3} \operatorname{In}(x+1)+\frac{1}{3} \operatorname{In}(x-2)+c \\
& =\frac{2}{3} \operatorname{In}(x+1)^{2}(x-2)+c
\end{aligned}
$$

(ii) $\frac{1}{x^{3}-9 x}$

Solution

$\frac{1}{x^{3}-9 x}=\frac{1}{x\left(x^{2}-9\right)}=\frac{1}{x(x-3)(x+3)}$
$\Rightarrow \frac{1}{x^{3}-9 x}=\frac{A}{x}+\frac{B}{(x-3)}+\frac{C}{(x+3)}$
Multiplying through with $x(x-3)(x+3)$
$1=A\left(x^{2}-9\right)+B\left(x^{2}+3 x\right)+C\left(x^{2}-3 x\right)$
Putting $\mathrm{x}=0 ; 1=-9 \mathrm{~A} \Rightarrow A=-\frac{1}{9}$

Putting $\mathrm{x}=3 ; 1=18 \mathrm{~B}=>B=\frac{1}{18}$
Putting $x=-3 ; 1=18 C=>C=\frac{1}{18}$
$\Rightarrow \frac{1}{x^{3}-9 x}=-\frac{1}{9 x}+\frac{1}{18(x-3)}+\frac{1}{18(x+3)}$
Hence,
$\int \frac{1}{x^{3}-9 x} d x$

$$
\begin{aligned}
&=-\frac{1}{9} \int \frac{1}{x} d x+\frac{1}{18} \int \frac{1}{(x-3)} d x+\frac{1}{18} \int \frac{1}{(x+3)} d x \\
&=-\frac{1}{9} \operatorname{In} x+\frac{1}{18} \operatorname{In}(x+3)+\frac{1}{18} \operatorname{In}(x-3)+c \\
&=\frac{1}{18}(\operatorname{In}(x+3)+\operatorname{In}(x-3)-2 \operatorname{In} x)+c \\
&=\frac{1}{18}\left[\operatorname{In} \frac{(x+3)(x-3)}{x^{2}}\right]+c \\
& \text { (iii) } \frac{2 x+1}{(x-1)\left(3 x^{2}+7 x+2\right)}
\end{aligned}
$$

Solution

$\frac{2 x+1}{(x-1)\left(3 x^{2}+7 x+2\right)}=\frac{2 x+1}{(x-1)(x+2)(3 x+1)}$
$\frac{2 x+1}{(x-1)\left(3 x^{2}+7 x+2\right)}=\frac{A}{(x-1)}+\frac{B}{(x+2)}+\frac{1}{(3 x+1)}$
Multiplying by $(x-1)(x+2)(3 x+1)$
$2 x+1=A(x+2)(3 x+1)+B(x-1)(3 x+1)+C(x-1)(x+2)$
Putting $\mathrm{x}=1 ; 3=12 \mathrm{~A} \Rightarrow A=\frac{1}{4}$
Putting $x=-2 ;-3=15 B=>B=-\frac{1}{5}$
Putting $\mathrm{x}=-\frac{1}{3} ; \frac{1}{3}=-\frac{20}{9} \mathrm{C} \Rightarrow C=-\frac{3}{20}$
$\therefore \frac{2 x+1}{(x-1)\left(3 x^{2}+7 x+2\right)}=\frac{1}{4(x-1)}-\frac{1}{5(x+2)}-\frac{3}{20(3 x+1)}$
Hence,

$$
\begin{aligned}
& \int \frac{2 x+1}{(x-1)\left(3 x^{2}+7 x+2\right)} d x \\
& \quad=\frac{1}{4} \int \frac{1}{(x-1)} d x-\frac{1}{5} \int \frac{1}{(x+2)} d x-\frac{3}{20} \int \frac{1}{(3 x+1)} d x \\
& \quad=\frac{1}{4} \operatorname{In}(x-1)-\frac{1}{5} \operatorname{In}(x+2)-\frac{3}{20} \operatorname{In}(3 x+1) \\
& \quad=\frac{1}{20} \operatorname{In} \frac{(x-1)^{5}}{(x+2)^{4}(3 x+1)^{3}}
\end{aligned}
$$

(iv) $\frac{2 x^{2}-x+1}{\left(x^{2}-1\right)(x+2)}$

Solution

$\frac{2 x^{2}-x+1}{\left(x^{2}-1\right)(x+2)}=\frac{2 x^{2}-x+1}{(x+1)(x-1)(x+2)}$
$\Rightarrow \frac{2 x^{2}-x+1}{\left(x^{2}-1\right)(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C}{(x+2)}$
Multiplying through by $(x+1)(x-1)(x+2)$

$$
2 x^{2}-x+1=A(x-1)(x+2)+B(x+1)(x+2)+C(x+1)(x-1)
$$

Putting $\mathrm{x}=-1 ; 4=-2 \mathrm{~A} \Rightarrow>A=-2$
Putting $\mathrm{x}=1 ; 2=6 \mathrm{~B}=>B=\frac{1}{3}$
Putting $\mathrm{x}=-2 ; 11=3 C \Rightarrow C=\frac{11}{3}$
$\therefore \frac{2 x^{2}-x+1}{\left(x^{2}-1\right)(x+2)}=\frac{1}{3(x-1)}-\frac{2}{(x+1)}+\frac{11}{3(x+2)}$
Hence,
$\int \frac{2 x^{2}-x+1}{\left(x^{2}-1\right)(x+2)} d x$
$=\frac{1}{3} \int \frac{1}{(x-1)} d x-2 \int \frac{1}{(x+1)} d x+\frac{11}{3} \int \frac{1}{(x+2)} d x$
$=\frac{1}{3} \operatorname{In}(x-1)-2 \operatorname{In}(x+1)+\frac{11}{3} \operatorname{In}(x+2)+c$
(b) Evaluate $\int_{1}^{3} \frac{x^{2}+1}{x^{3}+4 x^{2}+3 x} d x$

Solution

$\frac{x^{2}+1}{x^{3}+4 x^{2}+3 x}=\frac{x^{2}+1}{x(x+1)(x+3)}$
Let $\frac{x^{2}+1}{x^{3}+4 x^{2}+3 x}=\frac{A}{x}+\frac{B}{(x-3)}+\frac{C}{(x+3)}$
Multiplying with $x(x-3)(x+3)$
$x^{2}+1=A(x-3)(x+3)+B(x)(x+3)+C(x)(x-3)$
Putting $\mathrm{x}=0 ; 1=3 \mathrm{~A} \Rightarrow A=\frac{1}{3}$
Putting $\mathrm{x}=-1 ; 2=-2 \mathrm{~B}=>B=-1$
Putting $x=-3 ; 10=6 C \Rightarrow C=\frac{5}{3}$
$\therefore \frac{x^{2}+1}{x^{3}+4 x^{2}+3 x}=\frac{1}{3 x}-\frac{1}{(x+1)}+\frac{5}{3(x+3)}$
Hence
$\int_{1}^{3} \frac{x^{2}+1}{x^{3}+4 x^{2}+3 x} d x$
$=\frac{1}{3} \int_{1}^{3} \frac{1}{x} d x-\int_{1}^{3} \frac{1}{(x+1)} d x+\frac{5}{3} \int_{1}^{3} \frac{1}{(x+3)} d x$

$$
\begin{aligned}
& =\left[\frac{1}{3} \operatorname{In} x-\operatorname{In}(x+1)+\frac{5}{3} \operatorname{In}(x+3)\right]_{1}^{3} \\
& \left.\left.=\left\{\frac{1}{3} \operatorname{In} 3-\operatorname{In} 4+\frac{5}{3} \operatorname{In} 6\right)\right\}-\left\{\frac{1}{3} \operatorname{In} 1-\operatorname{In} 2+\frac{5}{3} \operatorname{In} 4\right)\right\} \\
& =0.3488
\end{aligned}
$$

B. Denominators with linear factors Quadratic factors

Each quadratic factors ($a x^{2}+b x+c$) has a corresponding partial fraction of the form $\frac{A x+B}{\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right)}$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and A and B are constants.

Example 14

(a) Express $\frac{7 x^{2}+2 x-28}{(x-6)\left(x^{2}+3 x+5\right)}$ in partial fraction.

Solution

Let $\frac{7 x^{2}+2 x-28}{(x-6)\left(x^{2}+3 x+5\right)}=\frac{A}{x-6}+\frac{B x+c}{x^{2}+3 x+5}$
Multiplying through by $(x-6)\left(x^{2}+3 x+5\right)$
$7 x^{2}+2 x-28=A\left(x^{2}+3 x+5\right)+(B x+C)(x-6)$
Putting $x=6 ; 236=59 A, \Rightarrow A=4$
Equating coefficients of x^{2}
$7=A+B$
$7=4+B ; \Rightarrow B=3$
Equating constants

$$
\begin{aligned}
& -28=5 A-6 C \\
& -28=20-6 C \\
& C=8 \\
& \therefore \frac{7 x^{2}+2 x-28}{(x-6)\left(x^{2}+3 x+5\right)}=\frac{4}{x-6}+\frac{3 x+8}{x^{2}+3 x+5}
\end{aligned}
$$

(b) Find the integral of $f(x)=\frac{2 x-1}{(x-1)\left(x^{2}+1\right)}$

Solution

$$
\text { Let } \frac{2 x-1}{(x-1)\left(x^{2}+1\right)}=\frac{A}{(x-1)}+\frac{B x+C}{\left(x^{2}+1\right)}
$$

Multiplying through by $(x-1)\left(x^{2}+1\right)$
$2 x-1=A\left(x^{2}+1\right)+(B x+C)(x-1)$
Putting $x=1 ; 1=2 A \Rightarrow A=\frac{1}{2}$
Putting $x=0 ;-1=A-C=>=\frac{3}{2}$
Putting $x=-1 ; 2 A+2 B-2 C \Rightarrow B=-\frac{1}{2}$
$\therefore \frac{2 x-1}{(x-1)\left(x^{2}+1\right)}=\frac{1}{2(x-1)}+\frac{-\frac{1}{2} x+\frac{3}{2}}{\left(x^{2}+1\right)}$
$\frac{2 x-1}{(x-1)\left(x^{2}+1\right)}=\frac{1}{2(x-1)}+\frac{3-x}{2\left(x^{2}+1\right)}$
Note the values of $x=0$ and $x=-1$ are
conveniently chosen, but the constants B and C
by expansion of the expression and equating constants, i.e.
$-1=A-C \Rightarrow C=\frac{3}{2}$
$2=C-B$
$B=\frac{3}{2}-2=-\frac{1}{2}$
Thus,
$\int \frac{2 x-1}{(x-1)\left(x^{2}+1\right)} d x$
$=\frac{1}{2} \int \frac{1}{(x-1)} d x+\frac{3}{2} \int \frac{1}{\left(x^{2}+1\right)} d x-\frac{1}{2} \int \frac{x}{\left(x^{2}+1\right)} d x$
$=\frac{1}{2} \operatorname{In}(x-1)+\frac{3}{2} \tan ^{-1} x-\frac{1}{4} \operatorname{In}\left(x^{2}+1\right)+c$
(c) Evaluate
(i) $\int_{2}^{3} \frac{3+3 x}{x^{3}-1} \mathrm{dx}$

Solution

Note memorize the identities
$x^{3}-1=(x-1)\left(x^{2}+x+1\right)$
$x^{3}+1=(x-1)\left(x^{2}-x+1\right)$
Then
$\frac{3+3 x}{x^{3}-1}=\frac{3+3 x}{(x-1)\left(x^{2}+x+1\right)}$
Let $\frac{3+3 x}{x^{3}-1}=\frac{A}{(x-1)}+\frac{B x+C}{\left(x^{2}+x+1\right)}$
Multiplying through by $(x-1)\left(x^{2}+x+1\right)$

$$
3+3 x=A\left(x^{2}+x+1\right)+(B x+C)(x-1)
$$

Putting $x=1,6=3 A, \Rightarrow A=2$
By expanding and equating coefficients

$$
\begin{aligned}
& x^{2}: A+B=0,=>B=0-2=-2 \\
& x^{0}: A-C=3,=>C=2-3=-1 \\
& \begin{aligned}
& \therefore \frac{3+3 x}{x^{3}-1}=\frac{2}{(x-1)}-\frac{2 x+1}{\left(x^{2}+x+1\right)} \\
& \begin{aligned}
\int_{2}^{3} \frac{3+3 x}{x^{3}-1} & d x
\end{aligned} \\
&=2 \int_{2}^{3} \frac{1}{(x-1)} d x-\int_{2}^{3} \frac{2 x+1}{\left(x^{2}+x+1\right)} \\
&=\left[2 \operatorname{In}(x-1)-\operatorname{In}\left(x^{2}+x+1\right)\right]_{2}^{3} \\
&=2 \operatorname{In}(2)+\operatorname{In}\left(\frac{7}{13}\right) \\
&=0.7673
\end{aligned}
\end{aligned}
$$

(ii) $\int_{2}^{3} \frac{x^{2}}{x^{4}-1} d x$

Solution

$\frac{x^{2}}{x^{4}-1}=\frac{x^{2}}{(x-1)(x+1)\left(x^{2}+1\right)}$
Let $\frac{x^{2}}{(x-1)(x+1)\left(x^{2}+1\right)}=\frac{A}{(x-1)}+\frac{B}{(x+1)}+\frac{C x+D}{\left(x^{2}+1\right)}$
By multiplying through by $(x-1)(x+1)\left(x^{2}+1\right)$
$x^{2}=A(x+1)\left(x^{2}+1\right)+B(x-1)\left(x^{2}+1\right)+(C x+D)\left(x^{2}-1\right)$
By equating coefficients
$x^{3}: A+B+C=0$ \qquad
$x^{2}: A-B+D=1$
$x^{1}: A+B-C=0$
$x^{0}: A-B-D=0$
Eqn. (ii) - Eqn. (iv)
$2 \mathrm{D}=2 \Rightarrow \mathrm{D}=\frac{1}{2}$
Eqn.(i)+ (iii)
$2 A+2 B=0$
Eqn. (ii) + Eqn. (iv)
$2 A-2 B=1$.
Eqn. (v)+ Eqn. (vi)
$4 \mathrm{~A}=1 \Rightarrow \mathrm{~A}=\frac{1}{4}$
Eqn. (v)
$B=-\frac{1}{4}$
Eqn. (i)
$C=0$
$\therefore \frac{x^{2}}{x^{4}-1}=\frac{1}{4(x-1)}-\frac{1}{4(x+1)}+\frac{1}{2\left(x^{2}+1\right)}$
$\int \frac{x^{2}}{x^{4}-1} d x$
$=\frac{1}{4} \int \frac{1}{(x-1)} d x-\frac{1}{4} \int \frac{1}{(x+1)} d x+\frac{1}{2} \int \frac{1}{\left(x^{2}+1\right)} d x$
$=\frac{1}{4} \operatorname{In}(x-1)-\frac{1}{4} \operatorname{In}(x+1)+\frac{1}{2} \tan ^{-1} x+c$
$\int_{2}^{3} \frac{x^{2}}{x^{4}-1} d x$
$=\left[\frac{1}{4} \operatorname{In}(x-1)-\frac{1}{4} \operatorname{In}(x+1)+\frac{1}{2} \tan ^{-1} x\right]_{2}^{3}$
$=\frac{1}{4}\left[\operatorname{In} \frac{x-1}{x+1}+2 \tan ^{-1} x\right]_{2}^{3}$
$=\frac{1}{4}\left\{\left[\operatorname{In} \frac{2}{4}+2 \tan ^{-1} 3\right]-\left[\operatorname{In} \frac{1}{3}+2 \tan ^{-1} 2\right]\right\}$
$=\frac{1}{4}\left[\operatorname{In} \frac{1}{2}-\operatorname{In} \frac{1}{3}+2\left(\tan ^{-1} 3-\tan ^{-1} 2\right)\right]$
$=\frac{1}{4}(0.405+0.1 \pi)$
$=0.18$
(iii) $\int_{0}^{1} \frac{x^{2}+6}{\left(x^{2}+4\right)\left(x^{2}+9\right)} d x$

Solution

Let $\frac{x^{2}+6}{\left(x^{2}+4\right)\left(x^{2}+9\right)}=\frac{A x+B}{\left(x^{2}+4\right)}+\frac{C x+D}{\left(x^{2}+9\right)}$
Multiplying by $\left(x^{2}+4\right)\left(x^{2}+9\right)$
$x^{2}+6=(A x+B)\left(x^{2}+9\right)+(C x+D)\left(x^{2}+4\right)$
$x^{2}+6=(A+C) x^{3}+(B+D) x^{2}+(9 A+4 C) x+9 B+4 D$
Equating coefficients
$x^{3}: A+C=0$. \qquad
$x^{2}: B+D=1$.
$x^{1}: 9 A+4 C=0$ \qquad
$x^{0}: 9 B+4 D=6$
Solving simultaneously
$\mathrm{A}=\mathrm{C}=0 ; \mathrm{B}=\frac{2}{5}$ and $\mathrm{D}=\frac{3}{5}$
$\therefore \frac{x^{2}+6}{\left(x^{2}+4\right)\left(x^{2}+9\right)}=\frac{2}{5\left(x^{2}+4\right)}+\frac{3}{5\left(x^{2}+9\right)}$
$\int_{0}^{1} \frac{x^{2}+6}{\left(x^{2}+4\right)\left(x^{2}+9\right)} d x$
$=\frac{2}{5} \int_{0}^{1} \frac{1}{\left(x^{2}+4\right)} d x+\frac{3}{5} \int_{0}^{1} \frac{1}{\left(x^{2}+9\right)} d x$
$=\frac{1}{5}\left[\tan ^{-1} \frac{1}{2} x+\tan ^{-1} \frac{1}{3} x\right]_{0}^{1}$
$=\frac{1}{5} \tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \cdot \frac{1}{3}}\right)=0.1571$
C. Repeated factors

Each repeated factor $\left(a x^{2}+b\right)^{n}$ in the denominator has corresponding partial fraction of the form: $\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{n}}{(a x+b)^{n}}$,
where a, b, A_{i} are constants ($i=1,2, \ldots . n$)

Example 15

Express each of the follow in partial fraction and hence find their integrals.
(a) $\frac{4 x-9}{(x-3)^{2}}$

Solution
Let $\frac{4 x-9}{(x-3)^{2}}=\frac{A}{x-3}+\frac{B}{(x-3)^{2}}$
Multiplying through by $(x-3)^{2}$
$4 x-9=A(x-3)+B=A x-3 A+B$
Equating coefficients
$x^{1}: x=4$
$x^{0}:-3 A+B=4 ; B=3$
$\therefore \frac{4 x-9}{(x-3)^{2}}=\frac{4}{x-3}+\frac{3}{(x-3)^{2}}$
Hence

$$
\begin{aligned}
\int \frac{4 x-9}{(x-3)^{2}} d x & =4 \int \frac{1}{x-3} d x+3 \int(x-3)^{-2} d x \\
& =4 \operatorname{In}(x-3)-\frac{3}{x-3}+c
\end{aligned}
$$

(b) $\frac{3 x-14}{x^{2}-8 x+16}$

Solution
$\frac{3 x-14}{x^{2}-8 x+16}=\frac{3 x-14}{(x-4)^{2}}$
Let $\frac{3 x-14}{(x-4)^{2}}=\frac{A}{x-4}+\frac{B}{(x-4)^{2}}$
Multiplying through by $(x-4)^{2}$
$3 x-14=A(x-4)+B=A x-4 A+B$
Equating coefficients
$x^{1}: x=3$
$x^{0}:-4 A+B=-14 ; B=-2$
$\therefore \frac{3 x-14}{(x-3)^{2}}=\frac{3}{x-3}-\frac{2}{(x-4)^{2}}$
Hence
$\int \frac{3 x-14}{(x-4)^{2}} d x=3 \int \frac{1}{x-4} d x-2 \int(x-4)^{-2} d x$
$=3 \operatorname{In}(x-4)+\frac{2}{x-4}+c$
(c) $\frac{2 x^{2}-5 x+7}{(x-2)(x-1)^{2}}$

Solution
Let $\frac{2 x^{2}-5 x+7}{(x-2)(x-1)^{2}}=\frac{A}{x-2}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}$
Multiplying through by $(x-2)(x-1)^{2}$
$2 x^{2}-5 x+7=A(x-1)^{2}+B(x-2)(x-1)+C(x-2)$
Putting $x=1: 4=-C,=>C=-4$

$$
\text { Putting } x=2: A=5
$$

$$
\text { Putting } x=0,7=A-2 B-2 C ; B=-2
$$

$$
\therefore \frac{2 x^{2}-5 x+7}{(x-2)(x-1)^{2}}=\frac{5}{x-2}-\frac{2}{x-1}-\frac{4}{(x-1)^{2}}
$$

Hence
$\int \frac{2 x^{2}-5 x+7}{(x-2)(x-1)^{2}} d x$
$=5 \int \frac{1}{x-2} d x-2 \int \frac{1}{x-1} d x-4 \int(x-1)^{-2} d x$
$=5 \operatorname{In}(x-2)-2 \operatorname{In}(x-1)-\frac{4}{x-1}+c$
(d) $\frac{7 x+2}{3 x^{3}+x^{2}}$

Solution

$\frac{7 x+2}{3 x^{3}+x^{2}}=\frac{7 x+2}{x^{2}(3 x+1)}$
Let $\frac{7 x+2}{x^{2}(3 x+1)}=\frac{A}{(3 x+1)}+\frac{B}{x}+\frac{C}{x^{2}}$
Multiplying through by $x^{2}(3 x+1)$
$7 x+2=A x^{2}+B x(3 x+1)+C(3 x+1)$
Putting $x=0 ; c=2$
Putting $\mathrm{x}=-\frac{1}{3} ; \frac{A}{9}=2-\frac{7}{3}=>\mathrm{A}=-3$
Putting $x=-1 ;-5=A+2 B-2 C,=>B=1$
$\therefore \frac{7 x+2}{x^{2}(3 x+1)}=\frac{-3}{(3 x+1)}+\frac{1}{x}+\frac{2}{x^{2}}$
Hence
$\int \frac{7 x+2}{x^{2}(3 x+1)} d x$
$=-\int \frac{3}{(3 x+1)} d x+\int \frac{1}{x} d x+2 \int x^{-2} d x$
$=-\operatorname{In}(3 x+1)+\operatorname{In} x-\frac{2}{x}+c$
$=\operatorname{In} \frac{x}{3 x+3}-\frac{2}{x}+c \ln$

Integration of improper fractions

Improper fractions are those whose index of the numerator is equal to or greater than that of the denominators.

