

Sponsored by

Vectors

A vector is a quantity with both magnitude and direction.

Examples include displacement, velocity, acceleration, force, momentum etc.

Representation of vectors

A vector is represented by a line segment or a small letter

The above vector can be represented as OA, a, $\overrightarrow{O A}, \underline{a}$ etc. which can be used interchangeably.

Vectors in two dimensions

These are the representation of magnitude and directions of quantities in $x-y$ plane.
x - direction is represented by i or -i while
y - direction is represented by \mathbf{j} or $-\mathbf{j}$.

In the figure above the unit vectors in the $x-y$ plane are $i=\binom{1}{0}$ and are $j=\binom{0}{1}$

Illustration

(i) The velocity of a body moving eastward at $5 \mathrm{kms}^{-1}$ is represented by 5 i .
(ii) The velocity of a body moving northwards at $x 5 \mathrm{kms}^{-1}$ is represented by 15 j .
(iii) The velocity of a body moving westward at $8 \mathrm{kms}^{-1}$ is represented by -8 i
(iv) The velocity of a body moving southward at $6 \mathrm{kms}^{-1}$ is represented by -6 j .
(v) A body moving at $10 \mathrm{~ms}^{-1}$ in the direction $\mathrm{N} 60^{\circ} \mathrm{E}$ is represented as

$$
=5 \sqrt{3} I+5 j
$$

Vectors in three dimensions

These represent magnitudes and directions in x, y and z planes and are represented by i, j and k

Where i and j represent direction in $x-y$ plane (or east-north directions on ground) while k represent direction in z - plane (vertical plane)
In summary the unit vectors in the x, y and z planes are

$$
i=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad j=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad k=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

For example, the vector of a body that moves 10 m due East, 8 m due north and 12 m vertically is represented as

$$
10 i+8 j+12 k \text { or }\left(\begin{array}{c}
10 \\
8 \\
12
\end{array}\right)
$$

Basic concepts

Position vector

If a point P in a two dimensional geometry has Cartesian coordinates (x, y), the position vector of P is given by $\mathrm{OP}=\mathrm{p}=\binom{x}{y}$ or
$O P=p=x i+y j$
If P has coordinates (x, y, z) in a three dimensional geometry, its position vector is given by
$\mathrm{OP}=\mathrm{p}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ or $x i+y j+z k$

Displacement vector

If points P and Q have coordinates (x_{1}, y_{1}, z_{1}) and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ respectively, the displacement vector $P Q$ is denoted by either $P Q, \underline{P Q}$ or $\overrightarrow{P Q}$ where

$$
\begin{aligned}
\mathrm{PQ} & =\mathrm{OQ}-\mathrm{OP} \\
& =\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)-\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right) \\
& =\left(\begin{array}{l}
x_{2}-x_{1} \\
y_{2}-y_{1} \\
z_{2}-z_{1}
\end{array}\right)
\end{aligned}
$$

Example 1

Given the following pair of points, find their respective displacement vectors, P
(i) $P(3,10)$ and $Q(1,1)$

Solution

$$
\begin{aligned}
P Q & =O Q-O P \\
& =\binom{\mathbf{3}}{\mathbf{1 0}}-\binom{\mathbf{1}}{\mathbf{1}}=\binom{\mathbf{2}}{9}
\end{aligned}
$$

(ii) $P(4,0,2)$ and $Q(2,4,1)$

Solution

$P Q=O Q-O P$

$$
=\left(\begin{array}{l}
4 \\
0 \\
2
\end{array}\right)-\left(\begin{array}{l}
2 \\
4 \\
1
\end{array}\right)=\left(\begin{array}{c}
2 \\
-4 \\
1
\end{array}\right)
$$

Direction of displacement vector

Direction of displacement vector in 2-D geometry is given by

$\tan \theta=\frac{y_{2}-y_{1}}{x_{2}-x_{2}}$ or $\theta=\tan ^{-1}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{2}}\right)$

Example 2

Find the direction of the displacement $P Q$ with the horizontal, given the following points
(i) $\mathrm{P}(2,4)$ and $\mathrm{Q}(6,8)$

Solution

$\tan \theta=\frac{8-4}{6-2}=1$ $\theta=\tan ^{-1} 1=45^{0}$
(ii) $P(1,1)$ and $Q(3,5)$

Solution

$\tan \theta=\frac{5-1}{3-1}=2$
$\theta=\tan ^{-1} 2=63.4^{0}$

Modulus of a vector

Modulus of a vector is the same as magnitude of a vector.
(i) For $P=x i+y j$

Modulus of $\mathrm{P},=|P|=\sqrt{x^{2}+y^{2}}$
(ii) For $P=x i+y j+z k$

Modulus of $\mathrm{P},=|P|=\sqrt{x^{2}+y^{2}+z^{2}}$

Example 3

Find the modulus of the following vectors
(i) $\mathrm{P}=3 \mathrm{i}+4 \mathrm{j}$

Solution

$$
|P|=\sqrt{3^{2}+4^{2}}=5
$$

(ii) $\mathrm{P}=3 \mathrm{i}+4 \mathrm{j}+5 \mathrm{k}$

Solution

$$
|P|=\sqrt{3^{2}+4^{2}+5^{2}}=7.071
$$

Unit vector

This is a vector whose magnitude or length is equal to one.

Example 4

Show that the vector $P=\frac{3}{5} i+\frac{4}{5} j$ is a unit vector
$|P|=\sqrt{\left(\frac{3}{5}\right)^{2}+\left(\frac{5}{5}\right)^{2}}=\sqrt{\frac{9}{25}+\frac{16}{25}}=\sqrt{\frac{25}{25}}=1$

The unit vector parallel to a given vector

The unit vector parallel to a vector P or a vector in direction of P is denoted by \hat{P} where
$\hat{P}=\frac{P}{|P|}$

Example 5

Find the unit vectors parallel to each of the following vectors.
(i) $\mathrm{p}=6 \mathrm{i}+8 \mathrm{j}$

Solution

$$
\begin{aligned}
\hat{p} & =\frac{6 i+8 j}{|6 i+8 j|} \\
& =\frac{6 i+8 j}{\sqrt{6^{2}+8^{2}}} \\
& =\frac{6 i+8 j}{\sqrt{100}} \\
& =\frac{6 i+8 j}{10}=\frac{3 i+4 j}{5} \\
& =\frac{3}{5} i+\frac{4}{5} j
\end{aligned}
$$

(ii) $q=3 i+4 j+5 k$

Solution

$$
\begin{aligned}
\hat{q} & =\frac{3 i+4 j+5 k}{|3 i+4 j+5 k|} \\
& =\frac{3 i+4 j+5 k}{\sqrt{3^{2}+4^{2}+5^{2}}} \\
& =\frac{3 i+4 j+5 k}{\sqrt{50}} \\
& =\frac{3 i+4 j+5 k}{5 \sqrt{2}} \\
& =\frac{3}{5 \sqrt{2}} i+\frac{4}{5 \sqrt{2}} j+\frac{5}{5 \sqrt{2}} k \\
& =\frac{3 \sqrt{2}}{5} i+\frac{4 \sqrt{2}}{5} j+\frac{5 \sqrt{2}}{5} k
\end{aligned}
$$

Revision exercise 1

1. Find the magnitude of each of the following vectors
(a) $3 i+4 j$
(b) $6 i+8 j$
(c) $\left(\begin{array}{l}3 \\ 4 \\ 5\end{array}\right)$
(d) $\left(\begin{array}{c}5 \\ 8 \\ 10\end{array}\right)$
2. Find the value of q in each of the following
(a) $|3 i+q j|=5$
(b) $|2 i+q j+4 k|=6$
(c) $|q i+4 j+4 k|=2 \sqrt{17}$
3. Find the direction θ to the horizontal of each of the following vectors.
(a) $P=\binom{1}{1}$
(b) $q=\binom{3}{4}$
4. Find a unit vector in the direction of each of the following vectors
(a) $\mathrm{p}=8 \mathrm{i}+6 \mathrm{j} \quad\left[\frac{4}{5} i+\frac{3}{5} j\right]$
(b) $\mathrm{q}=5 \mathrm{i}+8 \mathrm{j} \quad\left[\frac{5}{\sqrt{89}} i+\frac{8}{\sqrt{89}} j\right]$
(c) $r=\binom{7}{-9}$

