

Sponsored by

Coordinate geometry 1

This is the area of mathematic where geometrical relationships are described algebraically by reference to the coordinates

The length of the line segment
Given two points $A(x 1, y 1)$ and $B(x 2, y 2)$ in $x-y$ plane, the distance between A and B, denoted by $\overline{A B}$ is $\overline{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Proof

Geometrical approach

Using Pythagoras theorem
$\overline{A B}^{2}=\overline{A C}^{2}+\overline{B C}^{2}$
$\overline{A B}^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
$\overline{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Vector method approach

$A B=O B-O A$

$$
\begin{aligned}
& =\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)-\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right) \\
& =\left(\begin{array}{l}
x_{2}-x_{1} \\
y_{2}-y_{1} \\
z_{2}-z_{1}
\end{array}\right)
\end{aligned}
$$

Using Pythagoras theorem
$\overline{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Example 1

(a) Find the between the points
(i) $A(1,3)$ and $B(7,11)$

Solution

$$
\begin{aligned}
& \text { Using } \overline{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \begin{aligned}
\overline{A B} & =\sqrt{(7-1)^{2}+(8-3)^{2}} \\
& =\sqrt{6^{2}+8^{2}} \\
& =\sqrt{100}=10
\end{aligned}
\end{aligned}
$$

(ii) $\mathrm{P}(-1,2)$ and $\mathrm{Q}(3,7)$

Solution

$$
\begin{aligned}
\overline{P Q} & =\sqrt{(-1-3)^{2}+(2-7)^{2}} \\
& =\sqrt{(-4)^{2}+(-5)^{2}} \\
& =\sqrt{25}=5
\end{aligned}
$$

(b) The points A, B and C have coordinates $A(-3,2), B(-1,-2)$ and $C(0, n)$ where n is a constant. Given that $\overline{B C}=\frac{1}{5} A C$, find the possible values of n.

Solution

$$
\begin{aligned}
& \text { Using } \overline{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& \overline{B C}=\sqrt{(0-(-1))^{2}+(n-(-2))^{2}} \\
& =\sqrt{1^{2}-(n+2)^{2}} \\
& =\sqrt{n^{2}+4 n+5} \\
& \overline{A C}=\sqrt{(0-(-3))^{2}+(n-2)^{2}} \\
& =\sqrt{3^{2}-(n-2)^{2}} \\
& =\sqrt{n^{2}-4 n+13} \\
& \text { But } \overline{B C}=\frac{1}{5} A C \\
& \Rightarrow \sqrt{n^{2}+4 n+5}=\frac{1}{5} \sqrt{n^{2}-4 n+13} \\
& 5 \sqrt{n^{2}+4 n+5}=\sqrt{n^{2}-4 n+13}
\end{aligned}
$$

Squaring both sides

$$
\begin{aligned}
& 25\left(n^{2}+4 n+5\right)=n^{2}-4 n+13 \\
& 24 n^{2}+104 n+112=0
\end{aligned}
$$

$3 n^{2}+13 n+14=0$
$(3 n+7)(n+2)=0$
Either $\mathrm{n}=-\frac{2}{3}$ or $\mathrm{n}=-2$
Hence the values of n are $-\frac{2}{3}$ and -2

To show that given points are vertices of a right-angle triangle.

Suppose that the points A, B and C are vertices of a triangle $A B C$, to show that $A B C$ is a right angled triangle, then by applying the Pythagoras theorem

Either $\overline{A B}^{2}=\overline{A C}^{2}+\overline{B C}^{2}$
or $\overline{B C}^{2}=\overline{A B}^{2}+\overline{A C}^{2}$
or $\quad \overline{A C}^{2}=\overline{A B}^{2}+\overline{B C}^{2}$

Example 2

Prove that the following points are vertices of a right-angled triangle
(a) $\mathrm{A}(2,3), \mathrm{B}(5,6)$ and $\mathrm{C}(8,3)$

Solution

$\overline{A C}^{2}=(8-2)^{2}+(3-3)^{2}=36$
$\overline{A B}^{2}=(5-2)^{2}+(6-3)^{2}=18$
$\overline{B C}^{2}=(8-5)^{2}+(3-6)^{2}=18$
Since $\overline{A B}^{2}+\overline{B C}^{2}=\overline{A C}^{2}=36$, the triangle $A B C$ is a right angled triangle
(b) $\mathrm{P}(2,1), \mathrm{Q}(5,-1)$ and $\mathrm{R}(9,5)$

Solution

$\overline{P 2}^{2}=(5-2)^{2}+(-1-1)^{2}=13$
$\overline{P R}^{2}=(9-2)^{2}+(5-1)^{2}=65$
$\overline{Q R}^{2}=(9-5)^{2}+(5-(-1))^{2}=52$
Since $\overline{P Q}^{2}+\overline{Q R}^{2}=\overline{P R}^{2}=65$, the triangle $P Q R$ is a right angled triangle

Note: if the triangle is isosceles, then two of the sides must be equal and for equilateral triangle all the sides must be equal

Example 3

Prove that the following points $\mathrm{A}(1,2), \mathrm{B}(3,7)$ and $C(6,14)$ are vertices of an isosceles triangle.

Solution

$\overline{A C}^{2}=(6-1)^{2}+(14-2)^{2}=169$
$\overline{A B}^{2}=(13-1)^{2}+(7-2)^{2}=169$
$\overline{B C}^{2}=(6-13)^{2}+(14-7)^{2}=98$
Since $\overline{A C}^{2}=\overline{A B}^{2}=169$, hence, the triangle $A B C$, is isosceles triangle.
The mid-point of a line segment

The mid-point, M of a line segment $A B$ with $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given as
$M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Example 4

(a) Find the coordinates of the midpoint of the line joining each of the following pairs of points
(i) $\mathrm{A}(8,4)$ and $\mathrm{B}(2,-4)$

Solution

$$
\text { The midpoint of } \begin{aligned}
\mathrm{AB} & =M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =M\left(\frac{8+2}{2}, \frac{4-4}{2}\right) \\
& =M(5,0)
\end{aligned}
$$

(ii) $P(-6,-2)$ and $Q(-4,-5)$

Solution

The midpoint of $\mathrm{PQ}=M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
\begin{aligned}
& =M\left(\frac{-6-4}{2}, \frac{-2-5}{2}\right) \\
& =M(-5,-3.5)
\end{aligned}
$$

(b) Find the coordinated of point S given that $M(3,-2)$ is the midpoint of the straight line joining S to $T(9,-2)$

Solution

The midpoint of $\mathrm{PQ}=M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$\Rightarrow \frac{x+9}{2}=3$
$x=-3$
Also $\frac{y-2}{2}=-2$

$$
y=-2
$$

Hence S(-3, -2)