They are first changed to proper fraction by long division or otherwise, before being integrated.

Example 16

(a) Express $\frac{5 x^{2}-71}{(x+5)(x-4)}$ in partial fractions.

Hence find $\int \frac{5 x^{2}-71}{(x+5)(x-5)} d x$

Solution

$\frac{5 x^{2}-71}{(x+5)(x-4)}=\frac{5 x^{2}-71}{x^{2}+x-20}$
Using long division

$$
\begin{array}{r}
5 \\
x ^ { 2 } + x - 2 0 \longdiv { 5 x ^ { 2 } + 0 x - 7 1 } \\
-\frac{5 x^{2}+5 x-100}{-5+29}
\end{array}
$$

$$
\Rightarrow \frac{5 x^{2}-71}{(x+5)(x-4)}=5+\frac{-5 x+29}{x^{2}+x-20}
$$

$$
\text { Let } \frac{-5 x+29}{(x+5)(x-4)}=\frac{A}{x+5}+\frac{B}{x-4}
$$

Multiplying through by $(x+5)(x-4)$
$-5 x+29=A(x-4)+B(x+5)$
Putting $x=4, B=1$
Putting $x=-5 ; A=-6$
$\therefore \frac{-5 x+29}{(x+5)(x-4)}=\frac{-6}{x+5}+\frac{1}{x-4}$
Hence
$\int \frac{5 x^{2}-71}{(x+5)(x-4)} d x$
$=5 \int d x-6 \int \frac{1}{x+5} d x+\int \frac{1}{x-4} d x$
$=5 x-6 \operatorname{In}(x+5)+\operatorname{In}(x-4)+c$
(b) Evaluate $\int_{0}^{1} \frac{3-2 x}{1+x} d x$

Solution

$\frac{3-2 x}{1+x}=\frac{-2 x+3}{x+1}$
Using long division
$x + 1 \longdiv { - 2 }$
$-2 x-2$
5
$\therefore \frac{3-2 x}{1+x}=-2+\frac{5}{x+1}$
Hence

$$
\begin{aligned}
\int_{0}^{1} \frac{3-2 x}{1+x} d x & =-2 \int_{0}^{1} d x+5 \int_{0}^{1} \frac{1}{x+1} d x \\
& =[-2 x+5 \ln (x+1)]_{0}^{1} \\
& =-2+5 \ln 2
\end{aligned}
$$

$$
\begin{equation*}
=1.4657 \tag{0.18}
\end{equation*}
$$

Revision exercise 7

(b) $\int_{2}^{3} \frac{x^{2}}{x^{4}-1} d x$
(c) $\int_{1}^{3} \frac{x^{2}+1}{x^{3}+4 x^{2}+3 x} \mathrm{dx}$
[0.3489]

1. Express the following into partial fraction
(a) $\frac{8 x}{x^{2}-4 x-12} \quad\left[\frac{6}{x-6}+\frac{2}{x+2}\right]$
(b) $\frac{x^{4}-x^{3}+x^{2}+1}{x^{3}+x} \quad\left[x-1+\frac{1}{x}+\frac{x-1}{x^{2}+1}\right]$
(c) $\frac{5 x-1}{2 x^{2}+x}-10 \quad\left[\frac{3}{2 x+5}+\frac{1}{x-2}\right]$
(d) $\frac{2 x^{2}-7 x+1}{(2 x+1)(2 x-1)(x-2)}$

$$
\left[\frac{1}{2 x+1}+\frac{2}{3(2 x-1)}-\frac{1}{3(x-2)}\right]
$$

(e) $\frac{6 x+7}{\left(x^{2}+2\right)(x+3)} \quad\left[\frac{x+3}{x^{2}+2}-\frac{1}{x+3}\right]$
(f) $\frac{5 x+7}{(x+1)^{2}(x+2)} \quad\left[\frac{3}{x+1}+\frac{2}{(x+1)^{2}}-\frac{3}{x+2}\right]$
(g) $\frac{2 x^{3}+3 x^{2}-x-4}{x^{2}(x+1)} \quad\left[2+\frac{3}{x}+\frac{4}{x^{2}}-\frac{2}{x+1}\right]$
2. Find
(a) $\int \frac{x^{2}}{x^{4}-1} d x \quad\left[\frac{1}{4} \operatorname{In}\left(\frac{x-1}{x+1}\right)+\tan ^{-1} x+c\right]$
(b) $\int \frac{x^{2}-4}{(x+1)^{2}(x-5)} d x$

$$
\left[\frac{5}{12} \operatorname{In}(x+1)-\frac{1}{2(x+1)}+\frac{7}{12} \operatorname{In}(x-5)\right]
$$

(c) $\int \frac{3 x^{2}+x+1}{(x-2)(x+1)^{3}} d x$
$\left[\frac{5}{9} \operatorname{In}(x-2)-\frac{5}{9} \operatorname{In}(x+1)-\frac{4}{3(x+1)}+\frac{1}{2(x+1)^{2}}\right]$
(d) $\int \frac{x^{4}-x^{3}+x^{2}+1}{x^{3}+x} d x$
$\left[\frac{x^{2}}{2}-x+\operatorname{In} x+\tan ^{-1} x-\frac{1}{2} \operatorname{In}\left(1+x^{2}\right)+c\right]$
(e) $\int \frac{5 x-1}{2 x^{2}+x-10} d x$

$$
\left[\frac{3}{2} \operatorname{In}(2 x+5)+\operatorname{In}(x-2)+c\right]
$$

(f) $\int \frac{x^{2}-9 x+2}{(x 11)(x-1)(x-2)} d x$
$[2 \operatorname{In}(x+1)+3 \operatorname{In}(x-1)-4 \operatorname{In}(x-2)]+c$
(g) $\int \frac{9 x+7}{\left(2 x^{2}+3\right)(x+2)} d x$

$$
\left[\frac{1}{2} \operatorname{In}\left(2 x^{2}+3\right)+\frac{5}{\sqrt{10}} \tan ^{-1}\left(\sqrt{\frac{2}{3} x}\right)-\operatorname{In}(x+2)+c\right]
$$

(h) $\int \frac{7+5 x-6 x^{2}}{(2 x+1)^{2}(x+2)} d x$

$$
\left[\frac{3}{2} \operatorname{In}(2 x+1)-\frac{1}{2 x+1}-3 \operatorname{In}(x+2)+c\right]
$$

(i) $\int \frac{x^{2}+7 x-14}{(x+5)(x-3)} d x$

$$
[x+3 \operatorname{In}(x+5)+2 \operatorname{In}(x-3)+c]
$$

3. Evaluate
(a) $\int_{0}^{2} \frac{3 x^{4}+7 x^{3}+8 x^{2}+53-186}{(x+4)\left(x^{2}+9\right)} d x$
[-4.5489]
(d) $\int_{0}^{1} \frac{x^{3}}{x^{2}+1} d x$
(e) $\int_{6}^{7} \frac{x^{2}-4}{(x+1)^{2}(x-5)} d x$
(f) $\int_{3}^{4} \frac{3 x^{2}+x+1}{(x-2)(x+1)^{3}} d x$
(g) $\int_{0}^{2} \frac{8 x}{x^{2}-4 x-12} d x$
[0.4689]

Integration by parts

This stems from differentiating the product of a function, $y=u v$,
$\frac{d}{d x}(u v)=v \frac{d u}{d x}+u \frac{d v}{d x}$
$u \frac{d v}{d x}=\frac{d}{d x}(u v)-v \frac{d u}{d x}$
$\int u \frac{d v}{d x} d x=\int \frac{d}{d x}(u v) d x-\int v \frac{d u}{d x} d x$
$\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x$
Or simply $\int u d v=u v-\int v d u$
The function chosen as u should be easily differentiated whereas the other function chosen as v should be easily integrated.

The above expression of the integration by parts can be summarized by using a technique of integration by parts

This is summarized in the table below

Sign	Differentiate	Integrates
+	u_{1}	$\frac{d v}{d x}$
-	u_{2}	v_{1}
+	u_{3}	
-	u_{4}	

NB: the signs change as,,+-+ etc.
The u function is differentiated until a zero value is obtained otherwise we continue with differentiation.

The integral of the function is equal to the sum of result shown in the table above.

Integration by parts is applied in the following areas:

A. Integration products of polynomials by parts

Example 17

(a) Find
(i) $\int x(x+2)^{3} d x$

Solution

Let $\mathrm{u}=\mathrm{x}$ and $\frac{d v}{d x}=(x+2)^{3}$
$\frac{d u}{d x}=1 ; \quad v=\frac{1}{4}(x+2)^{4}$
From $\int u d v=u v-\int v d u$
$\int x(x+2)^{3} d x$
$=\frac{1}{4} x(x+2)^{4}-\int 1 \cdot \frac{1}{4}(x+2)^{4} d x$
$=\frac{1}{4} x(x+2)^{4}-\frac{1}{4} \int(x+2)^{4} d x$
$=\frac{1}{4} x(x+2)^{4}-\frac{1}{20}(x+2)^{5}+c$
$=\frac{1}{2 o}(x+2)^{4}(5 x-x-2)+c$
$=\frac{1}{2 o}(x+2)^{4}(4 x-2)+c$
$=\frac{1}{1 o}(x+2)^{4}(x-1)+c$
Or by using basic techniques

Sign	Differentiate	Integrates
+	x	$(x+2)^{3}$
-	1	$>\frac{1}{4}(x+2)^{4}$
+	0	$\frac{1}{20}(x+2)^{5}$

$\int x(x+2)^{3} d x=\frac{1}{4} x(x+2)^{4}-\frac{1}{20}(x+2)^{5}+c$

$$
=\frac{1}{1 o}(x+2)^{4}(x-1)+c
$$

$\therefore \int x(x+2)^{3} d x=\frac{1}{1 o}(x+2)^{4}(x-1)+c$
(ii) $\int(x+3)(x-4)^{5} d x$

Solution

Let $\mathrm{u}=(\mathrm{x}+3)$ and $\frac{d v}{d x}=(x-4)^{5}$
$\frac{d u}{d x}=1 ; v=\frac{1}{6}(x-4)^{6}$
$\int(x+3)(x-4)^{5} d x$
$=\frac{1}{6}(x+3)(x-4)^{6}-\frac{1}{6} \int 1 .(x-4)^{6} \mathrm{dx}$
$=\frac{1}{6}(x+3)(x-4)^{6}-\frac{1}{6} \int(x-4)^{6} d x$
$=\frac{1}{6}(x+3)(x-4)^{6}-\frac{1}{42}(x-4)^{7}+c$
$=\frac{1}{42}(x-4)^{6}((7(x+3)-x+4)+c$
$=\frac{1}{42}(x-4)^{6}(6 x+25)+c$

Sign	Differentiate	Integrates
+	$x+3$	$(x-4)^{5}$
-	1	$\frac{1}{6}(x+2)^{6}$
+	0	$\frac{1}{42}(x+2)^{7}$

$\int(x+3)(x-4)^{5} d x$
$=(\mathrm{x}+3)(x-4)^{5}-\frac{1}{42} x(x+2)^{7}+c$
$\therefore \int(x+3)(x-4)^{5} d x$
$=\frac{1}{42}(x-4)^{6}(6 x+25)+c$
(iii) $\int \frac{3 x-4}{(x+2)^{4}} d x$

Solution

$\int \frac{3 x-4}{(x+2)^{4}} d x=\int(3 x-4)(x+2)^{-4} \mathrm{dx}$
Let $\mathrm{u}=(3 \mathrm{x}-4)$ and $\frac{d v}{d x}=(x+2)^{-4}$
$\frac{d u}{d x}=3 ; v=-\frac{1}{3}(x+2)^{-3}$
$\int \frac{3 x-4}{(x+2)^{4}} d x$
$=-\frac{1}{3}(3 \mathrm{x}-4)(x+2)^{-3}-\int 3 \cdot-\frac{1}{3}(x+2)^{-3} d x$
$=-\frac{1}{3}(3 x-4)(x+2)^{-3}+\int(x+2)^{-3} d x$
$=-\frac{1}{3}(3 x-4)(x+2)^{-3}-\frac{1}{2}(x+2)^{-2}+c$
$=\frac{4-3 x}{3(x+2)^{3}}-\frac{1}{2(x+2)^{2}}+c$
$=\frac{2(4-3 x)-3(x+2)}{6(x+2)^{3}}+c=\frac{2-9 x}{6(x+2)^{3}}+c$
$\therefore \int \frac{3 x-4}{(x+2)^{4}} d x=\frac{2(4-3 x)-3(x+2)}{6(x+2)^{3}}+c=\frac{2-9 x}{6(x+2)^{3}}+c$

Sign	Differentiate	Integrates
+	$3 x-4$	$(x-4)^{-4}$
-	3	$\frac{1}{3}(x-4)^{-3}$
+	0	$>\frac{1}{6}(x-4)^{-2}$

$\int \frac{3 x-4}{(x+2)^{4}} d x$
$=-\frac{1}{3}(3 x-4)(x-4)^{-3}-\frac{1}{2}(x-4)^{-2}+c$
$=\frac{2-9 x}{6(x+2)^{3}}+c$
(b) Evaluate
(i) $\int_{0}^{2} x(x-3)^{2} d x$

Solution

Sign	Differentiate	Integrates
+	x	$(x-3)^{2}$
-	1	$\frac{1}{3}(x-3)^{3}$
+	0	$\frac{1}{12}(x-3)^{4}$

$\int x(x-3)^{2} d x=\frac{1}{3} x(x-3)^{3}-\frac{1}{12}(x-3)^{4}+c$

$$
=\frac{1}{12}(x-3)^{3}(4 x-x+3)+c
$$

$$
=\frac{1}{12}(x-3)^{3}(3 x+3)+c
$$

$$
=\frac{1}{4}(x-3)^{3}(x+1)+c
$$

$\Rightarrow \int_{0}^{2} x(x-3)^{2} d x=\left[\frac{1}{4}(x-3)^{3}(x+1)\right]_{0}^{2}$

$$
=\frac{-3}{4}-\frac{-27}{4}=\frac{24}{4}=6
$$

(i) $\int_{3}^{6} \frac{x}{\sqrt{x-2}} d x$

Solution

Sign	Differentiate	Integrates
+	x	$(x-2)^{-\frac{1}{2}}$
-	1	$2(x-2)^{\frac{1}{2}}$
+	0	$\frac{4}{3}(x-2)^{\frac{3}{2}}$

$\int \frac{x}{\sqrt{x-2}} d x=2 x(x-2)^{\frac{1}{2}}-\frac{4}{3}(x-2)^{\frac{3}{2}}+c$ $=\frac{2}{3}(x-2)^{\frac{1}{2}}[3 x-2(x-2)]+c$

$$
=\frac{2}{3}(x-2)^{\frac{1}{2}}(x+4)+c
$$

$\Rightarrow \int_{3}^{6} \frac{x}{\sqrt{x-2}} d x=\left[\frac{2}{3}(x-2)^{\frac{1}{2}}(x+4)\right]_{3}^{6}$
$=\left[\frac{2}{3}(6-2)^{\frac{1}{2}}(6+4)\right]-\left[\frac{2}{3}(3-2)^{\frac{1}{2}}(3+4)\right]$
$=\frac{2}{3}(20-7)=\frac{26}{3}=8 \frac{2}{3}$

Revision exercise 8

1. Integrate
(a) $\int(x-1)(x+2)^{2} \mathrm{dx}$

$$
\left[\frac{1}{4}(x-2)(x+2)^{3}+c\right]
$$

(b) $\int(3 x-1)(2 x+3)^{2} \mathrm{dx}$ $\left[\frac{1}{48}(18 x-17)(2 x+3)^{3}+c\right]$
(c) $\int(2-5 x)(4-x)^{4} \mathrm{dx}$

$$
\left[\frac{1}{30}(25 x+8)(4-x)^{5}\right]
$$

(d) $\int \frac{x-2}{(2 x-3)^{2}} \mathrm{~d} \mathrm{x}$
$\left[\frac{1}{4} \operatorname{In}(2 x-3)+\frac{1}{4(2 x-3)}+c\right]$
(e) $\int \frac{x+4}{\sqrt{3 x-2}} \mathrm{dx}$
$\left[\frac{2}{27}(3 x+40) \sqrt{3 x-2}+c\right]$
(f) $\int \frac{3 x+1}{\sqrt{1-2 x}} \mathrm{dx}$

$$
\operatorname{In}\left(\frac{2-x}{5-x}\right)+\frac{1}{5-x}+c
$$

2. Evaluate
(a) $\int_{-1}^{1} x^{2}(x+3)^{3} d x \quad\left[\frac{108}{5}\right]$
(b) $\int_{3}^{6} \frac{x^{2}}{\sqrt{1-2 x}} d x \quad\left[\frac{586}{15}\right]$
B. Integration products of polynomials and circular/trigonometric functions by parts

Example 18

(a) Find
(i) $\int x \sin x d x$

Solution

Let $\mathrm{u}=\mathrm{x}$ and $\frac{d v}{d x}=\sin x$
$\frac{d u}{d x}=1, v=-\cos x$
$\int x \cos x d x=-x \cos x-\int 1 .-\cos x$

$$
=-x \cos x+\sin x+c
$$

Or: by using basic technique

Sign	Differentiate	Integrates
+	x	$\sin x$
-	1	$-\cos x$
+	0	$-\sin x$

$\int x \cos x d x=-x \cos x+\sin x+c$
(ii) $\int x^{2} \cos x d x$

Solution

Let $\mathrm{u}=x^{2}$ and $\frac{d v}{d x}=\cos x$
$\frac{d u}{d x}=2 x, v=\sin x$
$\int x^{2} \cos x d x=x^{2} \sin x-2 \int x \sin x d x+c$
Let $\mathrm{u}=x$ and $\frac{d v}{d x}=\sin x$
$\frac{d u}{d x}=1, v=-\cos x$
$\int x^{2} \cos x d x$
$=x^{2} \sin x-2\left[-x \cos x-\int-\cos x d x\right]+c$
$=x^{2} \sin x-2\left[-x \cos x+\int \cos x d x\right]+c$
$=x^{2} \sin x-2[-x \cos x+\sin x]+c$
$=x^{2} \sin x+2 x \cos x-2 \sin x+c$
Or using basic technique