$$
\left[\binom{\frac{5}{\sqrt{89}}}{\frac{8}{\sqrt{89}}}\right]
$$

(d) $3 \mathrm{i}-2 \mathrm{j}+5 \mathrm{k}$
$\left[\frac{3}{\sqrt{38}} i-\frac{2}{\sqrt{38}} j+\frac{5}{\sqrt{38}} k\right]$
(e) $i+3 j+2 k$
$\left[\frac{1}{\sqrt{14}} i-\frac{3}{\sqrt{14}} j+\frac{2}{\sqrt{14}} k\right]$
(f) $\left(\begin{array}{c}3 \\ -12 \\ 4\end{array}\right) \quad\left(\begin{array}{c}\frac{3}{13} \\ \frac{-12}{13} \\ \frac{4}{13}\end{array}\right)$
5. Find a vector of magnitude $\sqrt{7}$ in the
direction of the vector $\left(\begin{array}{c}5 \\ -3 \\ 1\end{array}\right) . \quad\left[\begin{array}{c}\sqrt{5} \\ \frac{-3 \sqrt{3}}{3} \\ \frac{\sqrt{5}}{5}\end{array}\right]$
6. Find $\overrightarrow{P R}$ in each case given that
(a) $\overrightarrow{P Q}=2 \mathrm{i}-4 \mathrm{j}+5 \mathrm{k}$ and $\overrightarrow{Q R}=3 \mathrm{i}+6 \mathrm{j}-2 \mathrm{k}$ $[5 i+2 j+3 k]$
(b) $\overrightarrow{P Q}=\left(\begin{array}{c}3 \\ 6 \\ -8\end{array}\right)$ and $\overrightarrow{Q R}=\left(\begin{array}{c}5 \\ -5 \\ 0\end{array}\right) \cdot\left[\left(\begin{array}{c}8 \\ 1 \\ -8\end{array}\right)\right]$
7. (a) Given that $\overrightarrow{P Q}=5 i-7 j-2 k$ and
$\overrightarrow{P R}=2 \mathrm{i}+3 \mathrm{j}-2 \mathrm{k}$, find $\overrightarrow{Q R} ?[-3 i+10 j]$
(b) Given that $\overrightarrow{P Q}=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$ and $\overrightarrow{P R}=\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$, find $\overrightarrow{Q R} ? \quad\left[\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)\right]$
8. Given that $\overrightarrow{P Q}=a \mathrm{i}+6 \mathrm{j}+4 \mathrm{k}$,
$\overrightarrow{Q R}=4 \mathrm{i}+\mathrm{bj}+-2 \mathrm{k}$, and $\overrightarrow{P R}=-3 \mathrm{i}+\mathrm{ck}$, find the possible values of the constants a, b, c.
$[\mathrm{a}=-7, \mathrm{~b}=-6, \mathrm{c}=1]$

Vector algebra

Addition and subtraction of vectors

When adding or subtracting two or more vectors, corresponding elements are added or subtracted.

Example 6

1. Given that $p=2 i+3 k$ and $q=3 i+6 j+5 k$ find
(i) $p+q=(2+3) i+(0+6) j+(3+5) k$

$$
=5 i+6 j+8 k
$$

(ii) $p-q=(2-3) i+(0-6) j+(3-5) k$

$$
=-i-6 j-2 k
$$

2. Given that $p=\left(\begin{array}{l}5 \\ 7 \\ 9\end{array}\right)$ and $q=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, find
(i) $\mathrm{p}+\mathrm{q}=\left(\begin{array}{l}5 \\ 7 \\ 9\end{array}\right)+\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{c}6 \\ 9 \\ 12\end{array}\right)$
(ii) $\mathrm{p}+\mathrm{q}=\left(\begin{array}{l}5 \\ 7 \\ 9\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$

Multiplication or division of vectors by a scalar

When a vector is multiplied or divided by a scalar the size of the vector changes but the direction remains unchanged

Example 7

Given the vectors $p=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $q=\left(\begin{array}{c}-2 \\ 3 \\ 2\end{array}\right)$ find
(i) $3 p$
$3 p=3\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)=\left(\begin{array}{c}3 \\ 6 \\ -3\end{array}\right)$
(ii) $3 p+2 q$

Solution

$$
\begin{aligned}
3 p+2 q & =3\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)+2\left(\begin{array}{c}
-2 \\
3 \\
2
\end{array}\right) \\
& =\left(\begin{array}{c}
3 \\
6 \\
-3
\end{array}\right)+\left(\begin{array}{c}
-4 \\
6 \\
4
\end{array}\right) \\
& =\left(\begin{array}{c}
-1 \\
12 \\
1
\end{array}\right)
\end{aligned}
$$

Coplanar vectors

The vectors p, q and r are said to be coplanar when there exist scalars say α and β such that $r=\alpha p+\beta q$

Example 8

(a) Given $p=\binom{3}{4}, q=\binom{1}{2}$ and $r=\binom{4}{0}$, find scalars α and β such that $r=\alpha p+\beta q$

Solution

$$
\begin{equation*}
\alpha\binom{3}{4}+\beta\binom{1}{2}=\binom{4}{0} \tag{i}
\end{equation*}
$$

$3 \alpha+\beta=4$
$4 \alpha+2 \beta=0$
Solving equation (i) and (ii) simultaneously, we obtain $\alpha=\frac{4}{5}$ and $\beta=\frac{-8}{5}$
(b) Given $p=\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right), q=\left(\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right)$ and $r=\left(\begin{array}{l}0 \\ 7 \\ 5\end{array}\right)$,
find scalars α, β and γ such that
$r=\alpha p+\beta q$

Solution

$2 \alpha-\beta=0$
$3 \alpha+2 \beta=7$
$\alpha+2 \beta=5$
Solving equation (i), (ii) and (iii)
simultaneously, we obtain $\alpha=1$ and $\beta=2$

Equal vectors

Two or more vectors are said to be equal when they have the same magnitude and direction.

Example 9

Given that vectors $p=\alpha i+2 j+(4-\beta) k$ and $q=(2-\beta) i+2 j+8 k$ are equal find the values of α and β.

Solution

p and q are equal
$\alpha i+2 j+(4-\beta) k=q=(2-\beta) i+2 j+8 k$
$\Rightarrow 4-\beta=8$
$\beta=-4$
$\alpha=2-\beta=2-(-4)=6$
Hence $\alpha=6$ and $\beta=-4$

Parallel vectors

Vectors p and q are parallel when one of them is a scalar multiple of another i.e. $p=k q$ where k is a constant.

To show that a given points are collinear

If points P, Q and R are collinear, then
(i) $P Q$ and $P R$ or $Q R$ are parallel.
(ii) $P Q=k Q R$ where k is a constant and there is a common point on LHS and RHS in this case Q.

Example 10

a. PQRS is a parallelogram with coordinates $P(2,4), Q(-1,5)$ and $R(4,8)$. Find the coordinate of S.

Solution

$P S=Q R$
$O S-O P=O R-O Q$
$O S=O R-O Q+O P$

$$
=\binom{4}{8}-\binom{-1}{5}+\binom{2}{4}=\binom{7}{7}
$$

Hence $S(7,7)$
b. The position vectors of P, Q and R are
$O P=\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right), O Q=\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)$, and
$O R=\left(\begin{array}{c}7 \\ 10 \\ -7\end{array}\right)$, prove that P, Q and R are
collinear.
For collinear points $\mathrm{PQ}=k Q R$
$P Q=O Q-O P$

$$
\begin{aligned}
& =\left(\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right)-\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)=\left(\begin{array}{c}
2 \\
4 \\
-3
\end{array}\right) \\
P R & =O R-O P \\
& =\left(\begin{array}{c}
7 \\
10 \\
-7
\end{array}\right)-\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)=\left(\begin{array}{c}
6 \\
12 \\
-9
\end{array}\right)=3\left(\begin{array}{c}
2 \\
4 \\
-3
\end{array}\right)
\end{aligned}
$$

Substituting for $P Q$ and $Q R$
$\Rightarrow P Q=2 Q R$
Hence $Q R$ is parallel to $P Q$, since Q is common to both sides of the equation, then P, Q and R are collinear
c. Given points $P(2,1,0), Q(5,2,4)$ and $R(14,5,16)$; show that the points are collinear
Solution
$P Q=k Q R$
$P Q=O Q-O P$

$$
=\left(\begin{array}{l}
5 \\
2 \\
4
\end{array}\right)-\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right)
$$

$P R=O R-O P$

$$
=\left(\begin{array}{c}
14 \\
5 \\
16
\end{array}\right)-\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
12 \\
4 \\
16
\end{array}\right)=4\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right)
$$

Substituting for $P Q$ and $Q R$
$\Rightarrow P Q=3 Q R$
Hence $Q R$ is parallel to $P Q$, since Q is common to both sides of the equation, then P, Q and R are collinear
d. Given that $O P=\left(\begin{array}{c}4 \\ -3 \\ 5\end{array}\right)$ and $O Q=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$ find the coordinates of point R such that $P R: P Q=1: 2$ and points P, Q and R re collinear.

Solution

$P R=\frac{1}{2} P Q$
$O R-O P=\frac{1}{2}(O Q-O P)$
$O R=\frac{1}{2}(O Q-O P)+O P=\frac{1}{2}(O Q+O P)$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{1}{2}\left[\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+\left(\begin{array}{c}
4 \\
-3 \\
5
\end{array}\right)\right]=\left(\begin{array}{c}
2.5 \\
-1.5 \\
3.5
\end{array}\right)
$$

Hence coordinates of $R(2.5,-1.5,3,5)$

The ratio theorem (section formula)

Consider the division of a line PR by a point Q as shown below:

Fig: 1
In the Fig: 1 above, point Q divides line $P R$ internally; $P Q: Q R=1: 3$

Fig: 2
In Fig: 2, point Q divides PR externally $P Q: Q R=-1: 4$ or $1:-4$ (depending on the direction considered.

Fig: 3
In fig: 3, Point Q divides PR externally.
$P Q: Q R=4:-1$ or $Q P: R Q=4: 1$
Note $P Q$ and $Q R$ are in opposite direction.