Exercise 1

1. Find the distance between each of the following pairs of points
(a) $(-7,3)$ and $(-2,5)$
$[\sqrt{29}]$
(b) $(2,-3)$ and $(7,7)$
(c) $(4,-1)$ and $(-2,1)$

Prove that a triangle with vertices (1, 2), $(13,7)$ and $(6,14)$ is isosceles.
3. Find the midpoint of the following point
(a) $(2,1)$ and $(4,5)$
$[3,3)$
(b) $(-1,4)$ and $(3,1)$
[1, 3]
(c) $(-2,6)$ and $(0,2)$
$[-1,4]$
4. Prove that the points $A(-2,0), B(0,2 \sqrt{5})$ and $C(2,0)$ are vertices of an equilateral triangle.
5. The points L, M and N have coordinates $(3,1),((2,6)$ and $(x, 5)$ respectively. Given that the distance LM is equal to the distance MN, calculate the possible values of x. [-3 or 7]
6. Given that the distance between $P(r, 4)$ and $Q(2,3)$ is equal to the distance between $R(3,-1)$ and $S(-2,4)$. Calculate the possible value of r . [-5 or 7]
7. A triangle has vertices $A(6,2), B(x, 6)$ and $C(-2,6)$. Given that the triangle is isosceles with $A B=B C$, Calculate the value of x. [3]
8. $F(5,1), G(x, 7)$ and $H(8,2)$ are vertices of a triangle. Given that the length of the side FG is twice the length of side FH , find the value of x. [3 or 7]
9. Given that the distance from $\mathrm{A}(13,10)$ to $B(1, y)$ is three times the distance from B to $C(-3,-2)$, find the value of y. [1 or -8]
10. $M(6,5)$ is the midpoint of a straight line joining the point A to point B, find the coordinates of $B[10,7]$

Gradient of a straight line

The gradient of a line joining points $A(x 1, y 1)$ and $B(x 2, y 2)$ is the measure of steepness of the line $A B$ and it is a ratio of the change in y-coordinate to the change in x-coordinate.

$$
\text { i.e., gradient }=\frac{\text { change in } y}{\text { change in } x}=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

The gradient is usually denoted by m which may be positive or negative

Note:

(i) If the line slopes downwards from left to right, the gradient

(ii) On the other hand, if the line slopes upwards from left to right, the gradient is positive.

Angle of a straight line to the horizontal Suppose that the line in the second illustration makes θ is the horizontal as shown below

From trigonometry, $\tan \theta=\frac{B C}{A C}$

$$
\begin{gathered}
=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
\theta=\tan ^{-1}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)
\end{gathered}
$$

This means that if $\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\theta=\tan ^{-1} m
$$

Example 5

(a) Find the gradient of the straight line joining each of the following pairs of points.
(i) $\mathrm{A}(7,4)$ and $\mathrm{B}(-1,-2)$

Solution

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-4}{-1-7}=\frac{-6}{-8}=\frac{3}{4}
$$

(ii) $A(-3,-2)$ and $B(-4,-5)$

Solution

$$
\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-(-2)}{-4-(-3)}=\frac{-3}{-1}=3
$$

(b) Find the angle which the straight line joining each of the following pairs of points makes with the horizontal
(i) $A(5,4)$ and $B(6,8)$

Solution

$$
\begin{aligned}
\text { Angle } \theta & =\tan ^{-1}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) \\
& =\tan ^{-1}\left(\frac{8-4}{6-5}\right) \\
& =76^{0}
\end{aligned}
$$

(ii) $\mathrm{A}(-3,-5)$ and $(-4,-2)$

$$
\begin{aligned}
\text { Angle } \theta & =\tan ^{-1}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) \\
& =\tan ^{-1}\left(\frac{-2-(-5)}{-4-(-2)}\right) \\
& =-71.6^{0}
\end{aligned}
$$

i.e.

Hence the angle which AB makes with the horizontal is 71.6^{0} with positive x axis downwards as shown in the diagram.

Gradient of parallel lines

If two are parallel, their gradients are equal.

In the diagram above L_{1} is parallel to L_{2} and both L_{1} and L_{2} have the same gradient.

Gradient of perpendicular lines

If two lines are perpendicular, the product of their gradients is -1 .

If m_{1} and m_{2} are the gradients of L_{1} and L_{2} respectively, then $m_{1} \times m_{2}=-1$

Example 6

(a) Given the points $A(2,3), B(5,5), C(7,2)$ and $D(4,0)$
(i) Prove that $A B$ is parallel to $D C$

Gradient of $A B, m_{1}=\frac{5-3}{5-2}=\frac{2}{3}$
Gradient of DC, $\mathrm{m}_{2}=\frac{2-0}{7-4}=\frac{2}{3}$
Since the gradient of $A B$ and $D C$ are equal, the lines $A B$ and $D C$ are parallel
(ii) Prove that $A C$ is perpendicular to $B D$

Gradient of $A C, m_{1}=\frac{2-3}{7-2}=\frac{-1}{5}$
Gradient of $B D, m_{2}=\frac{0-5}{4-5}=5$
Since $m_{1} \times m_{2}=-1, A C$ is perpendicular BD
(b) Prove that the point $P(1,3), Q(3,4), R(5,0)$ and $S(3,-1)$ form a parallelogram.

Gradient of $\mathrm{PQ}, \mathrm{m}_{1}=\frac{4-3}{3-1}=\frac{1}{2}$
Gradient of SR, $\mathrm{m}_{2}=\frac{0-(-1)}{5-3}=\frac{1}{2}$
$\therefore P Q$ and $S R$ are parallel
$\overline{P Q}=\sqrt{(3-1)^{2}+(4-3)^{2}}=\sqrt{5}$
$\overline{S R}=\sqrt{(5-3)^{2}+(0-(-1))^{2}}=\sqrt{5}$
$\therefore P Q$ and SR are equal