Sign	Differentiate	Integrates
+	x^{2}	$\cos x$
-	$2 x$	$\sin x$
+	2	$-\cos x$
-	0	$-\sin x$

$\int x^{2} \cos x d x=\mathrm{x}^{2} \sin \mathrm{~s}+2 \mathrm{x} \cos \mathrm{x}-2 \sin \mathrm{x}+\mathrm{c}$
(iii) $\int x^{2} \sin ^{2} x d x$

Solution

Let $u=x^{2}$ and $\frac{d v}{d x}=\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
$\frac{d u}{d x}=2 x, \mathrm{v}=\frac{1}{2}\left(x-\frac{1}{2} \sin 2 x\right)$
$\int x^{2} \sin ^{2} x d x$
$=\frac{1}{2} x^{2}\left(x-\frac{1}{2} \sin 2 x\right)-\int 2 x \cdot \frac{1}{2}\left(x-\frac{1}{2} \sin 2 x\right) d x$
$=\frac{1}{2} x^{2}\left(x-\frac{1}{2} \sin 2 x\right)-\int x^{2} d x+\frac{1}{2} \int x \sin 2 x d x$
$=\frac{1}{2} x^{2}\left(x-\frac{1}{2} \sin 2 x\right)-\frac{1}{3} x^{3}+\frac{1}{2} \int x \sin 2 x d x$
Let $\mathrm{u}=\mathrm{x}$ and $\frac{d v}{d x}=\sin 2 x$
$\frac{d u}{d x}=1$ and $v=-\frac{1}{2} \cos 2 x$
$\int x \sin 2 x d x=-\frac{1}{2} x \cos 2 \mathrm{x}+\frac{1}{4} \sin 2 \mathrm{x}+\mathrm{c}$
Substituting for $\int x \sin 2 x d x$
$\int x^{2} \sin ^{2} x d x$
$=\frac{1}{2} x^{2}\left(x-\frac{1}{2} \sin 2 x\right)-\frac{1}{3} x^{3}+\frac{1}{2}\left[-\frac{1}{2} \mathrm{x} \cos 2 \mathrm{x}+\frac{1}{4} \sin 2 \mathrm{x}\right]$
$=\frac{1}{2} x^{2}\left(x-\frac{1}{2} \sin 2 x\right)-\frac{1}{3} x^{3}-\frac{1}{4} \mathrm{x} \cos 2 \mathrm{x}+\frac{1}{8} \sin 2 \mathrm{x}+c$
$=\frac{1}{6} x^{3}-\frac{1}{4} x^{2} \sin 2 x-\frac{1}{4} x \cos 2 x+\frac{1}{8} \sin 2 x+c$
Or by using basic technique

Sign	Differentiate	Integrates
+	x^{2}	$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
-	$2 x$	$\frac{1}{2} x-\frac{1}{4} \operatorname{sins} 2 x$
+	2	$\frac{1}{4} x^{2}+\frac{1}{8} \cos 2 x$
-	0	$\frac{1}{12} x^{3}+\frac{1}{16} \sin 2 x$

$\int x^{2} \sin ^{2} x d x$
$=\frac{1}{2} x^{2}\left(x-\frac{1}{2} \sin 2 x\right)-2 x\left(\frac{1}{4} x^{2}+\frac{1}{8} \cos 2 x\right)+$ $2\left(\frac{1}{12} x^{3}+\frac{1}{16} \sin 2 x\right)$
$=\frac{1}{6} x^{3}-\frac{1}{4} x^{2} \sin 2 x-\frac{1}{4} x \cos 2 x+\frac{1}{8} \sin 2 x+c$
(iv) $\int x \cos ^{2} x d x$

Solution

$\int x \cos ^{2} x d x$
Let $\mathrm{u}=\mathrm{x}$ and $\frac{d v}{d x}=\cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos 2 x$
$\frac{d u}{d x}=1, v=\frac{1}{2}\left(x+\frac{1}{2} \sin 2 x\right)$
$\int x \cos ^{2} x d x$
$=\frac{1}{2} x\left(x+\frac{1}{2} \sin 2 x\right)-\int 1 \cdot \frac{1}{2}\left(x+\frac{1}{2} \sin 2 x\right) \mathrm{dx}$
$=\frac{1}{2} x\left(x+\frac{1}{2} \sin 2 x\right)-\frac{1}{2} \int x d x-\frac{1}{4} \int \sin 2 x \mathrm{dx}$
$=\frac{1}{2} x^{2}+\frac{1}{4} \sin 2 x-\frac{1}{4} x^{2}+\frac{1}{8} \cos 2 x+c$
$=\frac{1}{4} x^{2}+\frac{1}{4} \sin 2 x+\frac{1}{8} \cos 2 x+c$
(b) Evaluate
(i) $\int_{0}^{\frac{\pi}{2}} x^{2} \cos x d x$

Solution

$\int_{0}^{\frac{\pi}{2}} x^{2} \cos x d x$
$=\left[x^{2} \sin x+2 x \cos x-2 \sin x\right]_{0}^{\frac{\pi}{2}}$
$=\left[\frac{\pi^{2}}{4} \sin \frac{\pi}{2}+2 \cdot \frac{\pi}{2} \cos \frac{\pi}{2}-2 \sin \frac{\pi}{2}\right]-0$
$=\left(\frac{\pi^{2}}{4}-2\right)=0.4674$
(ii) $\int_{0}^{\frac{\pi}{4}} x \tan ^{2} x d x$

Solution

Let $\mathrm{u}=\mathrm{x}$ and $\frac{d v}{d x}=\tan ^{2} x=\sec ^{2} x-1$
$\frac{d u}{d x}=1 ; v=\tan x-x$
$\int x \tan ^{2} x d x=x \tan x-x^{2}-\int(\tan x-x) d x$

$$
\begin{aligned}
& =x \tan x-x^{2}+\ln \cos x+\frac{1}{2} x^{2}+c \\
& =x \tan x+\ln \cos x-\frac{1}{2} x^{2}+c
\end{aligned}
$$

Or by using basic technique

Sign	Differentiate	Integrates
+	x	$\tan ^{2} x=\sec ^{2} x-1$
-	1	$\tan \mathrm{x}-\mathrm{x}$
+	0	$-\ln \cos x-\frac{1}{2} x^{2}+$

$\int x \tan ^{2} x d x=\mathrm{xtan} \mathrm{x}-x^{2}+\ln \cos \mathrm{x}+\frac{1}{2} x^{2}+c$

$$
=x \tan x+\ln \cos x-\frac{1}{2} x^{2}+c
$$

Hence;

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} x \tan ^{2} x d x & =\left[x \tan x+\operatorname{Incos} x-\frac{1}{2} x^{2}\right]_{0}^{\frac{\pi}{4}} \\
& =\left[\frac{\pi}{4} \tan \frac{\pi}{4}+\operatorname{Incos} \frac{\pi}{4}-\frac{1}{2}\left(\frac{\pi}{4}\right)^{2}\right]-0 \\
& =0.1304
\end{aligned}
$$

Revision Exercise 9

1. Integrate each of the following
(a) $\int x \sin 2 x d x$

$$
\left[-\frac{x}{2} \cos 2 x+\frac{1}{4} \sin 2 x+c\right]
$$

(b) $\int x^{2} \sin x d x$

$$
\left[-x^{2} \cos x+2 x \sin x+2 \cos x+c\right]
$$

(c) $\int(x+1)^{2} \sin x d x$
$\left[\left(1-2 x-x^{2}\right) \cos x=2(x+1) \sin x+c\right]$
(d) $\int x^{2} \sin x \cos x d x$

$$
\left[\frac{1}{8} \cos 2 x\left(1-2 x^{2}\right)+\frac{1}{4} x \sin 2 x+c\right]
$$

(e) $\int x^{3} \cos x^{2} d x$

$$
\left[\frac{1}{2} x^{2} \sin x^{2}+\frac{1}{2} \cos x^{2}+c\right]
$$

(f) $\int(x \cos x)^{2} d x$
$\left[\frac{1}{6} x^{3}+\frac{1}{8}\left(2 x^{2}-1\right)+\frac{1}{4} x \sin 2 x+c\right]$
2. Evaluate
(a) $\int_{0}^{\pi} x^{2} \sin x d x$
[5.8696]
(b) $\int_{0}^{\pi} x^{2} \cos 2 x d x$
[0.0584]
(c) $\int_{0}^{\frac{\pi}{4}} x \tan ^{2} x d x$
C. Integration products of polynomials and exponential functions by parts

Examples 19

(a) Find
(i) $\int x e^{x} d x$

Solution

Let $\mathrm{u}=\mathrm{x}$ and $\frac{d v}{d x}=e^{x}$

$$
\begin{aligned}
& \frac{d u}{d x}=1 ; \mathrm{v}
\end{aligned}=e^{x} .
$$

Or by using basic technique

Sign	Differentiate	Integrates
+	x	e^{x}
-	1	e^{x}
+	0	e^{x}

$\int x e^{x} d x=x e^{x}-e^{x}+c$
(ii) $\int x e^{-x} d x$

Solution

Let $\mathrm{u}=\mathrm{x}$ and $\frac{d v}{d x}=e^{-x}$
$\frac{d u}{d x}=1 ; v=-e^{-x}$

$$
\begin{aligned}
\int x e^{x} d x & =-x e^{-x}-\int 1 \cdot-e^{-x} d x \\
& =-x e^{-x}+\int e^{-x} d x \\
& =-x e^{x}-e^{x}+c
\end{aligned}
$$

Or by using basic technique

Sign	Differentiate	Integrates
+	x	e^{-x}
-	$1 \longrightarrow-e^{-x}$	
+	0	e^{x}

$\int x e^{x} d x=-x e^{x}-e^{x}+c$
(iii) $\int x e^{3 x} d x$

Solution

Let $\mathrm{u}=\mathrm{x}$ and $\frac{d v}{d x}=e^{3 x}$
$\frac{d u}{d x}=1 ; v=\frac{1}{3} e^{3 x}$
$\int x e^{3 x} d x=\frac{1}{3} x e^{3 x}-\frac{1}{9} e^{3 x}+c$
Or by using basic technique

Sign	Differentiate	Integrates
+	x	$e^{3 x}$
-	1	$\frac{1}{3} e^{3 x}$
+	0	$\leq \frac{1}{9} e^{3 x}$

$\int x e^{x} d x=\frac{1}{3} x e^{3 x}-\frac{1}{9} e^{3 x}+c$
(b) Find
(i) $\int x \cdot 2^{x} \mathrm{dx}$

Solution

Let $\mathrm{u}=\mathrm{x}$ and $\frac{d v}{d x}=2^{x}$
$\frac{d u}{d x}=1 ; v=\frac{2^{x}}{\operatorname{In} 2}$
$\int x .2^{x} \mathrm{dx}=\frac{x .2^{x}}{\operatorname{In} 2}-\frac{1}{\operatorname{In} 2} \int 2^{x} d x$

$$
\begin{aligned}
& =\frac{x \cdot 2^{x}}{I n 2}-\frac{1}{\operatorname{In} 2}\left(\frac{2^{x}}{\operatorname{In} 2}\right)+c \\
& =\frac{2 x}{\operatorname{In} 2}(x-1)+c
\end{aligned}
$$

(ii) $\int 3^{\sqrt{(2 x-1)}} \mathrm{dx}$

Solution

Let $\mathrm{p}=\sqrt{(2 x-1)}, \mathrm{p}^{2}=2 \mathrm{x}-1$
$2 \mathrm{pdp}=2 \mathrm{dx}$
$p d p=d x$
$\Rightarrow \int 3^{\sqrt{(2 x-1)}} \mathrm{dx}=\int 3^{p} \cdot p d p$
Let $\mathrm{u}=\mathrm{p}$ and $\frac{d v}{d p}=3^{p}$
$\frac{d u}{d p}=1, \mathrm{v}=\frac{3^{p}}{\operatorname{In} 3}$
$\int 3^{p} \cdot p d p=\frac{3^{p} \cdot p}{\operatorname{In} 3}-\frac{1}{\operatorname{In} 3} \int 3^{p} d p$ $=\frac{3^{p} \cdot p}{\operatorname{In3}}-\frac{1}{\operatorname{In} 3}\left(\frac{3^{p}}{\operatorname{In3}}\right)+c$
$\therefore \int 3^{\sqrt{(2 x-1)}} \mathrm{dx}$
$=\frac{\sqrt{(2 x-1)} 3 \sqrt{(2 x-1)}}{\operatorname{In} 3}-\frac{1}{\operatorname{In} 3}\left(\frac{3^{\sqrt{(2 x-1)}}}{\operatorname{In} 3}\right)+c$
$=\frac{3^{\sqrt{(2 x-1)}}}{I n 3}\left(\sqrt{(2 x-1)}-\frac{1}{I n 3}\right)+c$
(c) Evaluate
(i) $\int_{0}^{1} x e^{-x} d x$

Solution

$$
\begin{aligned}
\int_{0}^{1} x e^{-x} d x & =\left[-x e^{-x}-e^{-x}\right]_{0}^{1} \\
& =\left(-e^{-1}-e^{-1}\right)-\left(0-e^{0}\right) \\
& =-2 e^{-1}+1
\end{aligned}
$$

$$
\begin{aligned}
& =1-\frac{2}{e} \\
& =0.2642
\end{aligned}
$$

(ii) $\int_{0}^{1} x e^{3 x} d x$

Solution

$$
\begin{array}{rl}
\int_{0}^{1} x e^{3 x} & d x=\left[\frac{1}{3} x e^{3 x}-\frac{1}{9} e^{3 x}\right]_{0}^{1} \\
& =\left[\frac{1}{3} e^{3}-\frac{1}{9} e^{3}\right]-\left[0-\frac{1}{9} e^{0}\right] \\
& =\frac{2}{9} e^{3}+\frac{1}{9}=4.5746
\end{array}
$$

Revision exercise 10

1. Integrate each of the following with respect to x
(a) $x e^{3 x}$ $\left[\frac{e^{3 x}}{9}(3 x-1)+c\right]$
(b) $x^{2} e^{x}$ $\left[e^{x}\left(x^{2}-2 x+2\right)+c\right]$
(c) $x^{3} e^{x^{2}}$
$\left[\frac{e^{x^{2}}}{2}\left(x^{2}-1\right)+c\right]$
(d) $x^{2} e^{-2 x}$
$\left[-\frac{e^{-2}}{4}\left(2 x^{2}+2 x+1\right)+c\right]$
(e) $\frac{x^{2}}{e^{-x^{3}}}$
$\left[-\frac{1}{3} e^{-x^{3}}+c\right]$
(f) $e^{x}\left(3+e^{x}\right)^{2} \quad\left[\frac{1}{3}\left(3+e^{x}\right)^{3}+c\right]$
2. Evaluate each of the following
(a) $\int_{0}^{1} x^{2} e^{2 x} d x$
(b) $\int_{0}^{1}(x-1) e^{x} d x$
D. Integration products of polynomials and inverse trigonometric functions by parts

Example 20

(a) Find
(i) $\int \sin ^{-1} x d x$

Solution

$\int \sin ^{-1} x d x=\int 1 \cdot \sin ^{-1} x d x$
Let $\mathrm{u}=\sin ^{-1} x$ and $\frac{d v}{d x}=1$
$\frac{d u}{d x}=\frac{1}{\sqrt{1-x^{2}}} ; \quad \mathrm{v}=\mathrm{x}$
$\int \sin ^{-1} x d x=x \sin ^{-1} x-\int \frac{x}{\sqrt{1-x^{2}}} d x$
For $\int \frac{x}{\sqrt{1-x^{2}}} d x$
Let $u=1-x^{2}$

Du $=-2 x$
$-\frac{1}{2 x} d u=d x$
$\int \frac{x}{\sqrt{1-x^{2}}} d x=\int \frac{x}{u^{\frac{1}{2}}} \cdot-\frac{1}{2 x} d u$

$$
\begin{aligned}
& =-\frac{1}{2} \int u^{-\frac{1}{2}} d u \\
& =-\frac{1}{2}\left[2 u^{\frac{1}{2}}+c\right]=-u^{\frac{1}{2}}+c
\end{aligned}
$$

By substitution
$\int \sin ^{-1} x d x=x \sin ^{-1} x+u^{\frac{1}{2}}+c$
$\therefore \int \sin ^{-1} x d x=x \sin ^{-1} x+\sqrt{1-x^{2}}+c$
(ii) $\int \cos ^{-1}\left(\frac{x}{a}\right) d x$

Solution

$\int \cos ^{-1}\left(\frac{x}{a}\right) d x=\int 1 \cdot \cos ^{-1}\left(\frac{x}{a}\right) d x$
Let $\mathrm{u}=\cos ^{-1}\left(\frac{x}{a}\right)$ and $\frac{d v}{d x}=1$
$\frac{d u}{d x}=-\frac{1}{\sqrt{a^{2}-x^{2}}}$
$\int \cos ^{-1}\left(\frac{x}{a}\right) d x=x \cos ^{-1}\left(\frac{x}{a}\right)+\int \frac{1}{\sqrt{a^{2}-x^{2}}} \mathrm{dx}$
For $\int \frac{x}{\sqrt{a^{2}-x^{2}}} d x$
Let $\mathrm{u}=a^{2}-\mathrm{x}^{2}$
Du $=-2 x$
$-\frac{1}{2 x} d u=d x$
$\int \frac{x}{\sqrt{a^{2}-x^{2}}} d x=\int \frac{x}{u^{\frac{1}{2}}} \cdot-\frac{1}{2 x} d u$

$$
\begin{aligned}
& =-\frac{1}{2} \int u^{-\frac{1}{2}} d u \\
& =-\frac{1}{2}\left[2 u^{\frac{1}{2}}+c\right]=-u^{\frac{1}{2}}+c
\end{aligned}
$$

By substitution
$\int \cos ^{-1}\left(\frac{x}{a}\right) d x=x \cos ^{-1} x+u^{\frac{1}{2}}+c$
$\therefore \int \cos ^{-1}\left(\frac{x}{a}\right) d x=x \cos ^{-1} x+\sqrt{a^{2}-x^{2}}+c$
(iii) $\int x \tan ^{-1} x d x$

Solution

Let $\mathrm{u}=\tan ^{-1} x$ and $\frac{d v}{d x}=x$
$\frac{d u}{d x}=\frac{1}{1+x^{2}} ; v=\frac{1}{2} x^{2}$
$\int x \tan ^{-1} x d x=\frac{1}{2} x^{2} \tan ^{-1} x-\frac{1}{2} \int \frac{x^{2}}{1+x^{2}} \mathrm{dx}$

$$
\text { For } \begin{aligned}
\int \frac{x^{2}}{1+x^{2}} \mathrm{dx} & =\int\left(1-\frac{1}{1+x^{2}}\right) d x \\
& =\int d x-\int \frac{1}{1+x^{2}} d x \\
& =x-\tan ^{-1} x+c
\end{aligned}
$$

By substitution
$\int x \tan ^{-1} x d x$
$=\frac{1}{2} x^{2} \tan ^{-1} x-\frac{1}{2}\left[x-\tan ^{-1} x\right]+c$
$=\frac{1}{2} x^{2} \tan ^{-1} x-\frac{1}{2} x+\frac{1}{2} \tan ^{-1} x+c$
$=\frac{1}{2}\left[\left(x^{2}+1\right) \tan ^{-1} x-x\right]+c$
(b) Evaluate $\int_{0}^{1} x \sin ^{-1} x d x$