Example 11

(a) $P(3,2)$ and $R(-1,4)$ are two points on the line. A point Q divides $P R$ in the ratio
(i) 2:1, (ii) 4: -1, (iii) 1: -4. Find the coordinates of Q in each case

Here Q divides the line internally
$P Q: Q R=2: 1$
$\frac{P Q}{Q R}=\frac{2}{1}$
$P Q=2 Q R$
$O Q-O P=2(O R-O Q)$
$30 Q=2 O R+O P$
$=2\binom{-1}{4}+\binom{3}{2}=\binom{1}{10}$
$=\binom{\frac{1}{3}}{\frac{10}{3}}$
Hence $Q\left(\frac{1}{3}, \frac{10}{3}\right)$
(ii)

Here Q divides the line externally
$\mathrm{PQ}: \mathrm{QR}=4:-1(\overrightarrow{P Q}$ as positive $)$
$\frac{P Q}{Q R}=\frac{4}{-1}$
$-P Q=4 Q R$
$-(O Q-O P)=4(O R-O Q)$
$30 Q=40 R-O P$

$$
=4\binom{-1}{4}-\binom{3}{2}=\binom{-7}{14}
$$

$O Q=\binom{-7 / 3}{14 / 3}$
Hence $Q(-7 / 3,14 / 3)$
(iii)

Here Q divides the line externally
$P Q: Q R=1:-4$ (taking $P Q$ positive)

Solution

$\frac{P Q}{Q R}=\frac{1}{-4}$
$-4 P Q=P R$
$-4(O Q-O P)=(O R-O Q)$
$30 Q=4 O P-O R$

$$
=4\binom{3}{2}-\binom{-1}{4}=\binom{13}{4}
$$

$O Q=\binom{13 / 3}{4 / 3}$
Hence $Q(13 / 3,4 / 3)$
(b) Two points P and Q are such that $P(0,1,4)$ and $Q(2,6,0)$. A point Q divides a line $P Q$ in ratio 2:3. Find the position vector of Q if it divides PQ
(i) Internally
(ii) Solution

Here Q divides the line internally
$P Q: Q R=2: 3$
$\frac{P Q}{Q R}=\frac{2}{3}$
$3 P Q=2 Q R$
$3(O Q-O P)=2(O R-O Q)$
$30 Q-30 P=20 R-20 Q$
$50 Q=2 O R+30 P$

$$
=2\left(\begin{array}{l}
2 \\
6 \\
0
\end{array}\right)+3\left(\begin{array}{l}
0 \\
1 \\
4
\end{array}\right)=\left(\begin{array}{c}
4 \\
15 \\
12
\end{array}\right)
$$

$\mathrm{OQ}=\left(\begin{array}{c}4 / 5 \\ 3 \\ 12 / 5\end{array}\right)$
Hence $Q(4 / 5,3,12 / 5)$
(ii) Externally

Here Q divides the line externally
$P Q: Q R=-2: 3$

$$
\frac{P Q}{Q R}=\frac{-2}{3}
$$

$$
3 P Q=-2 Q R
$$

$$
3(O Q-O P)=-2(O R-O Q)
$$

$$
30 Q-30 P=-20 R+20 Q
$$

$$
O Q=3 O P+3 O R
$$

$$
=3\left(\begin{array}{l}
0 \\
1 \\
4
\end{array}\right)-2\left(\begin{array}{l}
2 \\
6 \\
0
\end{array}\right)=\left(\begin{array}{l}
-4 \\
-9 \\
12
\end{array}\right)
$$

Hence $Q(-4,-9,12)$
Note: in general, given that Q divides $P R$ in ratio $\alpha: \beta$

$O R=O P+P R$

$$
\begin{aligned}
& =p+\frac{\alpha}{\alpha+\beta} P Q \\
& =p+\frac{\alpha}{\alpha+\beta}(-P O+O Q) \\
& =p+\frac{\alpha}{\alpha+\beta}(-p+q) \\
& =\frac{p(\alpha+\beta)+\alpha(-p+q)}{\alpha+\beta} \\
& =\frac{p(\alpha+\beta)-\alpha p+\alpha q}{\alpha+\beta} \\
& =\frac{\beta}{\alpha+\beta} p+\frac{\alpha}{\alpha+\beta} q
\end{aligned}
$$

Finding the constants of equality

Suppose that $r=\lambda a+k b$ and $r=m a+n b$
$\Rightarrow \lambda a+k b=m a+n b$
Equating corresponding unit vectors
$\lambda=m$ and $k=n$

Example 12

(a) Find the position vector of Q if it divides PR in the ration (i) 1:5 and (ii) 1:-4, given that $O R=r, O P=p$ and $O Q=q$.

Solution

(i) $r=\frac{5}{1+5} p+\frac{1}{1+5} q=\frac{5}{6} p+\frac{1}{6} q$
(ii) $r=\frac{-4}{1+-4} p+\frac{1}{1+-4} q=\frac{4}{3} p-\frac{1}{3} q$
(b) $O P Q$ is a triangle with vector $O P=p, O Q=q$.

Express in terms of p and q the position vector of $O R$, where R divides $\overline{P Q}$ in ratio 1:2.

$O R=\frac{2}{1+2} p+\frac{1}{1+2} q=\frac{2}{3} p+\frac{1}{3} q$
(c) The diagram below shows a quadrilateral $O S R Q, O S=q, O P=p$ and $S X=k S P$.
(i) Express vectors $S P$ and $O X$ in terms of p and q
Solution

$S P=S O+O P$
$=-q+p$
$=p-q$
$O X=O S+k S P$
$=q+k(p-q)$

$$
=k p+q(1-k)
$$

(ii) $O Q=3 p$ and $Q R=2 O S$ and $O X=\lambda O R$ Find k and λ.

Solution

$O X=\lambda O R$

$$
=\lambda(O Q+Q R)
$$

$$
=\lambda(3 p+2 q)
$$

$$
=3 \lambda p+2 \lambda q
$$

Equating corresponding unit vectors
For p
$\mathrm{k}=3 \lambda$

For Q

$$
\begin{align*}
& (1-k)=2 \lambda \\
& k=1-2 \lambda \ldots \tag{2}
\end{align*}
$$

Equations (1) and (2)
$3 \lambda=1-2 \lambda$
$5 \lambda=1$
$\lambda=\frac{1}{5}$
From eqn. (1)
$\mathrm{k}=3 x \frac{1}{5}=\frac{3}{5}$
(d) Given that $\mathrm{OP}=\mathrm{p}$ and $\mathrm{OQ}=\mathrm{q}$, point R is on $O Q$ such that $\overline{O R}: \overline{R Q}=4: 1$. Point S is on QP such that QP: $S A=2: 3$ and RS and $O P$ are both produced, they to meet at point T.

Find
(i) OR and OS in terms of p and q.

Solution

$$
\begin{aligned}
\mathrm{OR} & =\frac{4}{5} O Q=\frac{4}{5} q \\
\mathrm{OS} & =\mathrm{OQ}+\mathrm{QS} \\
& =q+\frac{2}{5} Q P \\
& =q+\frac{2}{5}(p-q) \\
& =\frac{1}{5}(2 p+3 q)
\end{aligned}
$$

(ii) OT in terms of p .

Solution

Let $O T=\alpha O P$ and $R T=\beta R S$
From \triangle OTR
$\mathrm{OT}=\mathrm{OR}+\mathrm{RT}$
$\alpha O P+O R+\beta R S$
$R S=R O+O S$
$=\frac{-4}{5} q+\frac{1}{5}(2 p+3 q)$
$\mathrm{RS}=\frac{1}{5}(2 p-q)$
$\alpha O P=O R+R T$
$\alpha \mathrm{p}=\frac{4}{5} q+\beta \mathrm{RS}$

$$
=\frac{4}{5} q+\frac{\beta}{5}(2 p-q)
$$

$\alpha p=\frac{2 \beta}{5} p+\left(\frac{4}{5}-\frac{\beta}{5}\right) q$
Comparing coefficients
For $\mathrm{q}: \frac{4}{5}-\frac{\beta}{5}=0$

$$
\beta=4
$$

For $p, O T=\frac{2 \beta}{5}=\frac{2}{5} \times 4=\frac{8}{5}$

$$
\therefore O T=\frac{8}{5} p
$$

(e) $O A B C D$ is a parallelogram, find the position vectors of E and F such that E divides DA in the ration 1:2 and F divides it externally in ratio 1:2.
Given that $\mathrm{OA}=\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$ and $\mathrm{OB}=\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)$

Solution

(i) $\mathrm{OA}=\mathrm{DB}$

$$
\begin{aligned}
& \left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)=O B-O D \\
& \left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)=\left(\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right)-O D
\end{aligned}
$$

$$
O D=\left(\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right)-\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)=\left(\begin{array}{c}
2 \\
4 \\
-3
\end{array}\right)
$$

$$
D E=O D+D E
$$

$$
=\left(\begin{array}{c}
2 \\
4 \\
-3
\end{array}\right)+\frac{1}{3}(D A)
$$

$$
=\left(\begin{array}{c}
2 \\
4 \\
-3
\end{array}\right)+\frac{1}{3}(O A-O D)
$$

$$
=\left(\begin{array}{c}
2 \\
4 \\
-3
\end{array}\right)+\frac{1}{3}\left[\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)-\left(\begin{array}{c}
2 \\
4 \\
-3
\end{array}\right)\right]
$$

$$
=\left(\begin{array}{c}
2 \\
4 \\
-3
\end{array}\right)+\frac{1}{3}\left(\begin{array}{c}
-1 \\
-6 \\
5
\end{array}\right)
$$

$$
=\left(\begin{array}{c}
\frac{5}{3} \\
2 \\
\frac{-4}{3}
\end{array}\right)
$$