Gradient of PS, $\mathrm{m}_{1}=\frac{-1-2}{3-1}=-2$
Gradient of $Q R, m_{2}=\frac{0-4)}{5-3}=-2$
$\therefore \mathrm{PS}$ and QR are parallel
So the figure PQRS could either be a
rectangle of parallelogram
For a rectangle
$P Q$ and PS are perpendicular, thus the product of their gradients $=-1$
Since the gradient of PQ and x gradient of PS
$=\frac{1}{2} x-2=-1$
Hence the figure PQRS is a rectangle not a parallelogram.
(c) The quadrilateral $A B C D$ has vertices $A(-2,-3), B(1,-1), C(7,-10)$ and $D(2,-9)$.
(i) Prove that Ad is parallel to $B C$ Gradient of $A D, m_{1}=\frac{-9-(-3)}{2-(-2)}=\frac{-3}{2}$ Gradient of $B C, m_{2}=\frac{-10-(-1)}{7-1}=\frac{-3}{2}$ Since the gradient of $A D$ and $B C$ are equal, the lines $A D$ and $B C$ are parallel
(ii) Prove that $A D$ is perpendicular to $B C$ Gradient of AD, $m_{1}=\frac{-1-(-3)}{1-(-2)}=\frac{2}{3}$ Gradient of $B C, m_{2}=\frac{-10-(-1)}{7-1}=\frac{-3}{2}$ Since $m_{1} \times m_{2}=-1, A D$ is perpendicular BC
(iii) Prove that the area of the quadrilateral $A B C D$ is $321 / 2$ sq. units

$$
\begin{aligned}
\overline{A B} & =\sqrt{(1-(-2))^{2}+(-1-(-3))^{2}} \\
& =\sqrt{13} \\
\overline{B C} & =\sqrt{(7-1)^{2}+(-10-(-1))^{2}} \\
& =\sqrt{117} \\
\overline{A D} & =\sqrt{(2-(-2))^{2}+(-9-(-3))^{2}} \\
& =\sqrt{52}
\end{aligned}
$$

Since all the sides of a quadrilateral are different, the figure is a trapezium

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \sqrt{13}(\sqrt{52}+\sqrt{117}) \\
& =32 \frac{1}{2} \text { sq.units }
\end{aligned}
$$

(d) A quadrilateral $A B C D$ has vertices $A(-2,1)$, $B(0,4), C(3,2)$ and $D(1,-1)$
(i) Prove that all sides of the quadrilateral have the same length.
Solution

$$
\begin{aligned}
& \overline{A B}=\sqrt{(0-(-2))^{2}+(4-1)^{2}} \\
& \quad=\sqrt{13}
\end{aligned}
$$

$$
\begin{aligned}
\overline{B C} & =\sqrt{(3-0)^{2}+(2-4)^{2}} \\
= & \sqrt{13} \\
\overline{C D} & =\sqrt{(1-3)^{2}+(-1-2)^{2}} \\
& =\sqrt{13}
\end{aligned}
$$

$$
\begin{aligned}
\overline{A D} & =\sqrt{(-2-1)^{2}+(1-(-2))^{2}} \\
& =\sqrt{13}
\end{aligned}
$$

Hence all the sides of the quadrilateral are equal in length
(ii) Prove that $A B$ is parallel to $A D$

Gradient of $A B, m_{1}=\frac{4-1)}{0-(-2)}=\frac{3}{2}$
Gradient of DC, $\mathrm{m}_{2}=\frac{2-(-1)}{3-1}=\frac{3}{2}$
Since the gradient of $A B$ and $D C$ are equal, the lines $A B$ and $D C$ are parallel
(iii) Prove that $A D$ is parallel to $B C$

Gradient of $A D, m_{1}=\frac{-1-1)}{1-(-2)}=\frac{-2}{3}$
Gradient of $B C, m_{2}=\frac{2-4}{3-0}=\frac{-2}{3}$
Since the gradients of $A D$ and $B C$ are equal, the lines $A D$ and $B C C$ are parallel
(iv) What is the name of the quadrilateral ABCD?
It could be a square or a rhombus For square, gradient of $A B \times$ gradient of $\mathrm{BC}=\frac{-2}{3} x \frac{3}{2}=-1$
Hence the quadrilateral is a square.

Exercise 2

1. Find the gradient of the straight line of each of the following pairs of points.
(a) $(-2,5)$ and $(5,-3)$
$\left[\frac{-8}{7}\right]$
(b) $(3,7)$ and $(7,-4)$
$\left[-\frac{11}{4}\right]$
(c) $(6,3)$ and $(7,4)$
[1]
2. Find the angle between a line joining the following points with the horizontal
(a) $(2,5)$ and $(-3,-2)$
[54.46 ${ }^{\circ}$]
(b) $(3,7)$ and $(-6,11)$
[-23.96 ${ }^{0}$]
(c) $(5,-3)$ and $(5,2)$
[90°]
3. A triangle has vertices $A(3,-2), B(2,-14)$ and $C(-2,-4)$.Find the gradients of the straight
lines $A B, B C$ and $C A$. Hence prove that the triangle is right-angled $\left[12, \frac{-5}{2}, \frac{2}{5}\right.$; hence BC and CA are perpendicular]
4. The straight line joining the points $P(6,5)$ to $Q(q, 2)$ is perpendicular to the straight line joining point Q to $R(9,-1)$. Find the value of q. $[3,11]$
5. Prove that the quadrilateral PQRS with vertices $P(-1,3), Q(2,4), R(4,-2)$ and $S(1,-3)$ is a rectangle and calculate the area [20 sq. units]
6. The four points $A(5,4), B(6,2), C(12,5)$ and $D(11,7)$ are vertices of a quadrilateral. Prove that the quadrilateral is a rectangle and calculate its area. [15 sq. units]
7. Prove that the points $A(2,3), B(4,8), C(8,9)$ and $D(4,-1)$ for a trapezium.
8. The quadrilateral $A B C D$ has vertices $S(1,1)$, $T(4,5), U(12,-1)$ and $V(1,-1)$ are vertices of a quadrilateral STUV.
(a) Prove that ST is perpendicular to TU, and that SV is perpendicular to UV.
(b) Calculate the length of each of the sides ST, TU, UV, and VS. [5, 10, 11, 2]
(c) Prove that the area of the quadrilateral STUV is 36 square units.
9. The quadrilateral CDEF has vertices, $\mathrm{C} 4,0$), $D(8,4), E(2,-8)$ and $F(0,2)$. The points P, Q, R and S are midpoints of the sides $C D, D E, E F$ and FC respectively. Prove that the Quadrilateral PQRS is a rhombus and show that its area is 15 sq. units.

Equation of a straight line

The general equation of a straight line is given by $y=m x+c$, where $m=$ gradient of the line i.e. $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ and $c=y$-intercept. For lines passing through the origin, $c=0$; hence $y=m x$.