Solution

Let $\mathrm{u}=\sin ^{-1} \mathrm{x}$ and $\frac{d v}{d x}=x$
$\frac{d u}{d x}=\frac{1}{\sqrt{1-x^{2}}} ; v=\frac{1}{2} x^{2}$
$\int x \sin ^{-1} x d x=\frac{1}{2} x^{2} \sin ^{-1} x-\frac{1}{2} \int \frac{x^{2}}{\sqrt{1-x^{2}}} d x$
For $\int \frac{x^{2}}{\sqrt{1-x^{2}}} d x$
Let $\mathrm{x}=\sin \theta \Rightarrow \mathrm{dx}=\cos \theta \mathrm{d} \theta$
$\int \frac{x^{2}}{\sqrt{1-x^{2}}} d x=\int \frac{\sin ^{2} \theta}{\sqrt{1-\sin ^{2} \theta}} \cdot \cos \theta d \theta$
$=\int \frac{\sin ^{2} \theta}{\cos \theta} \cdot \cos \theta d \theta$
$=\int \sin ^{2} \theta d \theta$
$=\frac{1}{2} \int(1-\cos 2 \theta) d \theta$
$=\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta+c$
$=\frac{1}{2} \theta-\frac{1}{4}(2 \sin \theta \cos \theta)+c$
$=\frac{1}{2} \theta-\frac{1}{2}(\sin \theta \cos \theta)+c$
$=\frac{1}{2} \sin ^{-1} x-\frac{1}{2} x \sqrt{1-x^{2}}+c$
$\therefore \int x \sin ^{-1} x d x$
$=\frac{1}{2} x^{2} \sin ^{-1} x-\frac{1}{4} \sin ^{-1} x+\frac{1}{4} x \sqrt{1-x^{2}}$
$\int_{0}^{1} x \sin ^{-1} x d x$
$=\left[\frac{1}{2} x^{2} \sin ^{-1} x-\frac{1}{4} \sin ^{-1} x+\frac{1}{4} x \sqrt{1-x^{2}}\right]_{0}^{1}$
$=\left[\frac{1}{2} \cdot 1 \cdot \sin ^{-1} 1-\frac{1}{4} \sin ^{-1}(1)\right]-(0)$
$=\frac{\pi}{4}-\frac{\pi}{8}=\frac{\pi}{8}$

Revision exercise 11

1. Find the following integrals
(a) $\int \tan ^{-1} 3 x d x$

$$
\left[x \tan ^{-1} x-\frac{1}{6} \operatorname{In}\left(1+9 x^{2}\right)+c\right]
$$

(b) $\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$

$$
\left[x \sin ^{-1} x+\sqrt{1-x^{2+c}}\right]
$$

(c) $\int \sec ^{-1} x d x$

$$
\left[x \sec ^{-1} x-\operatorname{In}\left(x+\sqrt{x^{2}-1}\right)+c\right]
$$

(d) $\int \cot ^{-1} x d x$

$$
\left[x \cot ^{-1} x+\frac{1}{2} \operatorname{In}\left(1+x^{2}\right)+c\right]
$$

2. Evaluate
(a) $\int_{0}^{1} \sin ^{-1} x d x$
$\left[\frac{\pi}{2}-1\right]$
(b) $\int_{0}^{1} \cos ^{-1} x d x$
[1]

E. Integration products of polynomials and logarithmic functions by parts

Example 21

(a) Integrate
(i) $\int \operatorname{In} x^{2} d x$

Solution

$\int \operatorname{In} x^{2} d x=\int 1 . \operatorname{In} x^{2} d x$
Let $\mathrm{u}=\ln \mathrm{x}^{2}, \frac{d v}{d x}=1$
$\frac{d u}{d x}=\frac{2 x}{x^{2}}=\frac{2}{x^{\prime}} ; \mathrm{v}=\mathrm{x}$
$\int \operatorname{In} x^{2} d x=x \operatorname{In} x^{2}-2 \int x \cdot \frac{1}{x} d x$
$=x \operatorname{In} x^{2}-2 x+c$
$=2 x \operatorname{In} x-2 x+c$
$\therefore \int \operatorname{In} x^{2} d x=2 x \operatorname{In} x-2 x+c$
(ii) $\int x \operatorname{In}\left(x^{2}-1\right) d x$

Solution

Let $\mathrm{u}=\operatorname{In}\left(x^{2}-1\right)$ and $\frac{d v}{d x}=x$
$\frac{d u}{d x}=\frac{2 x}{x^{2}-1} ; v=\frac{1}{2} x^{2}$
$\int x \operatorname{In}\left(x^{2}-1\right) d x$
$=\frac{1}{2} x^{2} \operatorname{In}\left(x^{2}-1\right)-\int \frac{1}{2} x^{2} \cdot \frac{2 x}{x^{2}-1} d x$
$=\frac{1}{2} x^{2} \operatorname{In}\left(x^{2}-1\right)-\int \frac{x^{3}}{x^{2}-1} d x$
For $\int \frac{x^{3}}{x^{2}-1} d x$
By using long division
$\frac{x^{3}}{x^{2}-1}=x+\frac{x}{x^{2}-1}$
$\Rightarrow \int \frac{x^{3}}{x^{2}-1} d x=\int x d x+\int \frac{x}{x^{2}-1} d x$

$$
=\frac{1}{2} x^{2}+\frac{1}{2} \operatorname{In}\left(x^{2}-1\right)+c
$$

$\therefore \int x \operatorname{In}\left(x^{2}-1\right) d x$
$=\frac{1}{2} x^{2} \operatorname{In}\left(x^{2}-1\right)-\frac{1}{2} x^{2}-\frac{1}{2} \operatorname{In}\left(x^{2}-1\right)+c$
(iii) $\int x^{-3} \operatorname{In} x d x$

Solution

Let $\mathrm{u}=\ln \mathrm{x}$ and $\frac{d v}{d x}=x^{-3}$
$\frac{d u}{d x}=\frac{1}{x}$ and $v=-\frac{1}{2} x^{-2}$
$\int x^{-3} \operatorname{In} x d x=-\frac{1}{2} x^{-2} \operatorname{In} x+\frac{1}{2} \int \frac{1}{x} \cdot x^{-2} \mathrm{dx}$
$=-\frac{1}{2} x^{-2} \operatorname{In} x+\frac{1}{2} \int x^{-3} d x$
$=-\frac{1}{2} x^{-2} \operatorname{In} x-\frac{1}{4} x^{-2}+c$
$=-\frac{1}{4} x^{-2}(\operatorname{In} x+1)+c$
(b) Evaluate $\int_{1}^{10} x \log _{10} x d x$

Solution

Changing from base 10 to base e
$\log _{10} x=\frac{\operatorname{Ine}}{\operatorname{In} 10}$
$\int_{1}^{10} x \log _{10} x d x=\frac{1}{\operatorname{In} 10} \int_{1}^{10} x \operatorname{In} x d x$
Let $\mathrm{u}=\ln \mathrm{x} ; \frac{d v}{d x}=x$
$\frac{d u}{d x}=\frac{1}{x} ; v=\frac{1}{2} x^{2}$

$$
\begin{aligned}
\frac{1}{\operatorname{In} 10} \int_{1}^{10} x \operatorname{In} x d x & =\frac{1}{\operatorname{In} 10}\left[\frac{1}{2} x^{2} \operatorname{In} x-\frac{1}{4} x^{2}\right]_{1}^{10} \\
& =\frac{1}{\operatorname{In} 10}\left[(50 \operatorname{In} 10-25)-\frac{1}{4}\right]
\end{aligned}
$$

$$
=\frac{1}{\operatorname{In} 10}\left[50 \operatorname{In} 10-\frac{99}{4}\right]=50-\frac{99}{4 \operatorname{In} 10}
$$

Revision exercise 12

1. Integrate each of the following
(a) $x \operatorname{In} x$
$\left[\frac{x^{2}}{4}(2 \operatorname{In} x-1)+c\right]$
(b) $x^{2} \operatorname{In} x$
$\left[\frac{x^{2}}{9}(3 \operatorname{In} x-1)+c\right]$
(c) $\sqrt{x} \operatorname{In} x$
$\left[\frac{2}{9} \sqrt{x^{3}}(3 \operatorname{In} x-2)+c\right]$
(d) $(\operatorname{In} x)^{2}$ $\left[x\left(2-2 \operatorname{In} x+(\operatorname{In} x)^{2}\right)+c\right]$
(e) $\frac{\operatorname{In} x}{x^{2}}$
$\left[-\frac{1}{x}(\operatorname{In} x+1)+c\right]$
(f) $3^{x} x$
$\left[\frac{3^{x}}{(\operatorname{In} 3)^{2}}(x \operatorname{In} 3-1)+c\right]$
(g) $x(\operatorname{In} x)^{2}$

$$
\left[\frac{1}{4} x^{2}\left(1-2 \operatorname{In} x+2(\operatorname{In} x)^{2}\right)+c\right]
$$

2. Evaluate the following
(a) $\int_{2}^{4} x^{3} \operatorname{In} x d x$
[70.9503]
(b) $\int_{2}^{4}(x-1) \operatorname{In}(2 x) d x[1.0794]$
(c) $\int_{1}^{4} \frac{\operatorname{In} x}{x^{2}} d x$
[0.4034]
F. Integration of products of exponential and trigonometric functions by parts

Example 22

(a) Find
(i) $\int e^{-x} \sin x d x$

Solution

Taking $\mathbf{I}=\int e^{-x} \sin x d x$
Let $\mathrm{u}=e^{-x}, \frac{d v}{d x}=\sin x$
$\frac{d u}{d x}=-e^{-x} ; v=-\cos x$
$=>I=-e^{-x} \cos x-\int-e^{-x} .-\cos x d x$

$$
\begin{equation*}
I=-e^{-x} \cos x-\int e^{-x} \cdot \cos x d x \tag{*}
\end{equation*}
$$

For $\int e^{-x} \cdot \cos x d x$
Let $\mathrm{u}=e^{-x}, \frac{d v}{d x}=\cos x$
$\frac{d u}{d x}=-e^{-x} ; v=\sin x$

$$
\begin{align*}
\int e^{-x} \cdot \cos x d x & =e^{-x} \sin x-\int-e^{-x} \sin x \\
& =e^{-x} \sin x+I \ldots \ldots . .\left(^{* *}\right) \tag{**}
\end{align*}
$$

Substituting for (${ }^{* *}$) in equation (*)
$I=-e^{-x} \cos x-e^{-x} \sin x-I$
$2 I=-e^{-x} \cos x-e^{-x} \sin x-I+A$
$I=-\frac{1}{2} e^{-x}(\cos x+\sin x)+c$
$\therefore \int e^{-x} \sin x d x=-\frac{1}{2} e^{-x}(\cos x+\sin x)+c$
Or by using basic technique

sign	Differentiate	integrate
+	e^{-x}	$\sin x$
-	$-e^{-x}$	$-\cos x$
+	e^{-x}	$<\sin x$

$I=-e^{-x} \cos x-e^{-x} \sin x-\int e^{-x} \sin x$
$I=-e^{-x} \cos x-e^{-x} \sin x-I$
$2 I=-e^{-x} \cos x-e^{-x} \sin x+A$
$I=-\frac{1}{2} e^{-x}(\cos x+\sin x)+c$
$\therefore \int e^{-x} \sin x d x=-\frac{1}{2} e^{-x}(\cos x+\sin x)+c$
(ii) $\int e^{2 x} \cos 3 x d x$

Solution

Taking $\mathrm{I}=\int e^{2 x} \cos 3 x d x$
Let $\mathrm{u}=e^{2 x}, \frac{d v}{d x}=\cos 3 x$
$\frac{d u}{d x}=2 e^{2 x} ; \mathrm{v}=\frac{1}{3} \sin 3 \mathrm{x}$
$I=\frac{1}{3} e^{2 x} \sin 3 x-\int 2 e^{2 x} \cdot \frac{1}{3} \sin 3 x d x$
$I=\frac{1}{3} e^{2 x} \sin 3 x-\frac{2}{3} \int e^{2 x} \sin 3 x \mathrm{dx}$.
For $\int e^{2 x} \sin 3 x d x$
Let $\mathrm{u}=e^{2 x}, \frac{d v}{d x}=\sin 3 x$
$\frac{d u}{d x}=2 e^{2 x} ; \mathrm{v}=-\frac{1}{3} \cos 3 \mathrm{x}$
$\int e^{2 x} \sin 3 \mathrm{xdx}$
$=-\frac{1}{3} e^{2 x} \cos 3 \mathrm{x}-\int 2 e^{2 x} \cdot-\frac{1}{3} \cos 3 \mathrm{x} \mathrm{dx}$
$=-\frac{1}{3} e^{2 x} \cos 3 \mathrm{x}+\frac{2}{3} \int e^{2 x} \cos 3 \mathrm{xdx}$
$=-\frac{1}{3} e^{2 x} \cos 3 \mathrm{x}+\frac{2}{3} I$ \qquad
Substituting $\left({ }^{* *}\right)$ into $\left({ }^{*}\right)$
$I=\frac{1}{3} e^{2 x} \sin 3 \mathrm{x}-\frac{2}{3}\left(-\frac{1}{3} e^{2 x} \cos 3 \mathrm{x}+\frac{2}{3} I\right)$

$$
\begin{aligned}
& =\frac{1}{3} e^{2 x} \sin 3 \mathrm{x}+\frac{2}{9} e^{2 x} \cos 3 \mathrm{x}+\frac{4}{9} I+\mathrm{c} \\
& \frac{13}{9} I=\frac{1}{3} e^{2 x} \sin 3 \mathrm{x}+\frac{2}{9} e^{2 x} \cos 3 \mathrm{x}+\mathrm{A} \\
& \quad I=\frac{3}{13} e^{2 x} \sin 3 \mathrm{x}+\frac{2}{13} e^{2 x} \cos 3 \mathrm{x}+\mathrm{c} \\
& I=\frac{1}{13} e^{2 x}(3 \sin 3 x+2 \cos 3 x)+c \\
& \therefore \int e^{2 x} \cos 3 x d x=\frac{1}{13} e^{2 x}(3 \sin 3 x+2 \cos 3 x)+c
\end{aligned}
$$

(iii) $\int e^{3 x} \sin 2 x d x$

Solution

Taking I $=\int e^{3 x} \sin 2 x d x$
Let $\mathrm{u}=e^{3 x}, \frac{d v}{d x}=\sin 2 x$
$\frac{d u}{d x}=3 e^{3 x} ; v=-\frac{1}{2} \cos 2 \mathrm{x}$
$I=-\frac{1}{2} e^{3 x} \cos 2 x-\int 3 e^{3 x} .-\frac{1}{2} \cos 2 x d x$
$I=-\frac{1}{2} e^{3 x} \cos 2 \mathrm{x}+\frac{3}{2} \int e^{3 x} \cos 2 \mathrm{xdx}$
For $\int e^{3 x} \cos 2 x d x$
Let $\mathrm{u}=e^{3 x}, \frac{d v}{d x}=\cos 2 x$
$\frac{d u}{d x}=3 e^{3 x} ; v=\frac{1}{2} \sin 2 x$
$\int e^{3 x} \cos 2 \mathrm{xdx}$
$=\frac{1}{2} e^{3 x} \sin 2 \mathrm{x}-\int 3 e^{3 x} \cdot \frac{1}{2} \sin 2 \mathrm{xdx}$
$=\frac{1}{2} e^{3 x} \sin 2 x-\frac{3}{2} \int e^{3 x} \sin 2 \mathrm{xxdx}$
$=\frac{1}{2} e^{3 x} \sin 2 x-\frac{3}{2} I$
Substituting (${ }^{* *}$) into (*)

$$
\begin{aligned}
& I=-\frac{1}{2} e^{3 x} \cos 2 x+\frac{3}{2}\left(\frac{1}{2} e^{3 x} \sin 2 \mathrm{x}-\frac{3}{2} I\right) \\
& =-\frac{1}{2} e^{3 x} \cos 2 x+\frac{3}{4} e^{3 x} \sin 2 \mathrm{x}-\frac{9}{4} I+\mathrm{c} \\
& \frac{13}{4} I=-\frac{1}{2} e^{3 x} \cos 2 x+\frac{3}{4} e^{3 x} \sin 2 \mathrm{x}+\mathrm{A} \\
& \quad I=-\frac{2}{13} e^{3 x} \cos 2 \mathrm{x}+\frac{3}{13} e^{3 x} \sin 2 \mathrm{x}+\mathrm{c} \\
& I=\frac{1}{13} e^{3 x}(3 \sin 2 x-2 \cos 2 x)+c
\end{aligned}
$$

$\therefore \int e^{3 x} \sin 2 x d x=\frac{1}{13} e^{2 x}(3 \sin 2 x-2 \cos 3 x)+c$
Or using basic technique

sign	Differentiate	integrate
+	$e^{3 x}$	$\sin 2 \mathrm{x}$
-	$3 e^{3 x}$	$-\frac{1}{2} \cos 2 \mathrm{x}$
+	$9 e^{3 x}$	$\frac{1}{4} \sin \mathrm{x}$

$\frac{13}{4} I=-\frac{1}{2} e^{3 x} \cos 2 x+\frac{3}{4} e^{3 x} \sin 2 \mathrm{x}+\mathrm{A}$
$I=-\frac{2}{13} e^{3 x} \cos 2 \mathrm{x}+\frac{3}{13} e^{3 x} \sin 2 \mathrm{x}+\mathrm{c}$
$I=\frac{1}{13} e^{3 x}(3 \sin 2 x-2 \cos 2 x)+c$
$\therefore \int e^{3 x} \sin 2 x d x=\frac{1}{13} e^{2 x}(3 \sin 2 x-2 \cos 3 x)+c$
(b) Evaluate $\int_{0}^{\infty} e^{-2 x} \sin 3 x d x$

Solution

Taking $\mathbf{I}=e^{-2 x} \sin 3 x d x$
Let $\mathrm{u}=e^{-2 x}, \frac{d v}{d x}=\sin 3 x$
$\frac{d u}{d x}=-2 e^{-2 x} ; \mathrm{v}=-\frac{1}{3} \cos 3 \mathrm{x}$
$I=-\frac{1}{3} e^{-2 x} \cos 3 \mathrm{x}-\int 2 e^{2 x} \cdot \frac{1}{3} \sin 3 \mathrm{xdx}$
$I=\frac{1}{3} e^{3 x} \sin 3 x-\frac{2}{3} \int e^{-2 x} \cos 3 x d x$
For $\int e^{-2 x} \cos 3 x d x$
Let $\mathrm{u}=e^{-2 x}, \frac{d v}{d x}=\cos x$
$\frac{d u}{d x}=-2 e^{2 x} ; v=\frac{1}{3} \sin 3 x$
$\int e^{-2 x} \cos 3 x d x$

$$
\begin{align*}
& =-\frac{1}{3} e^{-2 x} \sin 3 x+\frac{2}{3} \int e^{2 x} \sin 3 x \mathrm{dx} \tag{**}\\
& =-\frac{1}{3} e^{-2 x} \sin 3 \mathrm{x}+\frac{2}{3} I \ldots \ldots \ldots .\left(^{* *}\right)
\end{align*}
$$

Substituting (**) into (*)

$$
\begin{aligned}
& I=-\frac{1}{3} e^{-2 x} \cos 3 \mathrm{x}-\frac{2}{3}\left(\frac{1}{3} e^{-2 x} \cos 3 \mathrm{x}+\frac{2}{3} I\right) \\
& \quad=-\frac{1}{3} e^{-2 x} \cos 3 \mathrm{x}-\frac{2}{9} e^{-2 x} \sin 3 \mathrm{x}-\frac{4}{9} I+\mathrm{c} \\
& \frac{13}{9} I=-\frac{1}{3} e^{-2 x} \operatorname{scos} 3 \mathrm{x}-\frac{2}{9} e^{-2 x} \sin 3 \mathrm{x}+\mathrm{c}
\end{aligned}
$$

$I=-\frac{1}{13} e^{-2 x}(3 \cos 3 x+2 \sin 3 x)+c$
$\therefore \int e^{-2 x} \sin 3 x d x$
$=-\frac{1}{13} e^{-2 x}(3 \cos 3 x+2 \sin 3 x)+c$
$\Rightarrow \int_{0}^{\infty} e^{-2 x} \sin 3 x d x$
$=\left[-\frac{1}{13} e^{-2 x}(3 \cos 3 x+2 \sin 3 x)\right]_{0}^{\infty}$
$=\frac{3}{13}$ since $e^{\infty}=0$

Revision exercise 13

Integrate each of the following with respect to x
(a) $e^{x} \cos x \quad\left[\frac{1}{2} e^{x}(\sin x+\cos x)+c\right]$
(b) $e^{x} \sin x x \quad\left[\frac{1}{2} e^{x}(\sin x-\cos x)+c\right]$
(c) $e^{a x} \cos b x\left[\frac{e^{a x}}{b^{2}+a^{2}}(a \cos b x+b \sin b x)+c\right]$
(d) $e^{3 x} \sin 2 x \quad\left[\frac{1}{13} e^{3 x}(3 \sin 2 x-2 \cos 2 x)+c\right]$
G. Integration of products of trigonometric functions by parts