(ii) When F divides DA externally, ether 1 or 2 must be negative but not both. From the ratio 1: -2.
$\Rightarrow D F: F A=1:-2$

$$
\frac{D F}{F A}=\frac{1}{-2}
$$

$$
-2 D F=F A
$$

$$
-2(O F-O D)=O A-O F
$$

$$
O F=2 O D-O A
$$

$$
=2\left(\begin{array}{c}
2 \\
4 \\
-3
\end{array}\right)-\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)
$$

$$
\mathrm{OF}=\left(\begin{array}{c}
3 \\
10 \\
-8
\end{array}\right)
$$

Exercise 2

1. Points P, Q, R have respective position vectors $\left(\begin{array}{l}5 \\ 4 \\ 1\end{array}\right),\left(\begin{array}{l}7 \\ 5 \\ 4\end{array}\right)$ and $\left(\begin{array}{c}11 \\ 7 \\ 10\end{array}\right)$.
(a) Vectors PQ and QR $\quad\left[\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right) ;\left(\begin{array}{l}4 \\ 2 \\ 0\end{array}\right)\right]$
(b) Deduce that P, Q and R are collinear and find the ration $\mathrm{PQ}: Q R$. [1:2]
2. The A, B and C have coordinates $(1,-5,6)$, $(3,-2,10)$ and ($7,4,18$ respectively. Show that A, B, C are collinear
3. Show that the points $P(5,4,-5), Q(3,8,-1)$ and $R(0,14,2)$ are collinear.
4. Given $A(2,13,-5), B(3, x,-3)$ and $C(6,-7, y)$ are collinear, find the values of x and $y[8,3]$
5. OABC is a parallelogram with $\overrightarrow{O A}=\mathrm{a}$ and $\overrightarrow{O C}=c$. Sis the point on $A B$ such that
$A S$: $S B=3: 1$ and T is a point on $B C$ such that BT:TC $=1: 3$
(a) Express each of the following in terms of a and c.
(i) $\overrightarrow{A C} \quad[c-a]$
(ii) $\overrightarrow{S B}$
(iii) $\overrightarrow{B T} \quad\left[-\frac{1}{4} a\right]-$
(iv) $\overrightarrow{S T}$
[1: 4]
(b) State the value of the ratio $\mathrm{ST}: \mathrm{AC}$
6. Triangle $O A B$ has $O A=a$ and $O B=b . C$ is a point on $O A$ such that $O C=\frac{2}{3} a$. D is the midpoint of $A B$. When $C D$ is produced it meets $O B$ at E, such that $D E=n C D$ and $B E=$ kb . Express DE in terms of
(a) n , a and $\mathrm{b} \quad\left[\frac{5}{6} n a-\frac{1}{2} n b\right]$
(b) k, a and b $\quad\left[\frac{1}{2} a+\frac{(2 k-1)}{2} b\right]$
(c) hence find the values of n and k . $\left[n=\frac{3}{5}\right.$ and $\left.k=\frac{1}{5}\right]$
7. Three non-collinear points A, B, and C have position vectors a, b, and c respectively with respect to an origin O. The points M on $A C$ is such that $A M: M C=2: 1$ and point N on $A B$ is such that $\mathrm{AN}: \mathrm{NB}=2: 1$.
(a) Find in terms of a, b, c the vectors
(i) $\mathrm{BM}\left[\frac{1}{3} a-b+\frac{2}{3} c\right]$
(ii) $\mathrm{CN}\left[\frac{1}{3} a+\frac{2}{3} b-c\right]$
(b) The lines BM and CN intersect at L . Given that $\mathrm{BL}=\mathrm{rBM}$ and $\mathrm{CL}=\mathrm{tCN}$, where r and t are scalars; express in terms of a, b, c, r and t;
(i) BL
$\left[\frac{1}{3} r a-r b+\frac{2 r c}{3}\right]$
(ii) $\mathrm{CL} \quad\left[\frac{1}{3} t a+\frac{2}{3} t b-t c\right]$
(c) Hence by using triangle BLC, or otherwise, find r and $\mathrm{t}\left[r=\frac{3}{5}\right.$ and $\left.t=\frac{3}{5}\right]$
8. In the rectangle $O A B C, O A=a$ and $O C=c \cdot R$ is a point on $A B$ such that $A R: R B=1: 2$ and S is a point on $B C$ such that $B S: S C=3: 1$. $A S$ meets OR at P.
(i) Find an expression of OP in terms a and

$$
\text { c } \quad\left[\frac{4}{5} a+\frac{4}{15} c\right]
$$

(ii) Show that $\mathrm{OP}: \mathrm{PR}=4: 1$.
(iii) Find the value of the ratio $\mathrm{AP}: \operatorname{PS}$ [4:1]
9. Ina triangle $O A B, O A=a$ and $O B=b, M$ is the midpoint of $A B$ and N is a point on $O B$ such that $\mathrm{ON}: \mathrm{NB}=1: 4$. OM meets AN at P .
(a) Find n expression ofOp in terms of a and

$$
\text { b. } \quad\left[\frac{1}{6}(a+b)\right]
$$

(b) Find the ratio of $A P: P N$
[5:1]
10. In a trapezium $O A B C, O A=a, O C=c$ and $C B$ $=3 a . T$ is a point on $B C$ such that $B C$: TC =1:2. OT meets AC at P
(a) Find an expression for OP in terms of a and c. $\left[\frac{2}{3} a+\frac{1}{3} c\right]$
(b) Deduce that P is a point of trisection of both AC and OT
11. In a rectangle $O A B C, M$ is a midpoint of $O A$ and N is a midpoint of $A B$. $O B$ meets $M C$ at P and $N C$ at Q. show that $O P=P Q=Q B$.
12. In the parallel gram $O A B C, P$ is a point on $O A$ such that $O P: P A=1: 2$ and Q is a point on $A B$ such that $A Q: Q B=1: 3, O B$ meets $P C$ at K and $Q C$ at M show that $O K: K M: M B=7: 9: 12$

The scalar or dot products

The dot product of vectors p and q inclined at an angle θ to each other is defined as $p . q=|p| \cdot|q| \cos \theta, 0 \leq \theta \leq \pi$

Properties of scalar product.

(a) $i . i=|i| .|i| \cos 0^{0}=1$ (the angle between i and I is zero)
(b) $i . j=|i| \cdot|j| \cos 90^{\circ}=0$ (i and j are perpendicular

Thus i.i $=\mathrm{j} . \mathrm{j}=\mathrm{k} . \mathrm{k}=1$ and $\mathrm{i} . \mathrm{j}=\mathrm{i} . \mathrm{k}=\mathrm{j} . \mathrm{k}=0$
Hence the dot product of two vectors is a scalar quantity.
Note that a dot product is used to show that the two vectors are perpendicular.
(c) $|p \cdot p|=|p|^{2}$
(d) $p \cdot(q+r)=p \cdot q+p \cdot r$ (distribution law)
(e) $p \cdot(k q)=(k p) \cdot q=k(p \cdot q)$ where k is constant.

Example 13

(a) Given that $\mathrm{p}=\mathrm{i}-2$ kand $\mathrm{q}=3 \mathrm{i}-3 \mathrm{j}+\mathrm{k}$; find
(i) p.q Solution

$$
\begin{aligned}
p \cdot q & =(i-2 k) \cdot(3 i-3 j+k) \\
& =3-2=1
\end{aligned}
$$

(ii) the angle between p and q corrected to the nearest degree.
Solution
p.q =
$\sqrt{1^{2}+(-2)^{2}} \cdot \sqrt{3^{2}+(-3)^{2}+1^{2}} \cos \theta$
$1=\sqrt{5} \cdot \sqrt{19} \cos \theta$
$\theta=\cos ^{-1}\left(\frac{1}{\sqrt{95}}\right)=84.11^{0}$
\therefore the angle between p and q corrected to the nearest degree is 84°.
(b) Show that the following vectors are perpendicular.
(i) $p=2 i+6 j+4 k$ and $q=(-2 i-2 j+4 k)$

Solution

$$
p \cdot q=(2 i+6 j+4 k) \cdot(-2 i-2 j+4 k)
$$

$$
=-4-12+14=0
$$

(hence perpendicular)
(ii) $a=3 i-4 j+k$ and $b=2 i+3 j+6 k$

Solution

$$
\begin{aligned}
a \cdot b & =(3 i-4 j+k) \cdot(2 i+3 j+6 k) \\
& =6-12+6=0
\end{aligned}
$$

(hence perpendicular)
(c) (i) Find the values of the scalar x if the vectors $p=2 x i+7 j-k$ and $q=3 x i+x j+3 k$

Solution

p.q $=|p| .|q| \cos \theta$

If p and q are perpendicular then $p . q=0$
$p . q=(2 x i+7 j-k) .(3 x i+x j+3 k)$
$6 x^{2}+21 x-3=0$
$(3 x-1)(2 x+3)=0$
Either $x=\frac{1}{3}$ or $x=-\frac{3}{2}$
(ii) If the angle between the vector $p=x i+2 j$
and $q=3 i+j$ is 45°, find two possible values of x.