Example 7

(a) Find the equation of with gradient = 5 and passes through the point
(i) $\mathrm{A}(2,5)$

Solution

Method 1

The general equation of a line is $y=m x+c$

Substituting for $m=5$ and points of A
$5=5(2)+c$
$c=-5$
Hence the line is $y=5 x-5$

Method 2

Let $\mathrm{B}(\mathrm{x}, \mathrm{y})$ lie on the line
From $\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$5=\frac{y-5}{x-2}$
$y-5=5(x-2)$
$y=5 x-5$
(ii) $\mathrm{P}(2,7)$

Using $y=m x+c$
Substituting for $m=5$ and points of P
$7=5(2)+c$
$\mathrm{c}=17$
Hence the line is $y=5 x+17$
(b) Find the equation of a straight line joining the following points
(i) $A(0,5)$ and $B(3,4)$

Solution
Gradient $=\frac{4-5}{3-0}=\frac{-1}{3}$
Substituting coordinates for A in general equation
$5=\frac{-1}{3}(0)+c=>C=5$
Hence equation of the line is $y=\frac{-1}{3} x+5$
(ii) $P(-2,-5)$ and $Q(3,-7)$

Solution
Gradient $=\frac{-7-(-5)}{3-(-2)}=\frac{-2}{5}$
Substituting coordinates for P in general equation
$-5=\frac{-2}{5}(-2)+c=>C=-5-\frac{4}{5}=-\frac{29}{5}$
Hence equation of the line is $y=\frac{-2}{5} x-\frac{29}{5}$
(c) Find the equation of a perpendicular
bisector of the line joining the following points
(i) $(2,0)$ and $(-1,4)$

Solution

Let M be the midpoint of $A B$
$\Rightarrow M\left(\frac{2-1}{2}, \frac{0+4}{2}=M(0.5,2)\right.$
Let $P(x, y)$ lie on the perpendicular bisector

Gradient of $A B, m_{1}=\frac{4-0}{-1-2}=\frac{4}{-3}$
Gradient of MP, $\mathrm{m}_{2}=\frac{y-2}{x-0.5}$
But $m_{1} \times m_{2}=-1$
$\frac{4}{-3}\left(\frac{y-2}{x-0.5}\right)=-1$
$4(y-2)=3\left(x-\frac{1}{2}\right)$
$8 y-16=6 x-3$
$8 y-6 x=13$
(ii) $P(-3,-5)$ and $Q(3,-7)$

Solution

Let M be the midpoint of $A B$
$\Rightarrow \mathrm{M}\left(\frac{-3+3}{2}, \frac{-5-7}{2}=\mathrm{M}(0,-6)\right.$
Let $R(x, y)$ lie on the perpendicular bisector

Gradient of $\mathrm{PQ}, \mathrm{m}_{1}=\frac{8-(-7)}{-3-3}=\frac{15}{-6}=\frac{5}{-2}$
Gradient of $\mathrm{MR}, \mathrm{m}_{2}=\frac{y-(-6)}{x-0}=\frac{y+6}{x-0}$
But $m_{1} \times m_{2}=-1$
$\frac{5}{-2}\left(\frac{y+6}{x-0}\right)=-1$
$5(y+6)=2 x$
$5 y-2 x+30=0$
(d) A straight line, L passes through point (-2, 1) and makes an angle of 45° with the horizontal.
(i) Find the equation of the line L.

Solution

Gradient of the line $L=\tan 45^{\circ}=1$
$\Rightarrow m=2$
Substituting the coordinates of the point in the general equation, $y=m x+c$
$1=1(-2)+c=>$ that $c=3$
Hence the equation of the line L is $y=x+3$
(ii) Given that L intersects the x-axis at A and the y-axis at B find the distance $A B$

Solution

At $A, y=0 ; x=-3$
Hence coordinates of $A(-3,0)$
At $\mathrm{B} x=0 \mathrm{y}=3$
Hence coordinates of $B(0,3)$

$$
\begin{aligned}
& \overline{A B}=\sqrt{(0-(-3))^{2}+(3-0)^{2}} \\
& \quad=3 \sqrt{2} \text { units }
\end{aligned}
$$

Perpendicular distance of a point to a line

 Just like in vectors, the shortest distance of a point from a given line is the perpendicular distance of a point from the line Suppose that the equation of the line is in the form $a x+b y+c=0$The perpendicular distance of a point
$\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{d}=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|$

Example 8

Find the perpendicular distance of the following points from the given lines
(a) $(-2,6)$ from $x+y+4=0$

Solution
$a=1, b=1$ and $c=4$
Substituting for $(x, y)=(-2,6)$
$d=\left|\frac{1(-2)+1(6)+4}{\sqrt{1^{2}+1^{2}}}\right|=\frac{8}{\sqrt{2}}=4 \sqrt{2}$ units
(b) $(7,-4)$ from $3 x-5 y=7$

Solution
Rearranging the equation
$3 x-5 y-7=0$
$a=3, b=-5$ and $c=-7$
Substituting for $(x, y)=(7,-4)$
$d=\left|\frac{3(7)-5(-4)-7}{\sqrt{3^{2}+(-5)^{2}}}\right|=\frac{34}{\sqrt{34}}=\sqrt{34}$ units
(c) $(8,-5)$ from $y=3 x-1$

Solution

Rearranging the equation
$3 x-y-1=0$
$a=3, b=-1$ and $c=-1$
Substituting for $(x, y)=(8,-5)$
$d=\left|\frac{3(8)-1(-5)-1}{\sqrt{3^{2}+(-1)^{2}}}\right|=\frac{28}{\sqrt{10}}=8.85$ units

Intersection of two lines

The point of intersection of two or more lines is obtained by solving the equations of the lines simultaneously.

Example 9

(a) Find the coordinates of the point of intersection of each of the following pairs of straight lines
(i) $y=x+3$ and $y=4 x+6$

Solution
Let $\mathrm{y}=\mathrm{x}+3$ \qquad
And $y=4 x+6$ \qquad
Equating (1) and (2)
$x+3=4 x+6 ; x=-1$
substituting $\mathrm{xI}(1)$
$y=4(-1)+6 ; y=2$
Hence the point of intersection is $(-1,2)$
(ii) $2 x-3 y=7$ and $3 x-7 y=13$

Let $2 x-3 y=7$
And $3 x-7 y=13$
\qquad

Equating (1) and (2)
$x+3=4 x+6 ; x=-1$
3eqn,(1) - 2eqn. (2)
$5 y=-5 \Rightarrow>=-1$
Substituting for y into eqn. (1)
$2 x-3(-1)=7 ; x=2$
Hence the point of intersection (2, -1)
(b) (i) Find the equation of the straight line L, which passes through the point $P(2,4)$ and perpendicular to the line $5 y+x=7$
Solution
Let $\mathrm{Q}(\mathrm{x}, \mathrm{Y})$ lie on the same line
Gradient of $\mathrm{PQ}, \mathrm{m}_{1}=\frac{y-4}{x-2}$
From $5 \mathrm{y}+\mathrm{x}=7 ; \mathrm{y}=-\frac{1}{5} x+\frac{7}{5}$
Gradient, $\mathrm{m}_{2}=-\frac{1}{5}$
But for perpendicular lines, $m_{1} \times m_{2}=-1$
$\Rightarrow-\frac{1}{5}\left(\frac{y-4}{x-2}\right)=-1$
$y-4=5(x-2)$
$y=5 x-6$
(ii) Given that the line L meets line $y=x+6$
at point S. find the coordinates of S.
Solution
At S the two equations are equal
$\Rightarrow 5 x-6=x+6 ; x=3$
Substituting x in $\mathrm{y}=\mathrm{x}+6$
$y=3+6=9$
Hence coordinates of S are $(3,9)$
(c) The line L has equation $2 x-y-1=0$. The line M passes through point $A(0,4)$ and is perpendicular to the line L. The line N passes through point $B(3,0)$ and is parallel to M.
(i) Find an equation of M and show that he line L and M intersect at the point A(0, 4).