A student should take note of the following
(i) $\int \tan x d x=\operatorname{In}(\sec x)+$ c

Proof
$\frac{d}{d x} \operatorname{In}(\operatorname{sex}) d x=\frac{\sec x \tan x}{\sec x}=\tan x$
Hence $\int \tan x d x=\operatorname{In}(\sec x)+c$
(ii) $\int \operatorname{cosec} x d x=-\operatorname{In}(\operatorname{cosec} x+\cot x)+c$

Proof

$$
\begin{aligned}
\frac{d}{d x} \operatorname{In}(\operatorname{cosec} x+\cot x) d x & =\frac{-\operatorname{cosec} x \cot x-\operatorname{cosec}^{2} x}{\operatorname{cosec} x+\cot x} \\
& =\frac{-\operatorname{cosec} x(\cot x-\operatorname{cosec} x)}{\operatorname{cosec} x+\cot x} \\
& =-\operatorname{cosec} x
\end{aligned}
$$

$\therefore \int \operatorname{cosec} x d x=-\operatorname{In}(\operatorname{cosec} x+\cot x)+c$
(iii) $\int \sec x d x=\operatorname{In}(\sec x+\tan x)+c$

Proof

$$
\begin{aligned}
\frac{d}{d x} \operatorname{In}(\sec x+\tan x) d x= & \frac{\sec x \tan x+\sec ^{2} x}{\sec x+\tan x} \\
& =\frac{\sec x(\operatorname{In}(\sec x+\tan x))}{\sec x+\tan x} \\
& =\sec x
\end{aligned}
$$

$$
\therefore \int \sec x d x=\operatorname{In}(\sec x+\tan x)+c
$$

(iv) $\int \cot x d x=\operatorname{In}(\sin x)+c$

Proof

$$
\frac{d}{d x} \operatorname{In}(\sin x)=\frac{\cos x}{\sin x}=\cot x
$$

$\therefore \int \cot x d x=\operatorname{In}(\sin x)+c$

Example 22

(a) Find
(i) $\int \sec ^{3} x d x$

Solution
Taking $I=\int \sec ^{3} x d x=\int \sec x \sec ^{2} x d x$
Let $u=\sec x$ and $\frac{d v}{d x}=\sec ^{2} x$
$\frac{d u}{d x}=\sec x \tan x ; v=\tan x$

$$
\begin{aligned}
I & =\sec x \tan x-\int(\sec x \tan x) \tan x d x \\
& =\sec x \tan x-\int \sec x \tan ^{2} x d x \\
& =\sec x \tan x-\int \sec x\left(\sec ^{2} x-1\right) d x \\
& =\sec x \tan x-\int \sec ^{3} x d x+\int \sec x d x \\
& =\sec x \tan x-1+\ln (\sec x+\tan x)+c
\end{aligned}
$$

$21=\sec x \tan x+\ln (\sec x+\tan x)+c$
$I=\frac{1}{2}[\sec x \tan x+\operatorname{In}(\sec x+\tan x)]+c$
$\therefore \int \sec ^{3} x d x$
$=\frac{1}{2}[\sec x \tan x+\operatorname{In}(\sec x+\tan x)]+c$
(ii) $\int \operatorname{cosec}^{3} x d x$

Taking $I=\int \operatorname{cosec}^{3} x d x=\int \operatorname{cosec} x \operatorname{cosec}^{2} x d x$
Let $u=\operatorname{cosec} x$ and $\frac{d v}{d x}=\operatorname{cosec}^{2} x$
$\frac{d u}{d x}=\operatorname{cosec} x \cot x ; v=-\cot x$

$$
\begin{aligned}
I & =-\cot x \operatorname{cosec} x-\int(\sec x \cot x) \cot x d x \\
& =-\operatorname{cosec} x \cot x-\int \sec x \cot ^{2} x d x \\
& =-\operatorname{cosec} x \cot x-\int \operatorname{cosec} x\left(\operatorname{cosec}^{2} x-1\right) d x \\
& =-\operatorname{cosec} x \tan x-\int \operatorname{cosec}^{3} x d x+\int \operatorname{cosec} x d x \\
& =-\cot x \operatorname{cosec} x-I+\int \operatorname{cosec} x d x+\mathrm{A}
\end{aligned}
$$

$2 I=-\cot x \operatorname{cose} x)-I n(\operatorname{cosec} x+\cot x)+c$
$I=-\frac{1}{2}[\cot x \operatorname{cosec} x+\operatorname{In}(\operatorname{cosec} x+\cot x)]+c$

$$
\begin{aligned}
& \therefore \int \operatorname{cosec}^{3} x d x \\
&=-\frac{1}{2}[\cot x \operatorname{cosec} x+\operatorname{In}(\operatorname{cosec} x+\cot x)]+c \\
& \text { (b) Show that } \int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} \sec ^{3} x \tan x=\frac{8}{27}(9-\sqrt{3})
\end{aligned}
$$

Solution

$\int \sec ^{3} x \tan x d x=\int \sec ^{2} x \sec x \tan x$
Let $u=\sec ^{2} x$ and $\frac{d v}{d x}=\sec x \tan x$
$\frac{d u}{d x}=2 \sec ^{2} x ; v=\sec x$
$\int \sec ^{3} x \tan x d x=\sec ^{3} x-2 \int \sec ^{3} x \tan x d x$
$I-\sec ^{3} x-2 I+c$
$3 I=\sec ^{3} x$
$I=\frac{1}{3} \sec ^{3} x+c$

$$
\begin{aligned}
\int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} \sec ^{3} x \tan x & =\left[\frac{1}{3} \sec ^{3} x\right]_{-\frac{\pi}{6}}^{\frac{\pi}{3}} \\
& =\frac{1}{3}\left[\sec ^{3}\left(\frac{\pi}{3}\right)-\sec ^{3}\left(-\frac{\pi}{6}\right)\right] \\
& =\frac{1}{3}\left[8-\frac{8}{3 \sqrt{3}}\right]=\frac{1}{3}\left[8-\frac{8 \sqrt{3}}{9}\right] \\
& =\frac{8}{3}\left[1-\frac{\sqrt{3}}{9}\right] \\
& =\frac{8}{27}[9-\sqrt{3}]
\end{aligned}
$$

Revision exercise 14

Integrate each of the following with respect to x

1. $\sec ^{3} x$

$$
\left[\frac{1}{2}[\sec x \tan x+\operatorname{In}(\sec x+\tan x)]+c\right]
$$

2. $\operatorname{cosec}^{3} x$

$$
\left[-\frac{1}{2}[\cot x \operatorname{cosec} x+\operatorname{In}(\operatorname{cosec} x+\cot x)]+c\right]
$$

3. $\sec ^{3} x \tan x$

$$
\left[\frac{1}{3} \sec ^{3} x\right]
$$

Integration using t- substitution

Case 1

We know that if $\mathrm{t}=\tan \frac{1}{2} \theta$, then
$\sin \theta=\frac{2 t}{1+t^{2}}$ and
$\cos \theta=\frac{1-t^{2}}{1+t^{2}}$
Generally
If $\mathrm{t}=\tan \frac{1}{2} k \theta$, then
$\sin k \theta=\frac{2 t}{1+t^{2}}$ and
$\operatorname{cosk} \theta=\frac{1-t^{2}}{1+t^{2}}$

Example 23

Find
(a) $\int \operatorname{cosec} x d x$

Solution

Let $\mathrm{t}=\tan \frac{1}{2} x$
$d t=\sec ^{2} \frac{1}{2} x d x$
$2 d t=\left(1+t^{2}\right) d x$
$d x=\frac{2}{1+t^{2}} d t$
$\int \operatorname{cosec} x d x=\int \frac{1}{\sin x} d x=\int \frac{1+t^{2}}{2 t} \cdot \frac{2}{1+t^{2}} d t$

$$
=\int \frac{1}{t} d t=I n t+c
$$

$\therefore \int \operatorname{cosec} x d x=\operatorname{In}\left(\tan \frac{1}{2} x\right)+c$
(b) $\int \sec x d x$

Solution

Let $\mathrm{t}=\tan \frac{1}{2} x$
$d t=\sec ^{2} \frac{1}{2} x d x$
$2 d t=\left(1+t^{2}\right) d x$
$d x=\frac{2}{1+t^{2}} d t$
$\int \sec x d x=\int \frac{1}{\cos x} d x=\int \frac{1+t^{2}}{1-t^{2}} \cdot \frac{2}{1+t^{2}} d t$

$$
=\int \frac{2}{1-t^{2}} d t=\int \frac{2}{(1+t)(1-t)} d t
$$

Let $\frac{2}{(1+t)(1-t)}=\frac{A}{1+t}+\frac{B}{1-t}$
$2=A(1-t)+B(1+t)$
Putting $\mathrm{t}=1, \mathrm{~B}=1$

Putting $t=-1 ; A=1$
$\Rightarrow \frac{2}{(1+t)(1-t)}=\frac{1}{1+t}+\frac{1}{1-t}$
$\int \frac{2}{1-t^{2}} d t=\int \frac{1}{1+t} d t+\int \frac{1}{1-t} d t$
$=\operatorname{In}(1+t)-\operatorname{In}(1-t)+c=\operatorname{In}\left(\frac{1+t}{1-t}\right)+c$
$\therefore \int \sec x d x=\operatorname{In}\left(\frac{1+\tan \frac{1}{2} x}{1-\tan \frac{1}{2} x}\right)+c$
(c) $\int \sec 3 x d x$

Solution

Let $\mathrm{t}=\tan \frac{1}{2}(3 x)=\tan \frac{3}{2} x$
$2 d t=3\left(1+t^{2}\right) d x$
$d x=\frac{2}{3(1+)} d t$
$\int \sec 3 x d x=\int \frac{1}{\cos 3 x} d x=\int \frac{1+t^{2}}{1-t^{2}} \cdot \frac{2}{3\left(1+t^{2}\right)} d t$
$=\frac{2}{3} \int \frac{1}{1-t^{2}} d t=\frac{1}{3} \int \frac{2}{1-t^{2}} d t$
Let $\frac{2}{(1+t)(1-t)}=\frac{A}{1+t}+\frac{B}{1-t}$
$2=A(1-t)+B(1+t)$
Putting $t=1, B=1$
Putting $t=-1 ; A=1$
$\Rightarrow \frac{2}{(1+t)(1-t)}=\frac{1}{1+t}+\frac{1}{1-t}$
$\int \frac{2}{1-t^{2}} d t=\int \frac{1}{1+t} d t+\int \frac{1}{1-t} d t$
$=\operatorname{In}(1+t)-\operatorname{In}(1-t)+c=\operatorname{In}\left(\frac{1+t}{1-t}\right)+c$
$\therefore \int \sec 3 x d x=\frac{1}{3} \operatorname{In}\left(\frac{1+\tan \frac{1}{2} x}{1-\tan \frac{1}{2} x}\right)+c$
(d) $\int \frac{1}{3-2 \cos x} d x$

Solution

Let $\mathrm{t}=\tan \frac{1}{2} x$
$d t=\sec ^{2} \frac{1}{2} x d x$
$2 d t=\left(1+t^{2}\right) d x$
$d x=\frac{2}{1+t^{2}} d t$
$\int \frac{1}{3-2 \cos x} d x=\int \frac{1}{3-2\left(\frac{1-t^{2}}{1+t^{2}}\right)} \cdot \frac{2}{1+t^{2}} d t=2 \int \frac{1}{1+5 t^{2}} d t$
$=\frac{2}{\sqrt{5}} \tan ^{-1}(\sqrt{5} t)+c=\frac{2 \sqrt{5}}{5} \tan ^{-1}(\sqrt{5} t)+c$
$\therefore \int \frac{1}{3-2 \cos x} d x=\frac{2 \sqrt{5}}{5} \tan ^{-1}\left(\sqrt{5} \tan \frac{1}{2} x\right)+c$
(e) $\int \frac{2}{3 \sin 2 x+4} d x$

Solution

Let $\mathrm{t}=\tan \mathrm{x}$
$d t=\sec ^{2} x d x$
$d t=\left(1+t^{2}\right) d x$
$d x=\frac{1}{1+t^{2}} d t$
$\int \frac{2}{3 \sin 2 x+4} d x=\int \frac{2}{3\left(\frac{2 t}{1+t^{2}}\right)+4} \cdot \frac{1}{1+t^{2}} d t$
$=\int \frac{1}{2 t^{2}+3 t+2} d t=\int \frac{1}{\frac{7}{8}+2\left(t+\frac{3}{4}\right)^{2}} d t$
$=\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{8}}{\sqrt{7}} \tan ^{-1} \frac{\sqrt{2}\left(t+\frac{3}{4}\right)}{\sqrt{\left(\frac{7}{8}\right)}}+c$
$=\frac{2}{\sqrt{7}} \tan ^{-1} \frac{(4 t+3)}{\sqrt{7}}+c$
$\therefore \int \frac{2}{3 \sin 2 x+4} d x=\frac{2 \sqrt{7}}{7} \tan ^{-1}\left(\frac{4 \tan x+3}{\sqrt{7}}\right)+c$
(f) $\int \frac{2}{3+5 \cos \frac{1}{2} x}$

Solution

Let $\mathrm{t}=\tan \frac{1}{4} x$
$d t=\frac{1}{4} \sec ^{2} \frac{1}{4} x d x$
$d t=\frac{1}{4}\left(1+t^{2}\right) d x$
$d x=\frac{4}{1+t^{2}} d t$
(g) $\int \frac{2}{3+5 \cos \frac{1}{2} x}=\int \frac{2}{3+5\left(\frac{1-t^{2}}{1+t^{2}}\right)} \cdot \frac{4}{1+t^{2}} d t$ $=\int \frac{2}{4-t^{2}} d t=\int \frac{2}{(2+t)(2-t)} d t$

Let $\frac{2}{(2+t)(2-t)}=\frac{A}{(2+t)}+\frac{B}{2-t}$
$2=A(2-t)+B(2+t)$
Putting $t=2 ; B=\frac{1}{2}$
Putting $t=-2 ; A=\frac{1}{2}$
$\int \frac{2}{3+5 \cos \frac{1}{2} x} d x=\frac{1}{2} \int \frac{1}{2+t} d t+\frac{1}{2} \int \frac{1}{2-t} d t$

$$
\begin{aligned}
& =\frac{1}{2} \operatorname{In}(2+t)-\frac{1}{2} \operatorname{In}(2-t)+c \\
& =\frac{1}{2} \operatorname{In}\left(\frac{2+t}{2-t}\right)+c
\end{aligned}
$$

$\therefore \int \frac{2}{3+5 \cos \frac{1}{2} x} d x=\frac{1}{2} \operatorname{In}\left(\frac{2+\tan \frac{1}{4} x}{2-\tan \frac{1}{4} x}\right)+c$

Case II

When integrating fractional trigonometric functions containing the square of $\sin x, \cos x$, etc.

We use the
t -substitution, $\mathrm{t}=\tan \mathrm{x}$
For $\sin ^{2} k x$ or $\cos ^{2} k x$, we use $t=\tan x$

Example 24

Find the integrals of the following
(a) $\int \frac{1}{4 \sin ^{2} x-9 \cos ^{2} x} d x$

Solution

Dividing numerator and denominator by $\cos ^{2} x$

$$
\begin{aligned}
\int \frac{1}{4 \sin ^{2} x-9 \cos ^{2} x} d x & =\int \frac{\sec ^{2} x}{4 \tan ^{2} x-9} d x \\
& =\int \frac{1+\tan ^{2} x}{4 \tan ^{2} x-9} d x
\end{aligned}
$$

Let $\mathrm{t}=\tan \mathrm{x}$
$d t=\sec ^{2} x d x=\left(1+t^{2}\right) d x$
$d x=\frac{d t}{\left(1+t^{2}\right)}$
$\int \frac{1+\tan ^{2} x}{4 \tan ^{2} x-9} d x=\int \frac{1+t^{2}}{4 t^{2}-9} \cdot \frac{d t}{\left(1+t^{2}\right)}$
$=\int \frac{1}{(2 t+3)(2 t-3)} d t$
Let $\frac{1}{(2 t+3)(2 t-3)}=\frac{A}{(2 t+3)}+\frac{B}{(2 t-3)}$
$1=A(2 t-3)+B(2 t+3)$
Putting $\mathrm{t}=\frac{3}{2} ; \mathrm{B}=\frac{1}{6}$
Putting $t=-\frac{3}{2} ; A=-\frac{1}{6}$
$\Rightarrow \int \frac{1}{(2 t+3)(2 t-3)} d t$
$=\frac{1}{6} \int \frac{B}{(2 t-3)} d t+\frac{1}{6} \int \frac{1}{(2 t+3)} d t$
$=\frac{1}{6} \cdot \frac{1}{2} \operatorname{In}(2 t-3)-\frac{1}{6} \cdot \frac{1}{2} \operatorname{In}(2 t+3)+c$
$=\frac{1}{12} \operatorname{In}\left(\frac{2 t-3}{2 t+3}\right)+c$
$\int \frac{1}{4 \sin ^{2} x-9 \cos ^{2} x} d x=\frac{1}{12} \operatorname{In}\left(\frac{2 \tan x-3}{2 \tan x+3}\right)+c$
(b) $\int \frac{1}{3+4 \sin ^{2} 5 x} d x$

Solution

Dividing by the numerator and denominator $\cos ^{2} 5 x$

$$
\begin{aligned}
\int \frac{1}{3+4 \sin ^{2} 5 x} d x & =\int \frac{\sec ^{2} 5 x}{3 \sec ^{2} 5 x-4} d x \\
& =\int \frac{1+\tan ^{2} 5 x}{3+7 \tan ^{2} 5 x} d x
\end{aligned}
$$

Let $\mathrm{t}=\tan 5 \mathrm{x}$
$d t=\sec ^{2} 5 x d x=5\left(1+t^{2}\right) d x$
$d x=\frac{d t}{5\left(1+t^{2}\right)}$
$\int \frac{1}{3+4 \sin ^{2} 5 x} d x=\int\left(\frac{1+t^{2}}{3+7 t^{2}}\right) \cdot \frac{d t}{5\left(1+t^{2}\right)}$

$$
=\frac{1}{5} \int \frac{1}{3+7 t^{2}} d t
$$

$$
=\frac{1}{5} \cdot \frac{1}{\sqrt{7}} \cdot \frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{\sqrt{7}}{\sqrt{3}} t\right)+c
$$

$$
=\frac{1}{5 \sqrt{21}} \tan ^{-1}\left(\frac{\sqrt{7}}{\sqrt{3}} \tan 5 x\right)+c
$$

$\therefore \int \frac{1}{3+4 \sin ^{2} 5 x} d x=\frac{\sqrt{21}}{105} \tan ^{-1}\left(\frac{\sqrt{21}}{3} \tan 5 x\right)+c$
(c) $\int \frac{\sin ^{2} 3 x}{1+\cos ^{2} 3 x} d x$

Solution

Dividing numerator and denominator by $\cos ^{2} 3 x$
$\int \frac{\sin ^{2} 3 x}{1+\cos ^{2} 3 x} d x=\int \frac{\tan ^{2} 3 x}{\sec ^{2} 3 x+1} d x=\int \frac{\tan ^{2} 3 x}{2+\tan ^{2} 3 x} d x$
Let $\mathrm{t}=\tan 3 \mathrm{x}$
$d t=3 \sec ^{2} 3 x d x=3\left(1+t^{2}\right) d x$
$d x=\frac{d t}{3\left(1+t^{2}\right)}$
$\int \frac{\tan ^{2} 3 x}{2+\tan ^{2} 3 x} d x=\int \frac{t^{2}}{2+t^{2}} \cdot \frac{d t}{3\left(1+t^{2}\right)}$

$$
=\frac{1}{3} \int \frac{t^{2}}{\left(2+t^{2}\right)\left(1+t^{2}\right)} d t
$$