Solution

$(x i+2 j)(3 i+j)=\left(\sqrt{x^{2}+2^{2}}\right) \cdot\left(\sqrt{3^{2}+1^{2}}\right) \cos 45^{0}$
$3 x+2=\frac{\sqrt{2}}{2}\left(\sqrt{x^{2}+4}\right) \cdot(\sqrt{10})$
$\Rightarrow x^{2}+3 x-4=0$
By solving the equation $=-4$ or $x=1$
(d) Find the angle between the vectors
$p=\left(\begin{array}{l}2 \\ 3 \\ 7\end{array}\right)$ and $p=\left(\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right)$
Solution
$\left(\begin{array}{l}2 \\ 3 \\ 7\end{array}\right) \cdot\left(\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right)=\left|\left(\begin{array}{l}2 \\ 3 \\ 7\end{array}\right)\right| \cdot\left|\left(\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right)\right| \cos \theta$
$-4+9=\sqrt{2^{2}+3^{2}+7^{2}} \cdot \sqrt{(-2)^{2}+3^{2}+0^{2}} \cos \theta$
$5=(\sqrt{62 x 13}) \cos \theta$
$\theta=\cos ^{-1}\left(\frac{5}{\sqrt{806}}\right)=79.86^{0}$

The vector (cross) product

Given two non - zero vectors p and q, their vector (cross) product is denoted by $\mathrm{p} \times \mathrm{q}$ or $\mathrm{p} \wedge \mathrm{q}$ is defined $\mathrm{p} \times \mathrm{q}=\lceil p\rceil|q| \sin \theta \cdot \mu$ where θ is the angle between p and q and μ is the opposite unit vector to the given vectors. And $0 \leq \theta \leq \pi$

The cross product is synonymous to determinant of a 3×3 matrix.

Properties of vector (cross) product

(a) $\mathrm{i} \times \mathrm{j}=|i||j| \sin 90^{\circ} \cdot k=k$

$$
=1 \times 1 \times k=k
$$

$$
\mathrm{i} \times \mathrm{k}=|i||j| \sin 90^{\circ} . j=j
$$

$$
=1 \times 1 \times j=j
$$

$$
\mathrm{j} \times \mathrm{k}=j|k| \sin 90^{0} . i=i
$$

$$
=1 \times 1 \times i=i
$$

(b) $\mathrm{i} \times \mathrm{i}=|i||i| \sin 0^{0}=0$
$j x j=|j||j| \sin 0^{0}=0$
$\mathrm{kxk}=|k||k| \sin 0^{0}=0$

$$
=1 \times 1 x i=i
$$

Hence the cross product of two vectors is a vector quantity.

Note we use the cross product to show that two vectors are parallel.
(c) $\mathrm{p} \times \mathrm{q}=-(\mathrm{p} \times \mathrm{q})$
(d) for any three vectors p, q, and r $p(q \times r)=p \times q+p \times r$
(e) The cross product is perpendicular to either of the two vectors crossed.

Suppose we have vectors $p=\left(p_{1} i+p_{2} j+p_{3} k\right)$ and $q=\left(q_{1} i+q_{2} j+q_{3} k\right)$, the cross product of p and q is
$\mathrm{p} \times \mathrm{q}=\left[\begin{array}{c}i-j k \\ p_{1} p_{2} p_{3} \\ q_{1} q_{2} q_{3}\end{array}\right]$
$=\left|\begin{array}{ll}p_{2} & p_{3} \\ q_{2} & q_{3}\end{array}\right| i-\left|\begin{array}{ll}p_{1} & p_{3} \\ q_{1} & q_{3}\end{array}\right| j+\left|\begin{array}{ll}p_{1} & p_{2} \\ q_{1} & q_{2}\end{array}\right| k$
$=\left(p_{2} q_{3}-p_{3} q_{2}\right) i-\left(p_{1} q_{3}-p_{3} q_{1}\right) j+\left(p_{1} q_{2}-p_{2} q_{1}\right) k$

Example 14

(a) Given $p=3 i-2 j+k$ and $q=4 i+3 j-2 k$, find $p \times q$ and $q \times p$.
Solution
$p \times q=\left|\begin{array}{ccc}i & -j & k \\ 3 & -2 & 1 \\ 4 & 3 & -2\end{array}\right|$
$=\left|\begin{array}{cc}-2 & 1 \\ 3 & -2\end{array}\right| i-\left|\begin{array}{cc}3 & 1 \\ 4 & -2\end{array}\right| j+\left|\begin{array}{cc}3 & -2 \\ 4 & 3\end{array}\right| \mathrm{k}$
$=(-2 \times-2-1 \times 3) i-(3 x-2-1 \times 4) j+(3 \times 3--2 \times 4) k$
$=(4-3) i-(-6-4) j+(9+8) k$
$=i+10 j+17 k$
Or using matrix approach

$$
\begin{aligned}
p \times q & =\left(\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right) x\left(\begin{array}{c}
4 \\
3 \\
-2
\end{array}\right) \\
& =\left(\begin{array}{c}
-2 x-2-3 x 1 \\
-(3 x-2-4 \times 1) \\
3 x 3-4 x-2
\end{array}\right) \\
& =\left(\begin{array}{c}
4-3 \\
-(-6-4) \\
9+8
\end{array}\right)=\left(\begin{array}{c}
1 \\
10 \\
17
\end{array}\right)
\end{aligned}
$$

$q \times p=-(p \times q)$

$$
\begin{aligned}
& =-(i+10 j+17 k) \\
& =-i-10 j-17 k
\end{aligned}
$$

Or $p \times q=-\left(\begin{array}{c}1 \\ 10 \\ 17\end{array}\right)=\left(\begin{array}{c}-1 \\ -10 \\ -17\end{array}\right)$
(b) Show that the cross product of vectors
$p=\left(\begin{array}{l}2 \\ 3 \\ 3\end{array}\right)$ and $q=\left(\begin{array}{c}-1 \\ 0 \\ -2\end{array}\right)$ is perpendicular to
the vectors.

$$
\begin{aligned}
& \begin{aligned}
p \times q & =\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right) x\left(\begin{array}{c}
-1 \\
0 \\
-2
\end{array}\right) \\
& =\left(\begin{array}{c}
3 x-2-0 x 5 \\
2 x-2--1 x 5 \\
2 x 0--1 x 3
\end{array}\right) \\
& =\left(\begin{array}{c}
-6-0 \\
-(-4+5) \\
0+3
\end{array}\right)=\left(\begin{array}{c}
-6 \\
-1 \\
3
\end{array}\right)
\end{aligned} \\
& \text { Now }\left(\begin{array}{c}
-6 \\
-1 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right)=-12-3+15=0
\end{aligned}
$$

and
and $\left(\begin{array}{c}-6 \\ -1 \\ 3\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 0 \\ -2\end{array}\right)=6-6=0$
Hence the product is perpendicular
(c) Find the vector perpendicular to $\mathrm{p}=\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)$ and $\mathrm{q}=\left(\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right)$

Solution

Approach 1

$p x q=\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right) x\left(\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right)=\left(\begin{array}{c}-10 \\ 5 \\ 10\end{array}\right)=5\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right)$
Hence the perpendicular vector is $\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right)$
Note the $\left(\begin{array}{c}-10 \\ 5 \\ 10\end{array}\right)$ and $\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right)$ are parallel.

Approach 2

Let the perpendicular vector be $\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$
$\Rightarrow\left(\begin{array}{l}p \\ q \\ r\end{array}\right) \cdot\left(\begin{array}{l}3 \\ 4 \\ 1\end{array}\right)=0$
$3 p+4 q+r=0$
And $\left(\begin{array}{l}p \\ q \\ r\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right)=0$
$-p+2 q-r=0$
Eqn. (i) - 2Eqn (ii)
$5 p+5 r=0$
$p+q=0$
Let $\mathrm{p}=\lambda$, then $\mathrm{r}=-\lambda$
Substituting for p and r in equation (i)
$3 \lambda+4 b-\lambda=0$
$b=-\frac{1}{2} \lambda$
$\therefore\left(\begin{array}{l}p \\ q \\ r\end{array}\right)=\left(\begin{array}{c}\lambda \\ -\frac{1}{2} \lambda \\ -\lambda\end{array}\right)=-\frac{1}{2} \lambda\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right)$
Hence the perpendicular vector is $\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right)$
(d) Given points $\mathrm{P}(1,1,2), \mathrm{Q}(3,7,8)$ and $R(4,10,11)$
Show that $P Q$ is parallel to $Q R$.
Solution
$P Q=O Q-O P$
$=(3 i+7 j+8 k)-(i+j+2 k)$
$=(2 i+6 j+6 k)$
$Q R=O R-O Q$
$=(4 i+10 j+11 k)-(3 i+7 j+8 k)$
$=(i+3 j+3 k)$
$\mathrm{PQ} \times \mathrm{QR}=\left|\begin{array}{ccc}i & -j & k \\ 2 & 6 & 6 \\ 1 & 3 & 3\end{array}\right|$

$$
=\left|\begin{array}{ll}
6 & 6 \\
3 & 3
\end{array}\right| i-\left|\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right| j+\left|\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right| \mathrm{k}
$$

$=(6 \times 3-6 \times 3) i-(2 \times 3-6 \times 1) j+(2 \times 3-1 \times 6) k$
$=(18-18) i-(6-6) j+(6-6) k$
$0 i-0 j-0 k=0$
(e) If vectors $p=2 i-3 j+k$ and $q=a i-6 j+b k$ are parallel, find the values of a and b

Solution

$$
\begin{aligned}
& p x q=\left|\begin{array}{ccc}
i & -j & k \\
2 & -3 & 1 \\
a & -6 & b
\end{array}\right| \\
&=\left|\begin{array}{ll}
-3 & 1 \\
-6 & b
\end{array}\right| i-\left|\begin{array}{ll}
2 & 1 \\
a & b
\end{array}\right| j+\left|\begin{array}{ll}
2 & -3 \\
a & -6
\end{array}\right| k \\
&=(-3 b+6) \mathrm{i}-(2 \mathrm{~b}-\mathrm{a}) \mathrm{j}+(-12+3 \mathrm{a}) \mathrm{k} \\
& \Rightarrow-3 \mathrm{~b}+6=0 ; \mathrm{b}=2 \\
& \Rightarrow \quad 2 \mathrm{~b}-\mathrm{a}=0 ; \mathrm{a}=2 \times 2=4
\end{aligned}
$$