Solution

Let $K(x, y)$ lie on line M
Gradient of $\mathrm{AK}, \mathrm{m}_{1}=\frac{y-4}{x-0}=\frac{y-4}{x}$
From $2 x-y=1 ; y=2 x-1$
Gradient, $\mathrm{m}_{2}=2$
For perpendicular line $m_{1} \times m_{2}=-1$
$\Rightarrow 2\left(\frac{y-4}{x}\right)=-1$
$2(y-4)=-x$
$2 y+x=8$
At the point, P of intersection, the two lines are equal
$2 x-1=y$
$2 y+x=8$
Substituting for y in eqn. (1) into
equation (2)
$2(2 x-1)+x=8$
$x=2$
Substituting for x in eqn. (1)
$y=2(2)-1=3$
Hence point of intersection $P(2,3)$
(ii) Find an equation of N and hence find the coordinates of point Q where the Line L and Line N intersect
Let $D(x, y)$ lie on N
Gradient BD, $\mathrm{m} 1=\frac{y-0}{x-3}=\frac{y}{x-3}$
From line $2 y+x=8$
$y=-\frac{1}{2}+4$
Gradient $\mathrm{m}_{2}=-\frac{1}{2}$
For parallel lines $m_{1}=m_{2}$.
$\Rightarrow-\frac{1}{2}=\frac{y}{x-3}$
$2 y=3-x$
$2 \mathrm{y}+3 \mathrm{x}=3$
At point Q, Line $L=$ line N
$2 x-1=y$
$2 y+x=3$
Substituting for y in eqn. (2)
$2(2 x-1)+x=3$
$5 x-2=3$
$x=1$
Substituting for x in eqn. (1)
$y=2(1)-1=1$
hence $\mathrm{Q}(1,1)$
(iii) Prove that $\overline{A P}=\overline{B Q}=\overline{P Q}$
$\overline{A P}=\sqrt{(2-0)^{2}+(3-4)^{2}}=\sqrt{5}$
$\overline{B Q}=\sqrt{(1-3)^{2}+(1-0)^{2}}=\sqrt{5}$
$\overline{P Q}=\sqrt{(1-2)^{2}+(1-3)^{2}}=\sqrt{5}$
Hence $\overline{A P}=\overline{B Q}=\overline{P Q}$

Angle between two lines

Suppose that two lines $y=m 1 x+c 1$ and $y=m 2 x+c 2$ are inclined at angle α and β respectively as shown below

The sum of two interior angles = opposite exterior angle

$$
\begin{aligned}
& \Rightarrow \theta+\beta=\alpha \\
& \theta=\alpha-\beta \\
& \tan \theta=\tan (\alpha-\beta) \\
& \quad=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \\
& \quad=\frac{m_{1}-m_{2}}{1-m_{1} m_{2}}
\end{aligned} \begin{aligned}
\theta=\tan ^{-1}\left(\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right)
\end{aligned}
$$

Hence the acute angle between two intersecting lines is $\tan ^{-1}\left(\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right)$
Note that the angle between parallel lines is zero while that between perpendicular line is 90°.

Example 10

(a) Find the acute angle between the following pairs of lines
(i) $4 y-3 x=6$ and $2 y+x=3$

Solution

For $4 y-3 x=6$
$y=\frac{3}{4} x+\frac{6}{4}=>m_{1}=\frac{3}{4}$
For $2 y+x=3$

$$
y=-\frac{1}{2} x+\frac{3}{2} \Rightarrow m_{2}=-\frac{1}{2}
$$

From $\theta=\tan ^{-1}\left(\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right)$

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{\frac{3}{4}-\left(-\frac{1}{2}\right)}{1+\frac{3}{4} \cdot\left(-\frac{1}{2}\right)}\right)=\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{1}{2}}{1-\frac{3}{8}}\right) \\
& =\tan ^{-1} 2=63.4^{0}
\end{aligned}
$$

(ii) $2 x-5 y=15$ and $3 y+2 x=6$

Solution

For $2 x-5 y=15$
$y=\frac{2}{2} x+3 \Rightarrow m_{1}=\frac{2}{5}$
For $3 y+2 x=6$
$y=-\frac{2}{3} x+2 \Rightarrow m_{2}=-\frac{2}{3}$

$$
\begin{aligned}
& \text { From } \theta=\tan ^{-1}\left(\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right) \\
& \begin{array}{l}
\theta=\tan ^{-1}\left(\frac{\frac{2}{5}-\left(-\frac{2}{3}\right)}{1+\frac{2}{5} \cdot\left(-\frac{2}{3}\right)}\right)=\tan ^{-1}\left(\frac{\frac{2}{5}+\frac{2}{3}}{1-\frac{4}{15}}\right) \\
=\tan ^{-1}\left(\frac{16}{11}\right)=46.8^{0} \\
\text { (iii) } y=4 \text { and } 3 y+2 x-6=0
\end{array}
\end{aligned}
$$

Solution

For $y=4,=>m_{1}=0$
For $3 y+2 x-6=0$

$$
y=-\frac{2}{3} x-2 \Rightarrow m_{2}=-\frac{2}{3}
$$

From $\theta=\tan ^{-1}\left(\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right)$

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{0-\left(-\frac{2}{3}\right)}{1+0 .\left(-\frac{2}{3}\right)}\right)=\tan ^{-1}\left(\frac{\frac{2}{3}}{1}\right) \\
& =\tan ^{-1}\left(\frac{2}{3}\right)=33.7^{0}
\end{aligned}
$$

(b) Calculate the area of the triangle which has sides given by the equations $2 y-x=1$, $y+2 x=8$ and $4 y+3 x=7$

Solution

At point P
$4 y+3 x=7$
$2 y-x=1$
Eqn. (1) - 2eqn. (2)
$10 y=10 ; y=1$
Substituting for y in eqn. (2)
$x=2(1)-1=1$
Hence $P(1,1)$