Let $\frac{t^{2}}{\left(2+t^{2}\right)\left(1+t^{2}\right)}=\frac{A x+B}{\left(2+t^{2}\right)}+\frac{C x+D}{\left(1+t^{2}\right)}$
By equating coefficients and solving
simultaneously
$\mathrm{A}=2, \mathrm{C}=-1, \mathrm{~B}=\mathrm{D}=0$
$\int \frac{\sin ^{2} 3 x}{1+\cos ^{2} 3 x} d x=\int \frac{2}{\left(2+t^{2}\right)} d t-\int \frac{1}{\left(1+t^{2}\right)} d t$
$=\frac{1}{3}\left[\frac{2}{\sqrt{2}} \tan ^{-1}\left(\frac{t}{\sqrt{2}}\right)-\tan ^{-1} t\right]+c$
$=\frac{1}{3}\left[\frac{2}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan 3 x}{\sqrt{2}}\right)-\tan ^{-1}(\tan 3 x)\right]+c$
$=\frac{\sqrt{2}}{3} \tan ^{-1}\left(\frac{\tan 3 x}{\sqrt{2}}\right)-\frac{1}{3} \tan ^{-1}(\tan 3 x)+c$
(d) $\int \frac{1}{\cos 2 x-3 \sin ^{2} x} d x$

Solution

$\int \frac{1}{\cos 2 x-3 \sin ^{2} x} d x=\int \frac{1}{1-5 \sin ^{2} x} d x$
Dividing the numerator and denominator by $\cos _{2} \mathrm{X}$
$\int \frac{1}{\sec ^{2}-5 \tan ^{2} x} d x$
Let $\mathrm{t}=\tan \mathrm{x}$
$d t=\sec ^{2} x d x=\left(1+t^{2}\right) d x$
$d x=\frac{d t}{\left(1+t^{2}\right)}$
$\int \frac{1}{1-5 \sin ^{2} x} d x=\int \frac{1}{1-4 t^{2}} \cdot \frac{d t}{\left(1+t^{2}\right)}$
$=\int \frac{1}{1-4 t^{2}} d t=\int \frac{1}{(1+2 t)(1-2 t)} d t$
Let $\frac{1}{(1+2 t)(1-2 t}=\frac{A}{1+2 t}+\frac{B}{1-2 t}$
$1=A(1-2 t)+B(1+2 t)$
Putting $t=\frac{1}{2} ; B=\frac{1}{2}$
Putting $t=-\frac{1}{2} ; A=\frac{1}{2}$
$\int \frac{1}{(1+2 t)(1-2 t)} d t=\frac{1}{2} \int \frac{d t}{1+2 t}+\frac{1}{2} \int \frac{d t}{1-2 t}$
$=\frac{1}{2}\left[\frac{1}{2} \operatorname{In}(1+2 t)-\frac{1}{2} \operatorname{In}(1-2 t)\right]+c$
$=\frac{1}{4} \operatorname{In}\left(\frac{1+2 t}{1-2 t}\right)+C$
$\therefore \int \frac{1}{\cos 2 x-3 \sin ^{2} x} d x=\frac{1}{4} \operatorname{In}\left(\frac{1+2 \tan x}{1-2 \tan x}\right)+c$

Revision exercise 14

1. Integrate the following
(a) $\int \frac{4}{3+5 \sin x} d x \quad\left[\frac{3 \tan \frac{1}{2} x+1}{\tan \frac{1}{2} x+3}+c\right]$
(b) $\int \frac{1}{4+5 \cos x} d x \quad\left[\frac{1}{3} \operatorname{In}\left(\frac{3+\tan \frac{1}{2} x}{3-\tan \frac{1}{2} x}\right)+c\right]$
(c) $\int \frac{1}{1+5 \sin 2 x} d x \quad\left[-\frac{1}{1+\tan x}+c\right]$
(d) $\int \frac{4}{5+3 \cos \frac{1}{2} x} d x \quad\left[\tan ^{-1}\left(\frac{1}{2} \tan \frac{1}{4} x\right)+c\right]$
(e) $\int \frac{4}{2+\sin \frac{1}{2} x} d x$

$$
\left[\frac{8 \sqrt{3}}{9} \tan ^{-1}\left(\frac{2 \tan \frac{1}{4} x+1}{\sqrt{3}}\right)+c\right]
$$

2. Integrate each of the following
(a) $\int \frac{1}{1+2 \sin ^{2} x} d x$
$\left[\frac{\sqrt{3}}{3} \tan ^{-1}(\sqrt{3} \tan x)+c\right]$
(b) $\int \frac{1}{1-10 \sin ^{2} x} d x$
$\left[\frac{1}{6} \operatorname{In}(1+3 \tan x)-\frac{1}{6} \operatorname{In}(1-3 \tan x)\right]+c$
(c) $\int \frac{\sin ^{2} \mathrm{x}}{1+\cos ^{2} \mathrm{x}} \mathrm{dx}$
$\left[\sqrt{2} \tan ^{-1}\left(\frac{\sqrt{2}}{2} \tan x\right)-x+c\right]$
(d) $\int \frac{4}{\cos ^{2} x+9 \sin ^{2} x} d x$
$\left[\frac{4}{3} \tan ^{-1}(3 \tan x)+c\right]$
(e) $\int \frac{1+\sin \mathrm{x}}{\cos ^{2} \mathrm{x}} \mathrm{dx}$
$[\tan x+\sec x+c]$
(f) $\int \frac{1}{1+\tan x} \mathrm{dx}$
$\left[\frac{1}{2} x+\frac{1}{2} \operatorname{In}(\cos x+\sin x)+c\right]$
3. Evaluate
(a) $\int_{0}^{\frac{\pi}{2}} \frac{3}{1+\sin x} d x$
(b) $\int_{0}^{\frac{2 \pi}{3}} \frac{3}{5+4 \cos x} d x$
(c) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{3}{4+5 \cos x} d x$
(d) $\int_{0}^{\frac{\pi}{2}} \frac{5}{3 \sin x+4 \cos x} d x$

Integration of special cases involving splitting the numerator

Case 1

When a fractional integrand with quadratic denominator expressed in the form of $\frac{f(x)}{g(x)}$ is such that $\mathrm{g}(\mathrm{x})$ cannot be factorized or written in simple partial fractions, it is normally very useful to express it as a fraction by splitting the numerator.
i.e. Numerator $=A($ derivative of denominator + B

Example 25

Find the integral of each of the following
(a) $\int \frac{2 x-1}{4 x^{2}+3} d x$

Solution

Numerator $=A\left[\frac{d}{d x}\left(4 x^{2}+3\right)\right]+B$
$2 x-1=A(8 x)+B$
Putting $x=0, B=-1$
Putting $\mathrm{x}=1, \mathrm{~A}=\frac{1}{4}$
$\int \frac{2 x-1}{4 x^{2}+3} d x=\frac{1}{4} \int \frac{8 x}{4 x^{2}+3} d x-\int \frac{1}{4 x^{2}+3} d x$
$=\frac{1}{4} \operatorname{In}\left(4 x^{2}+3\right)-\frac{\sqrt{3}}{6} \tan ^{-1}\left(\frac{2 \sqrt{3}}{3} x\right)+c$
(b) $\int \frac{2 x+3}{x^{2}+2 x+10} d x$

Solution

Numerator $=A\left[\frac{d}{d x}\left(x^{2}+2 x+10\right)\right]+B$
$2 x+3=A(2 x+2)+B$
Putting $x=-1, B=1$
Putting $x=0, A=1$
$\int \frac{2 x+3}{x^{2}+2 x+10} d x$
$=\frac{1}{4} \int \frac{2 x+2}{x^{2}+2 x+10} d x+\int \frac{1}{x^{2}+2 x+10} d x$
$=\operatorname{In}\left(x^{2}+2 x+10\right)+\int \frac{1}{9+(x+1)^{2}} \mathrm{dx}$
$=\operatorname{In}\left(x^{2}+2 x+10\right)+\frac{1}{3} \tan ^{-1}\left(\frac{x+1}{3}\right)+c$
(c) $\int \frac{x}{x^{2}+3 x+5} d x$

Solution

Numerator $=A\left[\frac{d}{d x}\left(x^{2}+3 x+5\right)\right]+B$
$x=A(2 x+3)+B$
Putting $\mathrm{x}=-\frac{3}{2}, \mathrm{~B}=-\frac{3}{2}$
Putting $x=0, A=-\frac{1}{2}$
$\int \frac{x}{x^{2}+3 x+5} d x$
$=\frac{1}{2} \int \frac{2 x+3}{x^{2}+3 x+5} d x-\frac{3}{2} \int \frac{1}{x^{2}+3 x+5} d x$
$=\frac{1}{2} \operatorname{In}\left(x^{2}+3 x+5\right)-\frac{3}{2} \int \frac{1}{\frac{11}{4}+\left(x+\frac{3}{2}\right)^{2}} \mathrm{dx}$
$=\frac{1}{2} \operatorname{In}\left(x^{2}+3 x+5\right)-\frac{3}{\sqrt{11}} \tan ^{-1}\left(\frac{2 x+3}{\sqrt{11}}\right)+c$
(d) $\int \frac{1-2 x}{9-(x+2)^{2}} d x$

Solution

$\int \frac{1-2 x}{\sqrt{9-(x+2)^{2}}} d x$
$=\int \frac{1}{\sqrt{9-(x+2)^{2}}} d x-\int \frac{2 x}{\sqrt{9-(x+2)^{2}}} d x$
$=\sin ^{-1}\left(\frac{x+2}{3}\right)-\int \frac{2 x}{\sqrt{9-(x+2)^{2}}} d x$
For $\int \frac{2 x}{\sqrt{9-(x+2)^{2}}} d x$
Let $\sin \mathrm{u}=\frac{x+2}{3}$
$3 \sin u=x+2$
$3 \cos u d u=d x$
$\int \frac{2 x}{\sqrt{9-(x+2)^{2}}} d x=\int \frac{2(3 \sin u-2)}{\sqrt{9-9 \sin ^{2} u}} \cdot 3 \cos u d u$

$$
\begin{aligned}
& =\int \frac{6 \sin u-4}{3 \sqrt{\left(1-\sin ^{2} u\right)}} \cdot 3 \cos u d u \\
& =\int(6 \sin u-4) d u \\
& \\
& =-6 \cos u-4 u+c \\
& =-6 \\
& \sqrt{1-\left(\frac{x+2}{3}\right)^{2}}-2 \sin ^{-1}\left(\frac{x+2}{3}\right)+c
\end{aligned}
$$

Substituting for $\int \frac{2 x}{\sqrt{9-(x+2)^{2}}} d x$
$\int \frac{1-2 x}{\sqrt{9-(x+2)^{2}}} d x$
$=\sin ^{-1}\left(\frac{x+2}{3}\right)+-6 \sqrt{1-\left(\frac{x+2}{3}\right)^{2}}-4 \sin ^{-1}\left(\frac{x+2}{3}\right)+c$
$=5 \sin ^{-1}\left(\frac{x+2}{3}\right)+6 \sqrt{1-\left(\frac{x+2}{3}\right)^{2}}+c$

Case II

When finding the integral of fractional trigonometric function expressed in the form $\int \frac{a \cos x+b \sin x}{c \cos x+d \sin x}, \mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are constants, we split the numerator as:

Numerator $=A($ derivative of denominator $)+$ (denominator)

Example 26

1. Find
(a) $\int \frac{2 \cos x+9 \sin x}{3 \cos x+\sin x} d x$

Solution

Let $2 \cos \mathrm{x}+9 \sin \mathrm{x}=\mathrm{A} \frac{d}{d x}(3 \cos \mathrm{x}+\sin \mathrm{x})+\mathrm{B}(3 \cos \mathrm{x}+\sin \mathrm{x})$
$2 \cos x+9 \sin x=A(-3 \sin x+\cos x)+B(3 \cos x+\sin x)$
$2 \cos x+9 \sin x=(A+3 B) \cos x+(-3 A+B) \sin x$
Equating coefficients:
For $\cos x: A+3 B=2$ \qquad
For $\sin x:-3 A+B=9$
Solving Eqn. (i) and Eqn. (ii) simultaneously
$\mathrm{A}=-\frac{5}{2}$ and $\mathrm{B}=\frac{3}{2}$
$\Rightarrow \int \frac{2 \cos x+9 \sin x}{3 \cos x+\sin x} d x$
$=-\frac{5}{2} \int \frac{-3 \sin x+\cos x}{3 \cos x+\sin x} d x+\frac{3}{2} \int \frac{3 \cos x+\sin x}{3 \cos x+\sin x}$
$=-\frac{5}{2} \ln (3 \cos x+\sin x)+\frac{3}{2} x+c$
(b) $\int \frac{3 \sin x}{4 \cos x-\sin x} d x$

Solution

Let $3 \sin \mathrm{x}=\mathrm{A} \frac{d}{d x}(4 \cos \mathrm{x}-\sin \mathrm{x})+\mathrm{B}(4 \cos \mathrm{x}-\sin \mathrm{x})$
$3 \sin x=A(-4 \sin x-\cos x)+B(4 \cos x-\sin x)$
$3 \sin x=(-A+B) \cos x+(-4 A-B) \sin x$
Equating coefficients
For $\cos x:-A+4 B=0$ \qquad
For $\sin x:-4 A-B=3$ \qquad
Solving Eqn. (i) and Eqn. (ii) simultaneously
$A=-\frac{12}{17}$ and $B=-\frac{3}{17}$
$\int \frac{3 \sin x}{4 \cos x-\sin x} d x$
$=-\frac{12}{17} \int \frac{-4 \sin x-\cos x}{4 \cos x-\sin x} d x-\frac{3}{17} \int \frac{4 \cos x-\sin x}{4 \cos x-\sin x} d x$
$=-\frac{12}{17} \operatorname{In}(4 \cos x-\sin x)-\frac{3}{17} x+c$
2. Evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{3 \cos x+2 \sin x} d x$

Solution

Let $3 \sin \mathrm{x}=\mathrm{A} \frac{d}{d x}(3 \cos \mathrm{x}+2 \sin \mathrm{x})+\mathrm{B}(3 \cos \mathrm{x}+2 \sin \mathrm{x})$
$\cos x-\sin x=A(-3 \sin x+2 \cos x)+B(3 \cos x+2 \sin x)$
$\cos x-\sin x=(2 A+3 B) \cos x+(-3 A+2 B) \sin x$
Equating coefficients
For $\cos x: 2 A+3 B=1$
For $\sin x:-3 A+2 B=-1$
Solving Eqn. (i) and Eqn. (ii) simultaneously
$A=\frac{5}{13}$ and $B=-\frac{1}{13}$
$\int \frac{\cos x-\sin x}{3 \cos x+2 \sin x} d x$
$=\frac{5}{13} \int \frac{2 \cos x-3 \sin x}{3 \cos x+2 \sin x} d x+\frac{1}{13} \int \frac{3 \cos x+2 \sin x}{3 \cos x+2 \sin x} d x$
$=\frac{5}{13} \operatorname{In}(3 \cos x+2 \sin x)+\frac{1}{13} x+c$
$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{3 \cos x+2 \sin x} d x$
$=\left[\frac{5}{13} \operatorname{In}(3 \cos x+2 \sin x)+\frac{1}{13} x+c\right]_{\frac{1}{6} \pi}^{\frac{1}{2} \pi}$
$=\left[\frac{5}{13} \operatorname{In}\left(3 \cos \frac{\pi}{2}+2 \sin \frac{\pi}{2}\right)+\frac{1}{13} \cdot \frac{\pi}{2}\right]-$ $\left[\frac{5}{13} \operatorname{In}\left(3 \cos \frac{\pi}{6}+2 \sin \frac{\pi}{6}\right)+\frac{1}{13} \cdot \frac{\pi}{6}\right]$
$=\left[\frac{5}{13} \operatorname{In} 2+\frac{\pi}{26}\right]-\left[\frac{5}{13} \operatorname{In} \frac{2+\sqrt{3}}{2}+\frac{\pi}{78}\right]$
$=\frac{5}{13} \operatorname{In}\left(\frac{4}{2+3 \sqrt{3}}\right)+\frac{\pi}{39}$

Revision exercise 15

1. Integrate each of the following
(a) $\int \frac{x+2}{x^{2}+2 x+4} d x$
$\left[\frac{1}{2} \operatorname{In}\left(x^{2}+2 x+4\right)+\frac{\sqrt{3}}{3} \tan ^{-1}\left(\frac{x+1}{\sqrt{3}}\right)+c\right]$
(b) $\int \frac{x}{x^{2}-x+3} d x$
$\left[\frac{1}{2} \operatorname{In}\left(x^{2}-x+3\right)+\frac{2}{\sqrt{11}} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{11}}\right)+c\right]$
(c) $\int \frac{2(x+1)}{x^{2}+4 x+8} d x$
$\left[\operatorname{In}\left(x^{2}+4 x+8\right)-\tan ^{-1}\left(\frac{x+2}{2}\right)+c\right]$
(m) $\int x^{3} e^{x^{4}} d x \quad\left[\frac{1}{4} e^{x^{4}}+c\right]$
(d) $\int \frac{5 x+7}{x^{2}+4 x+8} d x$
$\left[\frac{5}{2} \operatorname{In}\left(x^{2}+4 x+8\right)-\frac{3}{2} \tan ^{-1}\left(\frac{x+2}{2}\right)+c\right]$
2. Integrate the following
(a) $\int \frac{\cos x-2 \sin x}{3 \cos x+4 \sin x} d x$

$$
\left[\frac{2}{5} \operatorname{In}(4 \sin x+3 \cos x)-\frac{1}{5} x+c\right]
$$

(b) $\int \frac{\cos x}{2 \cos x-\sin x} d x$

$$
\left[-\frac{1}{5} \operatorname{In}(2 \cos x-\sin x)+\frac{2}{5} x+c\right]
$$

(c) $\int \frac{\cos x}{\cos x-2 \sin x} d x$

$$
\left[-\frac{2}{5} \operatorname{In}(\cos x-2 \sin x)-\frac{1}{5} x+c\right]
$$

(d) $\int \frac{2 \cos x+\sin x}{4 \cos x+3 \sin x} d x$

$$
\left[-\frac{14}{15} \operatorname{In}(4 \cos x+3 \sin x)-\frac{11}{5} x+c\right]
$$

Revision exercise 16: general topical revision questions

1. Find
(a) $\int \sin x d x\left[x \sin ^{-1} x+\sqrt{1-x^{2}}+c\right]$
(b) $\int x \sec ^{2} x d x[x \tan x+I n \cos x+c]$
(c) $\int \frac{x^{2}}{\sqrt{1-x^{2}}} d x\left[\sqrt{1-x^{2}}\left(\frac{-2-x^{2}}{3}\right)+c\right]$
(d) $\int \operatorname{In}\left(x^{2}-4\right) d x$
$\left[x \operatorname{In}\left(x^{2}-4\right)-2 x+2\left(\operatorname{In} \frac{x+2}{x-2}\right)+c\right]$
(e) $\int \frac{d x}{3-2 \cos x} d x\left[\frac{2}{\sqrt{5}} \tan ^{-1}\left(\sqrt{5} \tan \frac{x}{2}\right)+c\right]$
(f) $\int 3^{\sqrt{2 x-1}} d x$

$$
\begin{equation*}
\left[\frac{3^{\sqrt{2 x-1}}}{\operatorname{In} 3}\left(\sqrt{2 x-1}-\frac{1}{\operatorname{In} 3}\right)+c\right] \tag{0.1083}
\end{equation*}
$$