Hence the value of $a=4$ and $b=2$

Application of dot and cross product of vectors

(1) The triangle
(i) The area of a triangle

Area of triangle $\mathrm{ABC}=\frac{1}{2} x \overline{A B} \times h$

$$
=\frac{1}{2} x \overline{A B} x A C \sin \theta
$$

But $|A B \times A C|=|A B||A C| \sin \theta$
Hence the area of the triangle $=\frac{1}{2}|A B x A C|$ In general, the area of a triangle $A B C$
$=\frac{1}{2}|A B \times A C|=\frac{1}{2}|B A \times C C|=\frac{1}{2}|C B \times C A|$
(ii) To show that given vertices for a triangle

If $A B C$ is a triangle, then it must be a closed polygon.
i.e. $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=0$
$\Rightarrow(\mathrm{OB}-\mathrm{OA})+(\mathrm{OC}-\mathrm{OB})+(\mathrm{OA}-\mathrm{OC})=0$
(iii) To show that a given triangle is right angled triangle.
Suppose $<A B C=900$

$\Rightarrow B A \cdot B C=0$ (dot product of $B A$ and $B C$)

Example 15

(a) The vertices of a triangle PQR have position vectors $p=i+2 j+k, q=i+3 k$ and $r=-1+2 j$ $-k$. Determine the area of the triangle PQR.

Solution

(b) Find the area of a triangle PQR with vertices $P(0,1,3), Q(1,5,7)$ and $R(4,-2,4)$

Solution

$$
\begin{aligned}
& \mathrm{PQ}=\mathrm{OQ}-\mathrm{OP} \\
& =\left(\begin{array}{l}
1 \\
5 \\
7
\end{array}\right)-\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right)=\left(\begin{array}{l}
1 \\
4 \\
4
\end{array}\right)
\end{aligned}
$$

$$
\mathrm{PR}=\mathrm{OR}-\mathrm{OP}
$$

$$
=\left(\begin{array}{c}
4 \\
-2 \\
4
\end{array}\right)-\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right)=\left(\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right)
$$

$P Q x P R=\left(\begin{array}{l}1 \\ 4 \\ 4\end{array}\right) x\left(\begin{array}{c}4 \\ -3 \\ 1\end{array}\right)=\left(\begin{array}{c}16 \\ 15 \\ -19\end{array}\right)$
Area of $\mathrm{PQR}=\frac{1}{2}|P Q \times P R|$

$$
\begin{aligned}
& =\frac{1}{2} \sqrt{16^{2}+15^{2}+(-19)^{2}} \\
& =29 \text { sq. units. }
\end{aligned}
$$

(c) Show that the points $P(13,-2,0), Q(7,1,-3)$ and $R(2,-1,5)$ are vertices of a triangle and it is a right angled triangle. Find its area

$$
\begin{aligned}
& P Q=O Q-O P \\
& =\left(\begin{array}{l}
1 \\
0 \\
3
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
-2 \\
2
\end{array}\right) \\
& P R=O R-O P \\
& =\left(\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=\left(\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right) \\
& P Q x P R=\left(\begin{array}{c}
0 \\
-2 \\
2
\end{array}\right) x\left(\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{c}
4 \\
-4 \\
-4
\end{array}\right) \\
& \text { Area of } \mathrm{PQR}=\frac{1}{2}|P Q \times P R| \\
& =\frac{1}{2} \sqrt{4^{2}+(-4)^{2}+(-4)^{2}} \\
& =2 \sqrt{3} \text { sq. units. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{PQ}=\mathrm{OQ}-\mathrm{OP} \\
& \begin{aligned}
& 7 \\
&=\left(\begin{array}{c}
7 \\
1 \\
-3
\end{array}\right)-\left(\begin{array}{c}
13 \\
-2 \\
0
\end{array}\right)=\left(\begin{array}{c}
-6 \\
3 \\
-3
\end{array}\right) \\
& \mathrm{QR}=\mathrm{OR}-\mathrm{OQ} \\
&=\left(\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right)-\left(\begin{array}{c}
7 \\
1 \\
-3
\end{array}\right)=\left(\begin{array}{c}
-5 \\
-2 \\
8
\end{array}\right) \\
& \mathrm{PR}=\mathrm{OR}-\mathrm{OP} \\
& \quad=\left(\begin{array}{c}
13 \\
-2 \\
0
\end{array}\right)-\left(\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right)=\left(\begin{array}{c}
11 \\
-1 \\
-5
\end{array}\right) \\
& \mathrm{PQ}+\mathrm{QR}+\mathrm{RP}=\left(\begin{array}{c}
-6 \\
3 \\
-3
\end{array}\right)+\left(\begin{array}{c}
-5 \\
-2 \\
8
\end{array}\right)+\left(\begin{array}{c}
11 \\
-1 \\
-5
\end{array}\right) \\
&=\left(\begin{array}{c}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
\end{aligned}
$$

Hence PQR is a triangle
To show that PQR is a right angled triangle
$P Q \cdot Q R=\left(\begin{array}{c}-6 \\ 3 \\ -3\end{array}\right) \cdot\left(\begin{array}{c}-5 \\ -2 \\ 8\end{array}\right)=30-6-20=0$
Hence $P Q R$ is a right angled triangle
Area PQR $=\frac{1}{2}(\overline{Q P} x \overline{Q R})$
$\overline{Q P}=\sqrt{6^{2}+(-3)^{2}+3^{2}}=\sqrt{54}$
$\overline{Q R}=\sqrt{(-5)^{2}+(-2)^{2}+8^{2}}=\sqrt{93}$
Area $P Q R=\frac{1}{2}(\sqrt{54} x \sqrt{93})=35.4$ sq. units

(2) The parallelogram

(i) The area of the parallelogram

Taking $<\mathrm{DAB}=\theta$
Area of parallelogram = base x height

$$
\begin{aligned}
& =|A B||A D| \cos \theta \\
& =|A B x A D|
\end{aligned}
$$

(ii) Properties of parallelogram

- Two sides are parallel and equal, i.e., $A B=D C$ and $A D=B C$
- The diagonals are not perpendicular and not equal
- Opposite angles are equal i.e.
$\angle \mathrm{DAB}=\angle \mathrm{DCB}$ and $\angle \mathrm{ADC}=\angle \mathrm{ABC}$
- The sides are not perpendicular i.e., $\angle D A B=\angle D C B \neq 90^{\circ}$ and $<A D C=\angle A B C \neq 90^{\circ}$
(iii) Properties of a rectangle

- Two sides are parallel and equal, i.e.,
$A B=D C$ and $A D=B C$
- Diagonals are equal and perpendicular
- All angles are equal to 90°. i.e.,

$$
\angle \mathrm{DAB}=\angle \mathrm{ABC}=\angle \mathrm{BCA}=\angle \mathrm{CDA}=90^{\circ} .
$$

(iv) Properties of a square

- All sides are parallel and equal, i.e.,
$A B=D C=A D=B C$
- Diagonals are equal and perpendicular
- All angles are equal to 90°. i.e.,

$$
\angle \mathrm{DAB}=\angle \mathrm{ABC}=\angle \mathrm{BCA}=\angle \mathrm{CDA}=90^{\circ} .
$$

(v) Properties of a rhombus

- All sides are parallel and equal, i.e., $A B=D C=A D=B C$
- Diagonals are equal and perpendicular

Opposite angles are equal but not equal to 90°. i.e.
$<D A B=\angle D C B \neq 90^{\circ}$ and
$\angle A D C=\angle A B C \neq 90^{\circ}$

Example 16

(a) A quadrilateral $A B C D$ has coordinates $A(1,2), B(5,4), C(3,-1)$ and $D(-1,-3)$. Show whether $A B C D$ is a rectangle or parallelogram
Solution

For both a rectangle and parallelogram, $A B=D B$ and $A D=B C$
$A B=O B-O A$

$$
\begin{aligned}
& =\binom{5}{4}-\binom{1}{2}=\binom{4}{2} \\
\mathrm{DC} & =O C-O D \\
& =\binom{3}{-1}-\binom{-1}{-3}=\binom{4}{2}
\end{aligned}
$$

$$
\Rightarrow A B=D C
$$

$$
A D=O D-O A
$$

$$
\begin{aligned}
& =\binom{-1}{-3}-\binom{1}{2}=\binom{-2}{-5} \\
D C & =O C-O D \\
& =\binom{3}{-1}-\binom{5}{4}=\binom{-2}{-5} \\
\Rightarrow & A D=D C
\end{aligned}
$$

Hence $A B C D$ is either a rectangle or parallelogram.