At point Q
$y+2 x=8$
$2 y-x=1$
Eqn. (1) + 2eqn. (2)
$5 y=10 ; y=2$
Substituting for y in eqn. (2)
$x=2(2)-1=3$
Hence $Q(3,2)$

At point R
$y+2 x=8$
$4 y+3 x=7$
3Eqn. (1) - 2eqn.(2)
$-5 y=10 ; y=-2$
Substituting for y in eqn. (1)
$2 x=8+2=10 \Rightarrow x=5$
Hence $r(-2,5)$
Finding dimensions
$\overline{P R}=\sqrt{(5-1)^{2}+(-2-1)^{2}}=5$
$\overline{P Q}=\sqrt{(3-1)^{2}+(2-1)^{2}}=\sqrt{5}$
$\overline{Q R}=\sqrt{(5-3)^{2}+(-2-2)^{2}}=2 \sqrt{5}$
Finding $<$ QPR
For $4 y+3 x=7$
$y=-\frac{3}{4} x+\frac{7}{4} \Rightarrow m_{1}=-\frac{3}{4}$
For $2 \mathrm{y}-\mathrm{x}=1$
$\mathrm{y}=\frac{1}{2} x+\frac{1}{2}=>\mathrm{m}_{2}=\frac{1}{2}$
From $\theta=\tan ^{-1}\left(\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right)$
$<$ QPR $=\tan ^{-1}\left(\frac{\frac{1}{2}-\left(-\frac{3}{4}\right)}{1+\frac{1}{2} \cdot\left(-\frac{3}{4}\right)}\right)=\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{3}{4}}{1-\frac{3}{8}}\right)$

Method 1 using sine rule
Area of PQR $=\frac{1}{2} x P Q \times P C \sin \theta$

$$
=\frac{1}{2} x \sqrt{5} \times 5 x \frac{2}{\sqrt{5}}=5 \text { sq. units }
$$

Method 2 using Heron's formula

Area of $\mathrm{PQR}=\sqrt{s(s-a)(s-b)(s-c)}$
Where a, b, and c are sides of a triangle and
$\mathrm{s}=\frac{1}{2}(a+b+c)$
$s=\frac{1}{2}\left(5+\sqrt{5}+2 \sqrt{5}=\frac{5+3 \sqrt{5}}{2}\right.$

Area $=\sqrt{\left(\frac{5+3 \sqrt{5}}{2}\right)\left(\frac{3 \sqrt{5}-5}{2}\right)\left(\frac{5+\sqrt{5}}{2}\right)\left(\frac{5-\sqrt{5}}{2}\right)}$

$$
=5 \text { sq. units }
$$

Exercise 3

1. Find the gradient of each of the following straight lines
(a) $y=4 x-2$
(b) $y=2 x+3$
(c) $y=2-5 x$
[-5]
(d) $\frac{y}{2}-\frac{x}{5}=4$
$\left[\frac{2}{5}\right]$
2. Find the equation of the straight line that has the following properties
(a) Gradient 1 and passes through $(2,4)$

$$
[y=x+2]
$$

(b) gradient $\frac{1}{4}$ and passes through $(2,5)$

$$
\left[y=\frac{1}{4} x+\frac{9}{2}\right]
$$

3. Find the equation of a straight line that has the following properties
(a) Passes through $(-2,3)$ and parallel to

$$
\begin{aligned}
& y=5 x+4 \\
& {[y=5 x+13]}
\end{aligned}
$$

(b) Passes through (6, -2 and is perpendicular to $y=-3 x+4$

$$
\left[y=\frac{1}{3} x-4\right]
$$

(c) Passes through $\left(-\frac{1}{3},-\frac{2}{3}\right)$ and is perpendicular to $3 y+10 x-8=0$ $[10 y=3 x-3]$
4. Find the equation of a straight line joining the following pairs of points
(a) $(2,4)$ and $(-1,0)[3 y=4 x+4]$
(b) $(-4,1)$ and $(6,2)[10 y=x+14]$
(c) $(3,4)$ and $(-1,4)[y=4]$
5. Find the equation of the perpendicular bisector of the straight lines joining each of the following pairs of point
(a) $(5,5)$ and $(2,-2)$
$[4 y+2 x=11]$
(b) $(-1,4)$ and $(3,3)$
[$2 y-8 x+1=0$]
(c) $(3,2)$ and $(-4,1)$
[$y=-7 x-2]$
6. Find the equation of a straight line:
(a) L_{1} which is perpendicular bisector of points $A(-2,3)$ and $B(1,-5)$

$$
[16 y-6 x+13=0]
$$

(b) L_{2} which is a perpendicular bisector of the points $B(1,-5)$ and $(17,1)$

$$
[3 y+8 x-60=0]
$$

(c) Show that L_{1} is perpendicular to L_{2}.
7. The perpendicular bisector of a straight line joining the points $(3,2)$ and $(5,6)$ meet the x-axis at A and they-axis at B. Prove that the distance $A B$ is equal to $\sqrt{5}$.
8. A is a point $(1,2)$ and B is a point $(7,4)$. The straight line L_{1} passes through B and is perpendicular to $A B$; the straight line L_{2} passes through A and is also perpendicular to $A B$. The line L_{1} meets the x-axis at P and the y-axis at Q. Line L_{2} meets the x-axis at R and the y-axis at S.
(a) Find the equations of each of L_{1} and L_{2}. $[y=-3 x+25, y=-3 x+5]$
(b) Calculate the area of the triangle OPQ. [104 $\frac{1}{6}$]
(c) Calculate the area of the triangle ORS. $\left[4 \frac{1}{6}\right]$
(d) Find the area of the trapezium PQSR. [100 sq. units]
9. P is the point with coordinates $(2,1)$ and L is the straight line which is perpendicular to OP and which passes through P.
(a) Find the equation of L. $[y=-2 x+5]$
(b) Given that line L meets the x-axis at A and y-axis at B. calculate
(i) the area of the triangle OAP. [1.25]
(ii) The area of the triangle OBP [5]
(iii) Find the ratio of the area OAP to that of OBP [1:4]
10. Find the shortest distance between each of the following
(a) The point $(2,4)$ and the line $3 x-4 y+8=0\left[\frac{2}{5}\right]$
(b) The point $(5,-1)$ and the line $12 x+5 y-3=0$ [4]
(c) The point $(9,-3)$ and the line $y=x .[6 \sqrt{2}]$
11. Find the coordinates of the point of intersection of each of the following pairs of straight lines
(a) $y=2 x+3$ and $y=4 x+1[1,5]$
(b) $y=x+3$ and $y=4 x+6 \quad[-1,2]$
(c) $2 x-3 y=7$ and $3 x-7 y=13[2,-1]$
(d) $x+3 y-2=0$ and $3 x+5 y-8=0\left[\frac{7}{2},-\frac{1}{2}\right]$
12. Find the equation of the straight line L, which passes through the point $(2,4)$ and perpendicular to the line $5 y+x=7$
[$y=5 x-6]$
(b) Given that the line L meets the line $y=x+6$ at point S, find the coordinates of point S.[3, 9]
13. Calculate the area of the triangle which has sides given by the equations $2 y-x=1$, $y+2 x=8$ and $4 y+3 x=7$ [5sq. units]
14. The point A has coordinates $(2,-5)$. The straight line $3 x+4 y-36=0$ cuts the x-axis at B and the y-axis at C. Find
(a) The equation of the line through A which is perpendicular to the line $B C$.