(g) $\int \sin ^{2} x d x \quad\left[\frac{1}{2}\left(x-\frac{1}{2} \sin 2 x\right)+c\right]$
(h) $\int \tan ^{3} x d x$ $\left[\frac{1}{2} \tan ^{2} x-I n \cos x+c\right]$
(i) $\int \frac{4 x^{2}}{\sqrt{1-x^{6}}} d x$ $\left[\frac{4}{3} \sin ^{-1}\left(x^{3}\right)+c\right]$
(j) $\int \frac{x^{2}}{x^{4}-1} d x \quad\left[\frac{1}{4} \operatorname{In}\left(\frac{x-1}{x+1}\right)+\frac{1}{2} \tan ^{-1} x+c\right]$
(k) $\int \frac{2 x}{\sqrt{x^{2}+4}} d x$
$\left[2 \sqrt{x^{2}+4}+c\right]$
(I) $\int x \operatorname{In} x d x \quad\left[\frac{x^{2}}{2} \operatorname{In} x-\frac{x^{2}}{4}+c\right]$
(n) $\int \frac{1}{1+\sin ^{2} x} \quad\left[\frac{\sqrt{2}}{2} \tan ^{-1}(\sqrt{2} \tan x)+c\right]$
(o) $\int \operatorname{In} x d x \quad[x(\operatorname{In} x-1)+c]$
(p) $\int x^{2} \sin 2 x d x$
$\left[-\frac{1}{2} x^{2} \cos 2 x+\frac{1}{2} x \sin 2 x+\frac{1}{4} \cos 2 x+c\right]$
(q) $\int \operatorname{In} x^{2} d x \quad[2 x(\operatorname{In} x-1)+c]$
(r) $\int \frac{d x}{e^{x}-1} \quad\left[\operatorname{In}\left(1-e^{-x}\right)+c\right]$
(s) $\int \frac{x^{2}}{\left(1+x^{2}\right)^{\frac{1}{2}}} d x\left[\frac{1}{3}\left(1+x^{2}\right)^{\frac{1}{2}}\left(x^{2}-2\right)+c\right]$
(t) $\int \frac{d x}{1-\cos x} \quad\left[-\cot \left(\frac{x}{2}\right)+c\right]$
(u) $\int \frac{x^{4}-x^{3}+x^{2}+1}{x^{3}+x} d x$
$\left[\frac{x^{2}}{2}-x+\operatorname{In} x+\tan ^{-1} x-\frac{1}{2} \operatorname{In}\left(1+x^{2}\right)+c\right]$
(v) $\int \frac{\sin ^{-1} 2 x}{\sqrt{1-4 x^{2}}} d x\left[\left(\frac{\sin ^{-1} 2 x}{2}\right)^{2}+c\right]$
(w) $\int x\left(1-x^{2}\right)^{\frac{1}{2}} d x\left[\frac{1}{3}\left(1-x^{2}\right)^{\frac{3}{2}}+c\right]$
(x) $\int \frac{1+\sqrt{x}}{2 \sqrt{x}} \mathrm{dx} \quad\left[\sqrt{x}+\frac{x}{2}+c\right]$
(y) $\int x^{2} e^{x} d x \quad\left[\mathrm{x}^{2} \mathrm{e}^{x}-2 \mathrm{xe}^{x}+2 \mathrm{e}^{x}+\mathrm{c}\right]$
(z) $\int \frac{d x}{x^{2} \sqrt{\left(25-x^{2}\right)}} d x\left[-\frac{1}{25}\left(\frac{5 \sqrt{25-x^{2}}}{x^{2}}\right)+\mathrm{C}\right]$
2. Evaluate
(a) $\int_{0}^{\frac{\pi}{2}} x \cos ^{2} x d x$
[0.3669]
(b) $\int_{1}^{\sqrt{3}}(x+\tan x) d x$
[1.0003]
(c) $\int_{0}^{\frac{\pi}{2}} \sin 2 x \cos x d x$
(d) $\int_{1}^{3} \frac{x^{2}+1}{x^{3}+4 x^{2}+3 x} d x$
$\left[\frac{2}{3}\right]$
(e) $\int_{0}^{1} \frac{x}{\sqrt{1+x}} d x$
[0.3489]
(f) $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1+\sin ^{2} x} d x$
(g) $\int_{0}^{\frac{\pi}{6}} \sin x \sin 3 x d x$
(h) $\int_{0}^{1} \frac{x^{3}}{x^{2}+1} d x$
(i) $\int_{0}^{\sqrt{\frac{\pi}{2}}} 2 x \cos x^{2} d x$
(j) $\int_{0}^{2} \frac{8 x}{x^{2}-4 x-12} d x$
(k) $\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+\sin x+\cos x}$
(k) $\int_{0}^{1+\sin x+\cos x}$ [n2]
(I) $\int_{0}^{\frac{\pi}{2}} \sin 2 x \cos x d x$
(m) $\int_{4}^{6} \frac{d x}{x^{2}-2 x-3}$
$\left[\frac{2}{3}\right]$
(n) $\int_{0}^{\frac{\pi}{2}} x \sin ^{2} 2 x d x$
$\left[\frac{\pi^{2}}{16}\right]$
(o) $\int_{1}^{\sqrt{3}} \frac{x^{2}}{\sqrt{x^{4}-x^{2}}} d x$
(p) $\int_{1}^{3} \frac{3 x^{2}+4 x+1}{x^{3}+2 x^{2}+x} d x$ [In12]
(q) $\int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x$ [$\pi-2$]
(r) $\int_{0}^{1} x e^{2 x} d x$
(s) $\int_{\frac{\pi}{3}}^{\pi} x \sin x d x$
(t) $\int_{\frac{1}{2}}^{1} 10 x \sqrt{\left(1-x^{2}\right)} d x$
(u) $\int_{0}^{\frac{\pi}{2}} \sin 5 x \cos 3 x d x$

$\left[\frac{1}{2}\right]$

(v) $\int_{0}^{\frac{\sqrt{3}}{2}} \frac{d x}{9+4 x^{2}} d x$
(v) $\int_{0}^{2} \frac{d x}{9+4}$
(a) $\int_{0}^{1} \frac{x^{2}+6}{\left(x^{2}+4\right)\left(x^{2}+9\right)}=\frac{\pi}{20}$
(b) $\int_{0}^{\frac{\pi}{2}} x \tan ^{2} x d x=\frac{1}{32}\left(8 \pi-\pi^{2}-16 \log _{e} 2\right)$
(c) $\int_{2}^{4} x \operatorname{In} x d x=14 \operatorname{In} 2-3$
(d)
4. Given that
$\frac{3 x^{3}+2 x^{2}-6 x-2}{\left(x^{2}+x-2\right)\left(x^{2}-2\right)}=\frac{1}{x+2}+\frac{B}{x-1}+\frac{C x+D}{x^{2}-2}$
Determine the values of A, B, C, D
Hence evaluate $\int_{3}^{4} \frac{3 x^{3}+2 x^{2}-6 x-2}{\left(x^{2}+x-2\right)\left(x^{2}-2\right)} \mathrm{dx}$
$[A=B=C=1, D=0 ; 2.4770]$
5. Use the substitution of $\mathrm{x}=\frac{1}{u}$ to evaluate
$\int_{1}^{2} \frac{d x}{x \sqrt{x^{2}-1}} \quad\left[\frac{\pi}{3}\right]$
6. Express $\frac{x^{3}-3}{(x-2)\left(x^{2}+1\right)}$ as partial fractions
$\left[\frac{x^{3}-3}{(x-2)\left(x^{2}+1\right)}=1+\frac{1}{x-2}+\frac{x+1}{x^{2}+1}\right]$
Hence find $\int \frac{x^{3}-3}{(x-2)\left(x^{2}+1\right)} d x$

$$
\left[x+\operatorname{In}(x-2)+\frac{1}{2} \operatorname{In}\left(x^{2}+1\right)+\tan ^{-1} x+c\right]
$$

7. Express $\mathrm{f}(\mathrm{x})=\frac{2 x^{2}-x+14}{\left(4 x^{2}-1\right)(x+3)}$ in partial fraction
$\left[\frac{2 x^{2}-x+14}{\left(4 x^{2}-1\right)(x+3)}=\frac{-3}{2 x+1}+\frac{2}{2 x-1}+\frac{1}{x+3}\right]$
Hence evaluate $\int_{1}^{3} f(x) d x \quad[0.7440]$
8. Using the substitution $2 x+1=u$, find
$\int_{0}^{1} \frac{x d x}{(2 x+1)^{2}} \quad\left[\frac{1}{18}\right]$
9. Express
(a) $f(x)=\frac{6 x}{(x-2)(x+4)^{2}}$ in partial fraction $\left[\frac{6 x}{(x-2)(x+4)^{2}}=\frac{1}{3(x-2)}-\frac{1}{3(x+4)}+\frac{4}{(x+4)^{2}}\right]$
Hence evaluate $\int f(x) d x$

$$
\left[\frac{1}{3} \operatorname{In}\left(\frac{x-2}{x+4}\right)-\frac{4}{(x+4)}+c\right]
$$

(b) $\mathrm{f}(\mathrm{x})=\frac{3 x^{2}+x+1}{(x-2)(x+1)^{2}}$ in partial fraction

$$
\frac{3 x^{2}+x+1}{(x-2)(x+1)^{2}}
$$

$=\frac{5}{9(x-2)}-\frac{5}{9(x+2)}+\frac{4}{3(x+1)^{2}}-\frac{1}{(x+1)^{3}}$
Hence evaluate

$$
\begin{equation*}
\int_{3}^{4} \frac{3 x^{2}+x+1}{(x-2)(x+1)^{2}} d x \tag{0.317}
\end{equation*}
$$

(c)
10. Using the substitution $x=3 \sin \theta$, evaluate
(a) $\int_{0}^{3} \sqrt{\left(\frac{3+x}{3-x}\right)} d x$ [7.7125]
(b) $\int_{0}^{\pi} \frac{d x}{3+5 \cos x} \quad[0.2747]$
(e)
11. Use $\mathrm{t}=\tan \frac{1}{2} x$ to evaluate
(a) $\int_{0}^{\frac{\pi}{2}} \frac{d x}{3-\cos x}$
[0.6755]
(b)
12. Given that $\int_{0}^{a}\left(x^{2}+2 x-6\right) d x=0$, find the value of a [a=-6]
13. Use the substitution $x^{2}=\theta$ to find
$\int \frac{x}{1+\cos x^{2}} d x\left[\frac{1-3 x}{3(x+1)^{\frac{5}{3}}(x-1)^{\frac{4}{5}}}\right]$
14. Resolve $y=\frac{x^{3}+5 x^{2}-6 x+6}{(x-1)^{2}\left(x^{2}+2\right)}$ into partial fraction
$\left[\frac{x^{3}+5 x^{2}-6 x+6}{(x-1)^{2}\left(x^{2}+2\right)} \equiv \frac{1}{x-1}+\frac{2}{(x-1)^{2}}+\frac{4}{\left(x^{2}+2\right)}\right]$
Hence find $\int y d x$
$\left[\operatorname{In}(x-1)+\frac{-2}{(x-1)}+\frac{4}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+c\right]$
15. Express $\mathrm{f}(\mathrm{x})=\frac{1}{x^{2}(x-1)}$ in partial fraction $\left[\frac{1}{x^{2}(x-1)}=-\frac{1}{x}-\frac{1}{x^{2}}+\frac{1}{x-1}\right]$
Hence evaluate $\int_{2}^{3} f(x) d x \quad[0.12102]$

Application of integration

Like differentiation, integration has a wide spectrum of application, some of which are discussed below

Acceleration, velocity, displacement
Given the acceleration, a, of a particle, its velocity, v and displacement, s can be computed as long as the initial values are known.

Acceleration, $\mathrm{a}=\frac{d v}{d t}=>\mathrm{v}=\int a d t$
Also, velocity $\mathrm{v}=\frac{d s}{d t} \Rightarrow \mathrm{~s}=\int v d t$

Example 27

The acceleration of a particle after t seconds is given by $\mathrm{a}=5+\mathrm{t}$.

If initially, the particle is moving at $1 \mathrm{~ms}^{-1}$, find the velocity after 2 s and the distance it would have covered by then

$$
\begin{aligned}
& \text { Given } \frac{d v}{d t}=5+t \\
& \Rightarrow d v=(5+t) d t \\
& \quad v=5 t+\frac{1}{2} t^{2}+c
\end{aligned}
$$

Whet $\mathrm{t}=0, \mathrm{v}=1,=>\mathrm{c}=1$
$\therefore v=5 t+\frac{1}{2} t^{2}+1$
When $t=2 s$
$v=5(2)+\frac{1}{2}(2)^{2}+1=13 \mathrm{~ms}^{-1}$.
And $\frac{d s}{d t}=5 t+\frac{1}{2} t^{2}+1$
$d s=\left(5 t+\frac{1}{2} t^{2}+1\right) d t$
$\mathrm{s}=\frac{5}{2} t^{2}+\frac{1}{6} t^{3}+t+c$
when $t=0, s=0=>c=0$
$\therefore \mathrm{S}=\frac{5}{2} t^{2}+\frac{1}{6} t^{3}+t$
At $t=2 s$
$s=\frac{5}{2}(2)^{2}+\frac{1}{6}(2)^{3}+2=13 \frac{1}{3} m$

Example 28

A particle with a velocity $(2 i+3 j) \mathrm{ms}^{-1}$ is accelerated uniformly at the rate of $(3 \mathrm{ti}-2 \mathrm{j}) \mathrm{ms}^{-1}$ from the origin. Find
(i) The speed reached by the particle at $\mathrm{t}=4 \mathrm{~s}$.

Solution

Given $a=3 t i-2 j$

$$
\begin{aligned}
\mathrm{v} & =\int a d t=\int(3 \mathrm{ti}-2 \mathrm{j}) d t \\
& =\frac{3}{2} t^{2} i-2 t j+c
\end{aligned}
$$

At $t=0,2 i+3 j$
$\mathrm{c}=2 \mathrm{i}+3 \mathrm{j}$
By substitution

$$
\begin{aligned}
& v=\left(\frac{3}{2} t^{2}+2\right) i+(-2 t+3) j \\
& \text { At } \mathrm{t}=4 \mathrm{~s} \\
& \begin{aligned}
v & =\left(\frac{3}{2}(4)^{2}+2\right) i+(-2(4)+3) j \\
& =(26 \mathrm{i}-5 \mathrm{j}) \mathrm{ms}^{-1}
\end{aligned} \\
& \text { Speed }=|v|=\sqrt{26^{2}+(-5)^{2}}=26.5 \mathrm{~ms}^{-1}
\end{aligned}
$$

(ii) The distance travelled by the particle after 2 s .

Solution

$\mathrm{r}=\int v d t$
$\mathrm{r}=\int\left(\left(\frac{3}{2}(4)^{2}+2\right) i+(-2(4)+3) j\right) d t$
$=\left(\frac{3}{6} t^{3}+2 t\right) i+\left(\frac{-2}{2} t^{2}+3 t\right) j+\mathrm{c}$
At $t=0, r=0 ; \Rightarrow c=0$
$\therefore r=\left(\frac{3}{6} t^{3}+2 t\right) i+\left(\frac{-2}{2} t^{2}+3 t\right) j$
At $t=2$
$\therefore r=\left(\frac{8}{2}+4\right) i+(-4+6) j$
$|r|=\sqrt{8^{2}+2^{2}}=8.25 \mathrm{~m}$
Hence the distance $=8.25 \mathrm{~m}$

Example 29

A particle has initial position of $(7 i+5 j) m$. the particle moves with constant velocity of (ai+bi)ms-1 and 3 s later its position is $(10 \mathrm{i}-\mathrm{j}) \mathrm{m}$. fins the values of a and b.

Solution

Given $v=a i+b j$

$$
\begin{aligned}
\mathrm{r} & =\int v d t=\int(a i+b i) d t+c \\
& =a t i+b t j+c
\end{aligned}
$$

at $t=0 ; r=c=(7 i+5 j) m$
$\therefore r=(a t+7) i+(b t+5) j$

After 3s

$10 i-j=(3 a+7) i+(3 b+5) j$
Equating corresponding vectors
For i: $10=3 a+7=>a=1$
For $\mathrm{j}:-1=3 b+5=>b=-2$
$\therefore a=1$ and $b=-2$

Example 30

A particle of mass 2 kg , initially at rest at ($0,0,0$) is acted on by a force $\left(\begin{array}{l}2 t \\ 2 t \\ 4 t\end{array}\right) N$. Find
(i) its acceleration at time t from $\mathrm{F}=\mathrm{Ma}$
$\left(\begin{array}{l}2 t \\ 2 t \\ 4 t\end{array}\right)=2 a=>a=\left(\begin{array}{c}t \\ t \\ 2 t\end{array}\right)$
(ii) its velocity after 3s
velocity $\mathrm{v}=\int a d t=\int\left(\begin{array}{c}t \\ t \\ 2 t\end{array}\right) d t$
$\mathrm{v}=\left(\begin{array}{c}\frac{t^{2}}{2} \\ \frac{t^{2}}{2} \\ t^{2}\end{array}\right)+c$
at $\mathrm{t}=0, \mathrm{v}=0=>\mathrm{c}=0$
$\therefore \mathrm{v}=\left(\begin{array}{c}\frac{t^{2}}{2} \\ \frac{t^{2}}{2} \\ t^{2}\end{array}\right)$
At $t=3 \mathrm{~s}$
$v=\frac{9}{2} i+\frac{9}{2} j+9 k$
(iii) the distance of the particle travelled after

3s.
$\mathrm{r}=\int v d t=\int\left(\frac{t^{2}}{2} i+\frac{t^{2}}{2} j+t^{2} k\right) d t$
$=\left(\frac{t^{3}}{6} i+\frac{t^{3}}{6} j+\frac{1}{3} t^{3} k\right)+c$

$$
\begin{aligned}
& \text { At } t=0, r=0=>c=0 \\
& \therefore r=\left(\frac{t^{3}}{6} i+\frac{t^{3}}{6} j+\frac{1}{3} t^{3} k\right) \\
& \text { At } t=3 \\
& r=\left(\frac{3^{3}}{6} i+\frac{3^{3}}{6} j+\frac{1}{3} \cdot 3^{3} k\right)=\left(\frac{9}{2} i+\frac{9}{2} j+9 k\right) \\
& |r|=\sqrt{\left(\frac{9}{2}\right)^{2}+\left(\frac{9}{2}\right)^{2}+9^{2}}=11.02 \mathrm{~m}
\end{aligned}
$$

Area under a curve

If the area under the curve $y=f(x)$ for $\alpha \leq x \leq \beta$ is required, a small strip can be used for analysis

Suppose the shaded region is δA, the area of the shaded strip lies between areas of the rectangles $A B C F$ and AVDE.
i.e. Area of $A B C F \leq \delta A \leq A B D E$.
$y \delta x \leq \delta A \leq(y+\delta y) d x$
Dividing by δx
$y \leq \frac{\delta A}{\delta x} \leq(y+\delta y)$
$\lim _{\delta x \rightarrow 0} \frac{\delta A}{\delta x} \rightarrow \frac{d A}{d x}$ and $\delta y \rightarrow 0$
Hence $\frac{d A}{d x}=y$
Integrating both sides with respect to x
$\int \frac{d A}{d x} d x=\int y d x$
Now for the interval $\alpha \leq x \leq \beta$
$A=\int_{\alpha}^{\beta} y d x$ Or $A=\int_{\alpha}^{\beta} f(x) d x$
Note: when finding the area under the curve, it is advisable that you sketch the curve first in order to establish the required region.

Area between the curve and the x-axis

Example 31

(i) Find the area enclosed by $y=x(x-4)$ and x axis

Solution

By sketching the graph $y=x(x-4)$ with the $x-$ axis we have

Area required $=\int_{0}^{4} x(x-4) d x$

$$
\begin{aligned}
& =\int_{0}^{4} x^{2}-4 x d x \\
& =\left[\frac{x^{3}}{3}-2 x^{2}\right]_{0}^{4} \\
& =\frac{64}{3}-32=\frac{-32}{3}
\end{aligned}
$$

Hence the area under the curve is $\frac{32}{3}$ sq. units (sign indicates that the area is below the x -axis).
(ii) Find the area enclosed by the curve $y=x^{3}-4 x^{2}+3 x$ and the x-axis from $x=0$ and $x=3$

Solution

By sketching the graph $y=x^{3}-4 x^{2}+3 x$ with the x-axis we have

Required area $=A+B$
Area $\mathrm{A}=\int_{0}^{1}\left(x^{3}-4 x^{2}+3 x\right) d x$
$=\left[\frac{x^{4}}{4}-\frac{4 x^{3}}{3}+\frac{3 x^{2}}{2}\right]_{0}^{1}$
$=\left(\frac{1}{4}-\frac{4}{3}+\frac{3}{2}\right)-(0)=\frac{5}{12}$
Area $\mathrm{B}=\int_{1}^{3}\left(x^{3}-4 x^{2}+3 x\right) d x$
$=\left[\frac{x^{4}}{4}-\frac{4 x^{3}}{3}+\frac{3 x^{2}}{2}\right]_{1}^{3}$
$=\left(\frac{81}{4}-36+\frac{27}{2}\right)-\left(\frac{1}{4}-\frac{4}{3}+\frac{3}{2}\right)=-\frac{8}{3}$
Area $=\frac{5}{12}+\frac{8}{3}=\frac{37}{12}$ sq. units
(iii) Find the area between $y=x^{2}-4$, the x-axis and line $x=3$.