For a rectangle $<\mathrm{DAB}=\angle \mathrm{ABC}=900$

$$
\Rightarrow \quad A D \cdot A B=0
$$

$$
\binom{-2}{-5} \cdot\binom{4}{2}=-8-10=-18
$$

Hence $A B C D$ is not a rectangle.
For a parallelogram, $\angle D A B=\angle B C D$ and $\angle A B C=\angle A D C$

$$
\begin{aligned}
& \mathrm{AD} \cdot \mathrm{AB}=|A D||A B| \cos \theta \\
& -18=\sqrt{4^{2}+2^{2}} \sqrt{-2^{2}+-5^{2}} \cos \theta
\end{aligned}
$$

$-18=\sqrt{20 x 29} \cos \theta$
$\theta=\cos ^{-1}\left(\frac{-18}{\sqrt{580}}\right)=138.4^{0}$
$C B \cdot C D=|C B||C D| \cos \theta$
$\binom{2}{5} \cdot\binom{-4}{-2}=\sqrt{2^{2}+5^{2}} \sqrt{-4^{2}+-2^{2}} \cos \theta$
$-8-10=\sqrt{29.20} \cos \theta$
$-18=\sqrt{20 \times 29} \cos \theta$
$\theta=\cos ^{-1}\left(\frac{-18}{\sqrt{580}}\right)=138.4^{0}$
Since $<\mathrm{DAB}=\angle \mathrm{BCD} ; \mathrm{ABCD}$ is a parallelogram.
(b) $A B C D$ is a quadrilateral with $A(2,-2), B(5,-1)$, $C(6,2)$ and $D(3,1)$. Show whether the quadrilateral is a square or a rhombus.

For square or rhombus

$$
A B=B C=C D=A D
$$

$$
\mathrm{AB}=\mathrm{OB}-\mathrm{OA}
$$

$$
=\binom{5}{-1}-\binom{2}{-2}=\binom{3}{1}
$$

$|A B|=\sqrt{3^{2}+1^{2}}=\sqrt{10}$
$\mathrm{BC}=\mathrm{OC}-\mathrm{OB}$

$$
=\binom{6}{2}-\binom{5}{-1}=\binom{1}{3}
$$

$|B C|=\sqrt{1^{2}+3^{2}}=\sqrt{10}$
$C D=O D-O C$

$$
=\binom{3}{1}-\binom{6}{2}=\binom{-3}{-1}
$$

$|A B|=\sqrt{-3^{2}+-1^{2}}=\sqrt{10}$
$A D=O D-O A$

$$
=\binom{3}{1}-\binom{2}{-2}=\binom{1}{3}
$$

$|A D|=\sqrt{1^{2}+3^{2}}=\sqrt{10}$
Since $A D$ is parallel to $B C$ and have the same magnitude; $A B C D$ is either a square or rhombus.
For both a square and rhombus, the diagonals are perpendicular

$$
\begin{array}{rl}
\Rightarrow \quad \mathrm{AC} & \mathrm{BD}=0 \\
\mathrm{AC} & =\mathrm{OC}-\mathrm{OA} \\
& =\binom{6}{2}-\binom{2}{-2}=\binom{4}{4} \\
\mathrm{BD} & =\mathrm{OD}-\mathrm{OB} \\
& =\binom{3}{1}-\binom{5}{-1}=\binom{-2}{2}
\end{array}
$$

$$
\mathrm{AC} \cdot \mathrm{BD}=\binom{4}{4} \cdot\binom{-2}{2}=-8+8=0
$$

Hence $A B C D$ is either a square of rhombus
For a square $\angle \mathrm{DAB}=\angle \mathrm{ABC}=90^{\circ}$

$$
\Rightarrow \quad A B \cdot A D=0
$$

$\operatorname{Now}\binom{3}{1} \cdot\binom{1}{3}=3+3=6$
Hence $A B C D$ is not a square.
For a rhombus $\angle \mathrm{ADC}=\angle \mathrm{BCD} \neq 90^{\circ}$ and
$\angle A B C=\angle A D C \neq 90^{\circ}$
$\mathrm{AD} \cdot \mathrm{AB}=|A D||A B| \cos \theta$
$6=\sqrt{3^{2}+1^{2}} \sqrt{1^{2}+3^{2}} \cos \theta$
$6=\sqrt{10} \sqrt{10} \cos \theta$
$\theta=\cos ^{-1} \frac{6}{10}=53.13^{0}$
CB.CD $=|A D||A B| \cos \theta$
$\binom{-1}{-3}\binom{-3}{-1}=\sqrt{-1^{2}+-31^{2}} \sqrt{-3^{2}+-1^{2}} \cos \theta$
$6=\sqrt{10} \sqrt{10} \cos \theta$
$\theta=\cos ^{-1} \frac{6}{10}=53.13^{0}$
Since $\angle D A B=\angle B C D \neq 90^{\circ} ; A B C D$ is a rhombus.
(c) A parallelogram $A B C D$ has vertices $A(-2,3)$, $B(1,-2), C(8,-5)$ and $D(5,0)$. Find the area of the parallelogram

Solution

Area of $\mathrm{ABCD}=|A B x A D|$
$A B=O B-O A$
$=\binom{1}{-2}-\binom{-2}{3}=\binom{3}{-5}$
$A D=O D-O A$

$$
=\binom{5}{0}-\binom{-2}{3}=\binom{7}{-3}
$$

$\mathrm{AB} \times \mathrm{AD}=\left(\begin{array}{c}3 \\ -5 \\ 0\end{array}\right) x\left(\begin{array}{c}7 \\ -3 \\ 0\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ 26\end{array}\right)$
$|A B \times A D|=\sqrt{26^{2}}=26$
The area of $A B C D=26 \mathrm{~s}$. units.

Exercise 3

1. Given that $p=4 i+5 j, q=\alpha i-8 j$ and $r=i+\beta j$.
(a) Find the value of constants α given that p and q are perpendicular. [10]
(b) Find the value of constant β given that p and r are parallel $\left[\frac{5}{4}\right]$
2. Given that $p=6 i-j, q=\alpha i+2 j$ and $r=2 i+$ β j.
(a) Find the value of a constant α given that p and q are parallel [-12]
(b) Find the value of constant β give that p and r are perpendicular. [12]
3. Given that $\left(\begin{array}{c}\alpha \\ 2+\alpha \\ 3\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 3 \\ 4-\alpha\end{array}\right)$ are perpendicular vectors, find the value of α. [18]
4. Find the possible values of the constant α, given the vectors $\alpha i+8 j+(3 \alpha+1) k$ and $(\alpha+1) I+(\alpha-1) j-2 k$ are perpendicular. [2 or -5]
5. Given that the vectors $\left(\begin{array}{c}t \\ 4 \\ 2 t+1\end{array}\right)$ and $\left(\begin{array}{c}t+2 \\ 1-t \\ -1\end{array}\right)$ are perpendicular, find the possible values of t [5 or -1]
6. Three point P, Q, and R have position vectors $p=7 i+10 j ; q=3 i+12 j$ and $r-i+4 j$ respectively.
(i) Write down vectors PQ and RQ and show that they are perpendicular.
$[-4 i+2 i ; 4 i, 8 j ; P Q . R Q=0]$
(ii) Using a scalar product or otherwise find and RQ [26.6 ${ }^{\circ}$]
(iii) Find the position vectors of S, the midpoint of PR. $[-4 i,-3 j$
7. The points A, B, C have position vectors $A=2 i+j-k, b=3 i+4 j-2 k, c=5 i-j+2 k$ respectively, relatively to fixed point 0 .
(a) Evaluate the scalar product $(a-b)$, ($c-b$). Hence calculate the size of angle ABC. [17. 40.2 ${ }^{\circ}$]
(b) Given that ABCD is parallelogram
(i) Determine the position vector of D [-4i, $-2 j+3 k$]
(ii) Calculate the area of $A B C D,[14.4]$
(c) The point E lies on BA produced so that $\overrightarrow{B E}=3 \overrightarrow{B A}$. Write down the position vector of E. the line $C E$ cuts the line $A D$ at X; find the position vector of X.
$\left[-2 \mathrm{i}+\mathrm{k} ; \frac{10}{3} i, \frac{7}{3} j, \frac{5}{3} k\right.$
8. The point A and B have position vectors $i+2 j+2 k$ and $4 i+3 k$ respectively, relative an origin 0 .
(a) Find the length of $O A$ and $O B$. $[3,5]$
(b) Find the scalar product of $O A$ and $O B$.

Hence find angle OAB. [48.2 ${ }^{\circ}$]
(c) Find the area of the triangle $A O B$, giving your answer correct to 2 decimal places. [5.59]
(d) The point C divides $A B$ in ratio α : 1- α
(i) Find an expression for OC.
$[(1+\alpha) I+(2+\alpha) j+2(1-\alpha) k]$
(ii) Show that $O C^{2}=14 \alpha^{2}+2 \alpha+9$
(iii) Find the position vectors of the two point on $A B$ whose distance from 0 is $\sqrt{21} .\left[-2 \mathrm{i}+\mathrm{j}+4 \mathrm{k} ; \frac{25}{7} i+\frac{29}{7} j+\frac{2}{2} k\right]$
(iv) Show that the perpendicular distance of O from $A B$ is approximately 2.99

Lines

Equation of a line

An equation of line can be expressed in any of the three forms
(i) Vectors
(ii) Parametric form
(iii) Cartesian form

Finding equations of a line given one point on the line and the vector parallel to the line (direction vector)

In the figure above A is the point on the line with position vector $O A=a$ and b is the vector parallel to the line

Taking $R(x, y, z)$ as general point on the line $A R$ is parallel to b
$\Rightarrow A R=\lambda b$ where λ is a constant
$O R-O A=\lambda b$

$$
O R=O A+\lambda b
$$

$\Rightarrow r=a+\lambda b$
This is the vector equation of the line
Suppose that $\mathrm{a}=\left(\begin{array}{l}x_{0} \\ y_{0} \\ z_{0}\end{array}\right)$ and $\mathrm{b}=\left(\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right)$
Substituting for r, a and b into the equation
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}x_{0} \\ y_{0} \\ z_{0}\end{array}\right)+\lambda\left(\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right)$
$x=x_{0}+\lambda x_{1}$
$y=y_{0}+\lambda y_{1}$
$z=z_{0}+\lambda z_{1}$
These are parametric equation of a line

By making λ the subject from the parametric equations,
$\frac{x-x_{0}}{x_{1}}=\frac{y-y_{0}}{y_{1}}=\frac{z-z_{0}}{z_{1}}$
This is the Cartesian equation of the line
Different values of λ define positions of R.
If $\lambda<0$, the point R is on the left point A
If $\lambda=0$, the point in question is A
If $\lambda>0$, the point R is on the right of point A

Example 17

(a) Find the vector, parametric and Cartesian equation of the line passing through the point $A(1,2,3)$ and is parallel to the vector $2 i-j+k$.