$$
[4 x-3 y=23]
$$

(b) The perpendicular distance from the line BC. [10]
(c) The area of the triangle $A B C$. [75 sq. units]

Locus

A locus is the set of all points in a plane that satisfy some condition. For example the locus of points equidistant from two given points say A and B is a perpendicular bisector of $A B$.

Locus can be expressed in terms of the Cartesian coordinates (x, y) of the form (r, θ)

Example 11
(a) Find the locus of point $P(x, y)$ that is equidistant from the point $A(2,-1)$ and B(-1, 2)

Solution

Method 1

$\overline{A P}=\overline{P B}_{\text {i.e. }} \overline{A P}^{2}=\overline{P B}^{2}$
$(x-2)^{2}+(y+1)^{2}=(x+1)^{2}+(y-2)^{2}$ $y=x$

Method 2

Gradient of $A B=\frac{2+1}{-1-2}=-1$
Since $A B$ and MP are perpendicular, the product of their gradients $=-1$
Gradient of $\mathrm{MP}=\frac{x-\frac{1}{2}}{y-\frac{1}{2}}=1$
$y=x$
(b) Find the locus of a point which moves so that of the squares of its distance from points $A(-2,0)$ and $B(2,0)$ is 25 units.

$\overline{A P}^{2}+\overline{B P}^{2}=25$
$(x+1)^{2}+y^{2}+(x-2)^{2}+y^{2}=25$
$x^{2}+y^{2}=25$
(c) The locus of $P(x, y)$ is such that the distance $O P$ is half the distance $P R$, where O is the origin and R is the point $(-3,6)$
(i) Show that the locus of P describes a circle in the $x-y$ plane

Solution

Given $\mathrm{OP}=\frac{1}{2} P R$ i.e. $4 \mathrm{OP}^{2}=\mathrm{PR}^{2}$
$4\left(x^{2}+y^{2}\right)=(x+3)^{2}+(y-6)^{2}$
$4 x^{2}+4 y^{2}=x^{2}+6 x+9+y^{2}-12 y+36$
$x^{2}+y^{2}-2 x+4 y-15=0$ (a circle in $x-y$ plane)
(ii) Determine the radius of the circle and the centre of the circle.

Solution

$x^{2}+y^{2}-2 x+4 y=15$
After completing squares we have
$(x-1)^{2}+(y+2)^{2}=20$

The centre of the circle is $(1,-2)$ and the radius $=\sqrt{20}=2 \sqrt{5}$ units
(iii) Where does P cut the line $x=3$?

Solution

Substituting $x=3$ in the equation
$(x-1)^{2}+(y+2)^{2}=20$
$\left((3-1)^{2}+(y+2)^{2}=20\right.$
$(y+2)^{2}=16$ i.e. $y+2= \pm 4$
$y=-2 \pm 4$ i.e. $y=-6$ or $y=2$
$\therefore P$ cuts the line $\mathrm{x}=3$ at the point $(3,2)$ and (3, -3)
(d) Find the locus of $\mathrm{P}(\mathrm{x}, \mathrm{y})$ if its distance from $A(-1,1)$ is equal to the distance form the line $2 x-y=1$

Solution

$\Rightarrow 5\left[(x+1)^{2}+(y-1)^{2}\right]=(2 x-y-1)^{2}$
$5 x^{2}+10 x+5+5 y^{2}-10 y+5=4 x(y+1)+(y+1)^{2}$
$x^{2}+4 y^{2}+4 x y+14 x-12 y+9=0$ is the locus
(e) A point R moves so that its distance from point $(2,0)$ is twice its distance from $(0,-1)$. Show that the locus of R is a circle and determine its radius and its centre.

Solution

Let $P(2,0), Q(0,1)$ and $R(x, y)$
Given $P R=2 Q R \Rightarrow P R^{2}=4 Q R^{2}$
$(x-2)^{2}+y^{2}=4\left[x^{2}+(y+1)^{2}\right]$
$x^{2}-4 x+4+y^{2}=4 x 2+4 y^{2}+8 y+4$
$3 x^{2}+3 y^{2}+4 x+8 y=0$ hence a circle
$\Rightarrow x^{2}+\frac{4}{3} x+y^{2}+\frac{8}{3} y=0$

$$
\left(x+\frac{2}{3}\right)^{2}+\left(y+\frac{4}{3}\right)^{2}=\frac{20}{9}
$$

The centre is at $\left(-\frac{2}{3}, \frac{4}{3}\right)$ and the radius
$=\sqrt{\frac{20}{9}}=\frac{2 \sqrt{5}}{3}$
(f) Find the locus of a point $P(x, y)$ whose distance from the point $A(3,-2)$ is always 5units.

Solution

$A P=5=>A P 2=25$
i.e. $(x-3)^{2}+(y+5)^{2}=25$
$x^{2}+y^{2}-6 x+4 y-12=0$
The locus is a circle with centre $(3,-2)$ and radius 5 units.
(g) A is a point on the x-axis and C is a point $(2,3)$. The perpendicular to $A C$ through C meets the y-axis at B. Find the locus of the midpoint of $A B$.