Solution

By sketching the graph of $y=x^{2}-4$ with the $x-$ axis, we have

Required $=\int_{2}^{3}\left(x^{2}-4\right) d x$

$$
\begin{aligned}
& =\frac{1}{3}\left[x^{3}-4 x\right]_{2}^{3} \\
& =\frac{7}{3} \text { sq. units }
\end{aligned}
$$

Area between the curve and the y-axis

This involves finding the area under the curve with respect to y or by subtracting the area under the curve with the x-axis from the rectangle (s) formed.

Example 32

Find the area enclosed by the curve $y=x^{2}-4$ and the $y=x 2-4$ and y-axis between
(i) $y=-4$ and $y=0$

Solution

$1^{\text {st }}$ Approach
Integrating with respect to x

$$
\begin{aligned}
\text { Required area } & =\int_{-2}^{2}\left(x^{2}-4\right) d x \\
& =\frac{1}{3}\left[x^{3}-4 x\right]_{-2}^{2} \\
& =\left(\frac{8}{3}-8\right)-\left(\frac{-8}{3}+8\right) \\
& =\left(\frac{16}{3}-16\right) \text { sq. units } \\
& =\frac{-32}{3}
\end{aligned}
$$

Hence the required area is $\frac{32}{3}$ sq. units

$$
\begin{aligned}
& 2^{\text {nd }} \text { approach } \\
& y=x^{2}-4 \\
& x=(y+4)^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Required area } & =2 \int_{-1}^{0} x d y \\
& =2 \int_{-1}^{0}(y+4)^{\frac{1}{2}} d y \\
& =2\left[\frac{2}{3}(y+4)^{\frac{3}{2}}\right]_{-4}^{0} \\
& =2 \frac{2}{3}[(8)-(0)] \\
& =\frac{32}{3} \text { sq. units }
\end{aligned}
$$

(ii) $\mathrm{y}=0$ and $\mathrm{y}=5$

$1^{\text {st }}$ approach

Required area $=2 \times$ shaded region
Required area $=2 \int_{0}^{5} x d y$

$$
\begin{aligned}
& =2 \int_{0}^{5}(y+4)^{\frac{1}{2}} d y \\
& =2\left[\frac{2}{3}(y+4)^{\frac{3}{2}}\right]_{0}^{5} \\
& =2 \frac{2}{3}[(2)-(8)] \\
& =\frac{76}{3} \text { sq. units }
\end{aligned}
$$

$2^{\text {nd }}$ approach

$$
\begin{aligned}
\text { Required area } & =2 \times \text { shaded area } \\
& =2[\text { Area of OBCD }- \text { area of } \mathrm{ABC}] \\
& =2\left[(3 \times 5)-\int_{2}^{3}\left(x^{2}-4\right) d x\right] \\
& =2\left[15-\frac{7}{3}\right]=\frac{76}{3} \text { sq.units }
\end{aligned}
$$

Area between two curves
Suppose we want to find the area between two intersecting functions $f(x)$ and $g(x)$, required it to
(i) find the point of intersection of the functions
(ii) sketch the functions $f(x)$ and $g(x)$

Note if $f(x)$ is above $g(x)$, then the required area
$=\int f(x) d x-\int g(x) d x$

Example 33

Find the area enclosed between the curves
(a) $y=x^{2}-4$ and $y=4-x^{2}$

Solution

Finding the points of intersection
$x^{2}-4=4-x^{2}$
$2 x^{2}=8$
$x=2$ or $x=2$
when $x=2, y=0$
when $x=-2, y=0$
The sketch of the functions:

Required area
$=\int_{-2}^{2}\left[\left(4-x^{2}\right)-\left(x^{2}-4\right)\right] d x$
$=\int_{-2}^{2}\left(8-2 x^{2}\right) d x$
$=\left[8 x-\frac{2 x^{3}}{3}\right]_{-2}^{2}$
$=\left(16-\frac{16}{3}\right)-\left(-16+\frac{16}{3}\right)$
$=\frac{32}{3}+\frac{32}{3}=\frac{64}{3}$ sq. units
(b) $y=2 x^{2}+7 x+3$ and $y=9+4 x-x^{2}$

Solution
Finding the points of intersection
$2 x^{2}+7 x+3=9+4 x-x^{2}$
$3 x^{2}+3 x-6=0$
$(x+2)(x-1)=0$
$x=-2$ of $x=1$
When $x=-2, y=-3$
When $x=1, y=12$

Required area
$=\int_{-2}^{1}\left[\left(9+4 x-x^{2}\right)-\left(2 x^{2}+7 x+3\right)\right] d x$
$=\int_{-2}^{1}\left(6-3 x-3 x^{2}\right) d x$
$=\left[6 x-\frac{3 x^{2}}{2}-x^{3}\right]_{-2}^{1}$
$=\left(6-\frac{3}{2}-1\right)-(-12-6+8)$
$=13.5$ sq.units

Example 34

Find the area enclosed between the curve $y=x^{2}-x-3$ and the line $2 x+1$

Solution

Finding the points of intersection
$x^{2}-x-3=2 x+1$
$x^{2}-3 x-4=0$
$(x+1)(x-4)=0$
$X=-1$ or $x=4$
When $x=-1, y=-1$
When $x=4, y=9$

Area required
$=\int_{-1}^{4}\left[(2 x+1)-\left(x^{2}-x-3\right)\right] d x$
$=\int_{-1}^{4}\left(4+3 x-x^{2}\right) d x$
$=\left[4 x+\frac{3}{2} x^{2}-\frac{1}{3} x^{3}\right]_{-1}^{4}$
$=\left(16+24-\frac{64}{3}\right)-\left(-4+\frac{3}{3}+\frac{1}{2}\right)$
$=20.83$ sq.units

Example 35

Find the area enclosed by the curve $y=\sin x$ and the x-axis between $x=0$ and $x=2 \pi$.

Solution

Required area $=A+B$

$$
\begin{aligned}
& =\int_{0}^{\pi} \sin x d x+\int_{\pi}^{2 \pi} \sin x d x \\
& =[-\cos x]_{0}^{\pi}+[-\cos x]_{\pi}^{2 \pi} \\
& =-(-\cos \pi-\cos 0)-(-\cos 2 \pi-\cos \pi) \\
& =-(-1-1)-(-1-1) \\
& =2+2=4 \text { sq. units }
\end{aligned}
$$

Volume of a solid of revolution

A solid of revolution is formed when a given area rotates about a fixed axix. Due to the way in which it is formed, it is referred to as solid of revolution.

These bodies have always got axes of symmetry.
The solids formed is subdivided into small
cylindrical disks of thickness δx and height y.
Volume of each disk $=\pi y^{2} d x$
Thereforethe colume of the whole solid of revolution is obtained by rotating through one revolution about the x-axis, the region bounded by the curve $y=f(x)$ and the line $x=a$ and $x=b$ is given by $\mathrm{v}=\int_{a}^{b} \pi y^{2} d x$

If the rotation is about the y-axis, the volume is given by $\mathrm{v}=\int_{a}^{b} \pi x^{2} d y$

Example 36

(a) Find the volume of revolution when the portion of the curve $y=\cos 2 x$ for $0 \leq x \leq \frac{\pi}{4}$ is rotated through four right angles about the x -axis.
Solution

$$
\begin{aligned}
V & =\pi \int_{0}^{\frac{\pi}{2}} y^{2} d x=\pi \int_{0}^{\frac{\pi}{2}} \cos ^{2} 2 x d x \\
& =\pi \int_{0}^{\frac{\pi}{2}}(1+\cos 4 x) d x \\
& =\frac{\pi}{2}\left[x+\frac{1}{4} \sin 4 x\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{1}{8} \pi^{2} \text { cubic units }
\end{aligned}
$$

(b) Find the volume of the area bounded by the curve $y=x^{3}+1$, the x-axis and limits $x=0$ and $x=3$ when rotated through four right angles about the x-axis.

$$
\begin{aligned}
V & =\pi \int_{0}^{3} y^{2} d x=\pi \int_{0}^{3}\left(x^{3}+1\right)^{2} d x \\
& =\pi \int_{0}^{3}\left(x^{6}+2 x^{3}+1\right)^{2} d x \\
& =\pi\left[\frac{x^{7}}{7}+\frac{x^{4}}{2}+x\right]_{0}^{3} \\
& =\pi\left(\frac{3^{7}}{7}+\frac{3^{4}}{2}+3\right)-(0) \\
& =1118.25 \text { cubic units. }
\end{aligned}
$$

Rotation the area enclosed between two curves

If we have two curves y_{1} and y_{2} that enclose some area between a and b as shown below

Now if we rotate this area about the x-axis the volume of the solid formed is given by
$v=\pi \int_{a}^{b}\left[\left(y_{2}\right)^{2}-\left(y_{1}\right)^{2}\right] d x$

Example 36

(a)A cup is madeby rotating the area between $y=x^{2}$ and $y=x+1$ with $x \geq 0$ about the x-axis. Find the volume of the material needed to make the cup.

Solution

Finding the points of intersection
$2 x^{2}=x+1$
$2 x^{2}-x+1=0$
$(2 x+1)(x-1)=0$
$x=1$ since we only need to consider $x \geq 0$.

$\mathrm{V}=\pi \int_{0}^{1}\left[(y+1)^{2}-\left(2 x^{2}\right)^{2}\right] d x$
$=\pi \int_{0}^{1}\left(x^{2}+2 x+1-4 x^{4}\right) d x$
$=\pi\left[\frac{x^{3}}{3}+x^{2}+x-\frac{4 x^{5}}{5}\right]_{0}^{1}$
$=\pi\left(\frac{1}{3}+1+1-\frac{4}{5}\right)-0$
$=\frac{23}{15} \pi$ units cubed

Example 37

Find the volume of revolution when the portion of the area between the curves $y=x^{2}$ and $x=y^{2}$ is rotated through 360° about the x-axis.

Solution

Points of intersection
$x^{2}=x^{\frac{1}{2}}=>x^{4}=x$
$x^{4}-x=0$
$x\left(x^{3}-1\right)=0$
Either $\mathrm{x}=0$ or $\mathrm{x}=1$

The volumeof revolution
$=\pi \int_{0}^{1}\left[(\sqrt{x})^{2}-\left(x^{2}\right)^{2}\right] d x$
$=\pi \int_{0}^{1}\left(x-x^{4}\right) d x$
$=\pi\left[\frac{x^{2}}{2}-\frac{x^{5}}{5}\right]_{0}^{1}$
$=\pi\left[\left(\frac{1}{2}-\frac{1}{5}\right)-0\right]$
$=\frac{3}{10} \pi$

Example 38

Find the volume generated when the area enclosed by the curve $y=4-x^{2}$ and the line $y=4-2 x$ is rotated through 2π.

Solution

Finding the points of intersection
$4-2 x=4-x^{2}$
$x^{2}-2 x=0$
$x(x-2)=0$
Either $\mathrm{x}=0$ or $\mathrm{x}=2$
When $x=0, y=4$
When $x=2, y=0$

Required volume
$=\pi \int_{0}^{2}\left[\left(4-x^{2}\right)^{2}-(4-2 x)^{2}\right] d x$
$=\pi \int_{0}^{2}\left[\left(16-8 x^{2}+x^{4}\right)-\left(16-8 x-4 x^{2}\right)\right] d x$
$=\pi \int_{0}^{2}\left(x^{4}-4 x^{2}+8 x\right) d x$
$=\pi\left[\frac{x^{5}}{5}-\frac{4 x^{3}}{3}+4 x^{2}\right]_{0}^{2}$
$=\frac{176}{15} \pi=36.86$ cubic units

Example 39

(a) Sketch the curve $y=x^{3}-8$ (08marks)

$$
y=x^{3}-8
$$

Intercepts
When $x=0, y=-8$
When $y=0, x=2$
$(x, y)=(2,0)$
Turning point: $\frac{d y}{d x}=3 x^{2}$

$$
3 \times 2=0
$$

$$
x=0
$$

$\frac{d^{2} y}{d x^{2}}=6 x$
$\frac{d^{2} y}{d x^{2}}=0, x=0$
Point of reflection $=(0,8)$

	$x<2$	$x>2$
y	-	+

(b) The area enclosed by the curve in (a), the y axis and x-axis is rotate about the line $y=0$ through 360°. Determine the volume of the solid generated. (04 marks)

$$
\begin{aligned}
V= & \pi \int_{0}^{2} y^{2} d x \\
& =\pi \int_{0}^{2}\left(x^{3}-8\right)^{2} d x \\
& =\pi \int_{0}^{2}\left(x^{6}-16 x^{3}+64\right) d x \\
& =\pi\left[\frac{x^{7}}{7}-4 x^{4}+64 x\right]_{0}^{2} \\
& =\pi\left(\frac{128}{7}-64+128\right) \\
& =\frac{576 \pi}{7}=250.5082 \text { units }^{3}
\end{aligned}
$$

The mean value theorem for integrals

If $f(x)$ is a continuous function on the closed interval $[a, b]$, then there exist a number c in the closed interval such that

Area of the rectangle $=f(c) \cdot(b-a)$
But area under the curve between a and b
$=\int_{a}^{b} f(x) d x$
Equating the two
$\int_{a}^{b} f(x) d x-f(c) .(b-a)$
Dividing both sides by $(b-a)$
$f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
Where $f(c)$ is the height of the rectangle
This height is the average value of the function over the interval in the question.

Hence the mean value of $f(x)$ over a closed interval (a, b) is given by
$\mathrm{M} . \mathrm{V}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

Example 40

Find the mean value of $y=x^{2}+2$ for $x=1$ and $x=4$.

Solution

$$
\begin{aligned}
\text { M.V } & =\frac{1}{4-1} \int_{1}^{4}\left(x^{2}+2\right) d x \\
& =\frac{1}{3} \int_{1}^{4}\left(x^{2}+2\right) d x \\
& =\frac{1}{3}\left[\frac{x^{3}}{3}+2 x\right]_{1}^{4} \\
& =\frac{1}{3}\left[\left(\frac{64}{3}+8\right)-\left(\frac{1}{3}+2\right)\right]=9
\end{aligned}
$$

Example 41

Find the mean value of
$y=\frac{1}{1+\sin ^{2} \theta}$ for $0 \leq \theta \leq \frac{\pi}{4}$
Solution
$\mathrm{M} . \mathrm{V}=\frac{1}{\frac{\pi}{4}-0} \int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin ^{2} \theta} d x$

$$
\begin{aligned}
& =\frac{4}{\pi} \int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} \theta}{\sec ^{2} \theta+\tan ^{2} \theta} d x \\
& =\frac{4}{\pi} \int_{0}^{\frac{\pi}{4}} \frac{1+\tan ^{2} \theta}{1+2 \tan ^{2} \theta} d x
\end{aligned}
$$

Let $\mathrm{t}=\tan \theta=>\mathrm{dt}=\sec ^{2} \theta \mathrm{~d} \theta=\left(1+\mathrm{t}^{2}\right) \mathrm{d} \theta$
$d \theta=\frac{d t}{1+t^{2}}$
Changing limits
When $\theta=0, \mathrm{t}=0$ and when $\theta=\frac{\pi}{4}, \mathrm{t}=1$

$$
\begin{aligned}
\therefore M \cdot V & =\frac{\pi}{4} \int_{0}^{1} \frac{1+t^{2}}{1+2 t^{2}} \cdot \frac{d t}{1+t^{2}} \\
& =\frac{\pi}{4} \int_{0}^{1} \frac{1}{1+2 t^{2}} d t \\
& =\frac{\pi}{4}\left[\frac{1}{\sqrt{2}} \tan ^{-1} \sqrt{2 t}\right]_{0}^{1} \\
& =\frac{2 \sqrt{2}}{\pi} \tan ^{-1} \sqrt{2} \\
& =0.86
\end{aligned}
$$

Example 42

Find the mean value of $y=x(4-x)$ in the interval where $\mathrm{y} \geq 0$.

Solution

Given $y \geq 0 \Rightarrow x(4-x) \geq 0$ (positive)
The solution is $0 \leq x \leq 4$
$\mathrm{M} . \mathrm{V}=\frac{1}{4-0} \int_{0}^{4} x(4-x) d x=\frac{1}{4} \int_{0}^{4}\left(4 x-x^{2}\right) d x$

$$
=\frac{1}{4}\left[2 x^{2}-\frac{x^{3}}{3}\right]_{0}^{4}=\frac{8}{3}
$$

Revision exercise 17

1. Find the volume generate in each case whenthe area enclosed by the curve $y=x^{2}-6 x+18$ and the line $y=10$ is rotated about
(i) $\mathrm{Y}=10$
[1541 π units 3]
(ii) x -axix,
[256π units 3]
2. Find the volume generated when the area enclosed by the curve $y=x 4$ from $y=3$ and y $=6$ is rotated about the y-axis [6.33 units 3]
3. The displacement x of a particle at time t is given by $x=s i n t$. Find the mean value of its velocity over the interval $0<t<\frac{\pi}{2}$
(i) with respect to t
[0.637 ms^{-1}]
(ii) with respect to displacement x [0.785 ms^{-1}]
4. (a) Determine the equation of the normal to the curve $\mathrm{y}=\frac{1}{x}$ and the point $\mathrm{x}=2$. Find the coordinates of the other point where the normal meets the curve again.
[$2 y-8 x+15=0$; $\left(-\frac{1}{8},-8\right)$
(b) Find the area of the region bounded by the curve $\mathrm{y}=\frac{1}{x(2 x+1)}$, the x -axis and the lines $\mathrm{x}=1$ and $\mathrm{x}=2 .\left(\operatorname{In}\left(\frac{6}{5}\right)\right)$
5. A shell is formed by rotating the portion of the parabola $\mathrm{y} 2=4 \mathrm{x}$ for which $0 \leq \mathrm{x} \leq 1$ through two right angles about its axis. Find
(i) the volume of the solid formed [2π]
(ii) the area of the base of the solid formed [4π units 2]
6. Show that the tangents at $(-1,3)$ and $(1,5)$ on the curve $y=2 x^{2}+x+2$ passes through the origin. Find the area enclosed between the curve and these two tangents $\left[\frac{4}{3}\right]$
7. Sketch the curve $y=x-\frac{8}{x^{2}}$ for $\mathrm{x}>0$, showing any a symptotes. Find the area enclosed by the x-axis, the line $x=4$ and the curve $x-\frac{8}{x^{2}}$. [10 sq. units]
If this area is now rotated about the x-axis through 3600, determine the volume of the solid generated, correct to 3 significant figures. [42.1 cubic units]
8. Show that the tangents to the curve
$4-2 x-2 x^{2}$ at points $\left.9-1,4\right)$ and $\left(\frac{1}{2}, 2 \frac{1}{2}\right)$ respectively passes through the point $\left(-\frac{1}{4}, 5 \frac{1}{2}\right)$. Calculate the area of the curve enclosed between the curve and the x-axis. [9sq.units]
9. (i) find the Cartesian equation of the curve given parametrically by
$\mathrm{x}=\frac{1+t}{1-t^{\prime}} \mathrm{y}=\frac{2 t^{2}}{1-t} \quad\left[y=\frac{(x-1)^{2}}{x+1}\right]$
(ii) sketch the curve
(iii) find the area enclosed between the curve and the line $y=1$ [1.955sq.units]
10. Given the curve $y=\sin 3 x$, find the
(a)(i) the value of $\frac{d y}{d x}$ at the point $\left(\frac{\pi}{2}, 0\right)$
(ii) equation of the tangent to the curve at this point $[y=3 x+\pi)$
(b) (i) sketch the curve $y=\sin 3 x$
(ii) Calculate the area bounded by the tangent in (a)(i) above, the curve and y-axis [0.9783sq. units]
11. A hemisphericalbowl of internal radius r is fixed with its rim horizontal and contains a liquid to the depth h. show by integration that the volume of the liquid in the bowl is $\frac{1}{3} \pi h^{2}(3 r-h)$
12. Find the volume of the solid of revolution formed by rotating the area enclosed by the curve $y=x(1+x)$, the x-axis, the lines $x=2$ and $x=3$ through four right anglesabout the x-axis. [31.033 π cubic units]

Thank you
Dr. Bbosa Science