Solution

Let $A(a, 0), B(0, b)$ and $M(x, y)$ is the
midpoint of $A B$
$\Rightarrow \mathrm{M}\left(\frac{a+0}{2}, \frac{0+b}{2}\right)$ i.e. $\mathrm{M}\left(\frac{a}{2}, \frac{b}{2}\right)$
Since $A C$ is perpendicular $B C$
$\Rightarrow \frac{0-3}{a-2} \cdot \frac{b-3}{0-2}=-1$
$3(b-3)=2(2-a)$

Now at $\mathrm{M}, \mathrm{x}=\frac{a}{2}$ and $\mathrm{y}=\frac{b}{2}$
$\Rightarrow a=2 x$ and $b=2 y$
Substituting into eqn. (i)
$3(2 y-3)=2(2-2 x)$
i.e. $4 x+6 y=13$
(h) P is a variable point given by parametric equations
$x=\frac{1+t}{1-t}$ and $y=\frac{2 t}{1-t}$
Show that the locus of P is a straight line Solution
By eliminating t
From $x=\frac{1+t}{1-t} ; \mathrm{t}=\frac{x-1}{x+1}$
From $y=\frac{2 t}{1-t} ; \mathrm{t}=\frac{y}{2+y}$.
Equating t
$\frac{x-1}{x+1}=\frac{y}{2+y}$
$(x-1)(2+y)=y(x-1)$
$y-x=-1$ (which is a line)
(i) A point P moves such that its distance from two points $A(-2,0)$ and $B(8,6)$ are in ratio $A P: P B=3: 2$. Show that the locus of $P s$ a circle. (05marks)
$\frac{\overline{A P}}{\overline{P B}}=\frac{3}{2} \Rightarrow 2 \overline{A P}=3 \overline{P B}$
$2 \sqrt{(x+2)^{2}+y^{2}}=$
$3 \sqrt{(x-8)^{2}+(y-6)^{2}}$
Squaring both sides
$4\left(x^{2}+4 x+4+y^{2}\right)$
$=9\left(x^{2}-16 x+64+y^{2}-12 y+36\right)$
$4 x^{2}+16 x+16+4 y^{2}$
$=9 x^{2}-144 x+900+9 y^{2}-108 y$
$5 x^{2}+5 y^{2}-160 x-108 y+884=0$

Exercise 4

1. Find the equation to the locus of a point which moves so that its distance from the point $(3,4)$ is always 5 units.
$\left[x^{2}+y^{2}-6 x-8 y=0\right]$
2. A and B are points $(1,0)$ and $(7,8)$ respectively. A point P moves so that the angle APB is a right angle. Find the equation of locus of P.
$\left[x^{2}+y^{2}-x x-8 y+7=0\right]$
3. A variable point P is given by parametric equation $\mathrm{x}=\mathrm{ct}, \mathrm{y}=\frac{c}{t}$. Show that the locus of P is $x y=c^{2}$.
4. Find the locus of point P which is equidistant from the line $x=2$ and the circle $x^{2}+y^{2}=1$. $\left[x^{2}+6 x-9=0\right]$
5. A Point P is twice as far from the line $x+y=$ 5 and from the point $(3,0)$. Find the locus of P.
$\left[7 x^{2}+7 y^{2}-38 x+10 y-2 x y+47=0\right]$
6. Find the Cartesian equation of a curve given parametrically by $x=\frac{1+t}{1-t}$ and $y=\frac{2 t}{1-t}$
$[y-x+1=0]$
7. $P(3,2)$ and $Q(5,6)$ are two fixed points and R moves so that angle PRQ is right angle. Show that the locus of R is given by the equation $x^{2}+y^{2}-9 x-6 y+26=0$
8. Show that the locus of P is $\frac{1}{4} x^{2}+\frac{1}{3} y^{2}=1$, given that $P A+P B=4$ where A and B are the points $(1,0)$ and $(-1,0)$ respectively

Exercise 5 (Topical question)

1. $A B C D$ is a quadrilateral with $A(2,-2), B(5,-1)$, $C(6,2)$ and $D(3,1)$. Show that the quadrilateral is a rhombus.
2. PQRS is a quadrilateral with vertices $P(2,-1)$, $Q(4,-1)$ and $S(2,1)$. Show that the quadrilateral is a rhombus
3. The Locus of P is such that the distance $O P$ is half the distance $P R$, where O is the origin and R id the point $(-3,6)$.
(a) Show that the locus of P describes a circle in $x-y$ plane $\left[x^{2}+y^{2}-2 x+4 y-15=0\right.$ (a circle in $x-y$ plane)]
(b) Determine the centre and radius of the circle.
[The centre of the circle is $(1,-2)$ and the radius $=\sqrt{20}=2 \sqrt{5}$ units]
(c) Where does P cuts the line $x=3$ $[(3,2)$ and $(3,-3)]$
4. A Point P is twice as far from the line $x+y=5$ as from the point $(3,0)$. Find the locus of P.
$\left[7 x^{2}+7 y^{2}-38 x+10 y+47=0\right]$
5. Find the locus of point P which is equidistant from the line $x=2$ and the circle $x^{2}+y^{2}=1$. $\left[x^{2}+6 x-9=0\right]$
6. The points $R(2,0)$ and $P(3.0)$ lie on the $x-$ axis and $Q(0,-y)$ lie on the y-axis. The perpendicular from the origin to RQ meets $P Q$ at $S(X,-Y)$. Determine the locus $O f S$ in terms of X and Y. $\left[2 X^{2}+3 Y^{2}-6 X=0\right]$
7. The point $A(2,1), P(\alpha, \beta)$ and point $B(1,2)$ lie in the same plane. PA meets the x-axis at point ($h, 0$) and PB meets the y-axis at point $(0, k)$. Find h and k in terms of α and β.
$\left[h=\frac{2 \beta-\alpha}{\beta-1} ; k=\frac{2 \alpha-\beta}{\alpha-1}\right]$
8. A is a point $(1,3)$ and B is a point $(4,6) . P$ is a variable point which moves in such a way that $\overline{A P}^{2}+\overline{P B}^{2}=34$. Show that the locus of P describes a circle. Find the centre and
radius of the circle
[centre is $\left(\frac{5}{2}, \frac{9}{2}\right)$, radius $=\frac{2 \sqrt{5}}{2}$ units]
9. Find the locus of the point $P(x, y)$ which moves such that its distance from the point $S(-3,0)$ is equal to its distance from a fixed line $x=3\left[y^{2}+12 x=0\right]$
10. Given the vector $a=i-3 j+3 k$ and $b=-i-3 j+2 k$. find
(j) acute angle between vectors a and b [30.86 ${ }^{\circ}$]
(ii) equation of the plane containing a and b $[-3 x+5 y+6 z=0]$
11. The points A and B lie on the positive sides of the x-axis and y-axis respectively. If the length of $A B$ is 5 units and angle $O A B$ is θ, where O is the origin, find the equation of the line $A B$ (leave θ in your answer)
[$y=-x \tan \theta+5 \sin \theta$]
12. (a) Find the equation of the locus of a point which moves such that its distance from $D(4,5)$ is twice its distance from the origin. $\left[8 x^{2}+8 y^{2}+8 x+10 y-41=0\right]$
(b) the line $y=m x$ intersects the curve $2 x 2-$ x at point A and B. Find the equation of the locus of point P which divides $A B$ in the ratio 2:5. $\left[y=7 x^{2}-x\right]$

Thank you
Dr. Bbosa Science