Solution

The position vector of A is $a=i+2 j+3 k$ and the parallel vector $b=2 i-j+k$.

Using $r=a+\lambda b$
$\Rightarrow r=1+2 j+3 k+\lambda(2 i-j+k)$
Or
$r=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$, this a vector equation
Substituting for $\mathrm{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$
$x=1+2 \lambda$
$y=2-\lambda$
$y=3+\lambda$ this parametric equation
From these equation
$\left(\begin{array}{l}x-1 \\ y-2 \\ z-3\end{array}\right)=\lambda\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$
$=>\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{1}$ is the Cartesian equation

Note

Given the Cartesian equation of a line, the point through which the line passes ($1,2,3$) and the vector parallel to this line $\left(\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right)$ can be deduced easily, for example the line
$\frac{x-2}{-3}=\frac{y-1}{2}=\frac{z+4}{1}$ pases through
$(-2,1,4)$ and is parallel to $\left(\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right)$
Hence from the general Cartesian equation of the line, $\frac{x-x_{0}}{x_{1}}=\frac{y-y_{0}}{y_{1}}=\frac{z-z_{0}}{z_{1}}$, the arallel vector is the values of the denominator and for the vector equation, it is the coefficient of the constant.
(b) Find the Cartesian equation of the line that passes the point
(i) $P(2,0,-1)$ and is parallel to $\left(\begin{array}{c}-1 \\ 4 \\ -2\end{array}\right)$
(ii) $\mathrm{M}(3,2,1)$ and is parallel to $5 \mathrm{i}+7 \mathrm{k}$. Solution Using general Cartesian equation

$$
\frac{x-x_{0}}{x_{1}}=\frac{y-y_{0}}{y_{1}}=\frac{z+1}{z_{1}}
$$

(i) $\frac{x-2}{-1}=\frac{y-0}{4}=\frac{z+1}{-2}$

$$
\frac{x-2}{-1}=\frac{y}{4}=\frac{z+1}{-2}
$$

(ii) $\quad \frac{x-3}{5}=\frac{y-2}{0}=\frac{z-1}{7}$

$$
\frac{x-3}{5}=\frac{z-1}{7} ; y=2
$$

(c) Find the vector equation of the straight line that passes through point $(2,3)$ and perpendicular to the line $r=3 i+2 j+\lambda(i-2 j)$.

Solution

Using $r=a+\lambda b$, substituting for $a=2 i+3 j$ and $b=a_{1} i+b_{1} j$, we have
$r=2 i+3 j+\lambda\left(a_{1} i+b_{1} j\right)$
since the lines are perpendicular, this means that their parallel vectors are also perpendicular

$$
\begin{aligned}
\Rightarrow & \left(a_{1} i+b_{1} j\right)(i-2 j)=0 \\
& a_{1}-2 b_{1}=0
\end{aligned}
$$

$$
\Rightarrow \begin{array}{ll}
& a_{1}=2 b_{1} \\
\Rightarrow \quad & b=2 b_{1} i+b_{1} j \\
& b=b_{1}(2 i=+j)
\end{array}
$$

Hence the required line will be parallel to any vector of the form $\lambda(2 i+j)$. So taking $2 i+j$ as one of such vector, the required equation is $r=2 i+3 j+\lambda(2 i+j)$
(a) Defining a line given two points lying on the line

Finding equations of a line given two points lying on the line

Suppose the line passes through point A and B whose position vectors are a and b.

For a general point $R(x, y, z)$
$A R$ is parallel to $A B$
$A R=\lambda A B$ for any value of λ.
$O R-O A=\lambda(O B-O A)$
$O R=O A+\lambda(O B-O A)$
$r=a+\lambda(b-a)$

Example 18

(a) Find the equation of the line passing through the points $A(3,0 .-2)$ and $B(4,-2,1)$

Solution
$A B=O B-O A=\left(\begin{array}{c}3 \\ 0 \\ -2\end{array}\right)-\left(\begin{array}{c}3 \\ 0 \\ -2\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$
Using $r=a+\lambda A B$
$r=\left(\begin{array}{c}3 \\ 0 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right):$ the vector equation
Substituting for r
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}3 \\ 0 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$
$x=3+\lambda$
$y=-2 \lambda$
$z=-2+3 \lambda$ parametric equation
Making λ the subject
$\frac{x-3}{1}=\frac{y}{-2}=\frac{z+2}{3}:$ Cartesian equation
(b) Find the equation of the line passing through points A and B whose position vectors are $i+2 j-5 k$ and $2 i-5 j+8 k$

Solution

$A B=O B-O A=\left(\begin{array}{c}2 \\ -5 \\ 8\end{array}\right)-\left(\begin{array}{c}1 \\ 2 \\ -5\end{array}\right)=\left(\begin{array}{c}1 \\ -7 \\ 13\end{array}\right)$
Using $r=a+\lambda A B$
$r=\left(\begin{array}{c}1 \\ 2 \\ -5\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -7 \\ 13\end{array}\right)$: the vector equation
Substituting for r
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ 2 \\ -5\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -7 \\ 13\end{array}\right)$
$x=1+\lambda$
$y=2-7 \lambda \quad$ Parametric equation
$z=-5+13 \lambda$
Making λ the subject
$\frac{x-1}{1}=\frac{y-2}{-7}=\frac{z+5}{13}$ Cartesian equation
Note: in a situation where three points lying on a line are given such as $A B C$, the vector equation of the line is given by
$r=a+\lambda(B C)$
(c) Find the equation of the line passing through points $A(1,2,5), B(2,1,0)$ and C(5, 3, 2).

Solution
$B C=O C-O B=\left(\begin{array}{l}5 \\ 3 \\ 2\end{array}\right)-\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}3 \\ 2 \\ 2\end{array}\right)$
$r=\left(\begin{array}{l}1 \\ 2 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 2 \\ 2\end{array}\right):$ vector equation
Substituting for r
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 2 \\ 2\end{array}\right):$
$x=1+3 \lambda$
$y=2+2 \lambda \quad$ Parametric equation
$z=5+2 \lambda$
Making λ the subject
$\frac{x-1}{3}=\frac{y-2}{2}=\frac{z-5}{2}$ Cartesian equation
To show that a given point lies on the line
Suppose that a point (a, b, c) lies on
$\frac{x-x_{0}}{x_{1}}=\frac{y-y_{0}}{y_{1}}=\frac{z+1}{z_{1}}$. The when we substitute this point into the equation, we obtain a constant for the values of a, b, c.

Example 19

(a) Show that a point with coordinates
$(4,-1,12)$ lies on the line
$r=2 i+3 j+4 k+\lambda(i-2 j+4 k)$
Solution
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right)$
Substituting $(x, y, z)=(4,-1,12)$
$\left(\begin{array}{c}4 \\ -1 \\ 12\end{array}\right)=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right)$
$\left(\begin{array}{c}4-2 \\ -1-3 \\ 12-4\end{array}\right)=\lambda\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right)=>\left(\begin{array}{l}\lambda \\ \lambda \\ \lambda\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right)$
Since the value of λ is constant, the point lies on the line.
(b) Show that a point with position vector
$i-9 j+k$ lies on the line
$r=3 i+3 k-k+\lambda(i+6 j-k)$
Solution
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}3 \\ 3 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 6 \\ -1\end{array}\right)$
Substituting $(x, y, z)=(1,-9,1)$
$\left(\begin{array}{c}1 \\ -9 \\ 1\end{array}\right)=\left(\begin{array}{c}3 \\ 3 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 6 \\ -1\end{array}\right)$
$\left(\begin{array}{c}1-3 \\ -9-3 \\ 1+1\end{array}\right)=\lambda\left(\begin{array}{c}1 \\ 6 \\ -1\end{array}\right) \Rightarrow\left(\begin{array}{l}\lambda \\ \lambda \\ \lambda\end{array}\right)=\left(\begin{array}{l}-2 \\ -2 \\ -2\end{array}\right)$
Since the value of λ is constant, the point lies on the line.

Relationship between two lines

There are three types of relationship between lines

(i) Intersection

(a)intersecting at θ

(b)intersecting at 90°

If two lines r_{1} and r_{2} meet, then at the point of intersection, $r_{1}=r_{2}$
(ii) Parallel lines

These are non-intersecting lines that are equidistant from one another.

(iii) Skew lines

These are non-intersecting lines that are not equidistant from one another (not parallel)

Example 20

(a) Show that lines
$r_{1}=\left(\begin{array}{c}-2 \\ 8 \\ -1\end{array}\right)+\mu\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)$ and
$r_{2}=\left(\begin{array}{c}8 \\ -1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}-4 \\ 1 \\ 0\end{array}\right)$ intersect and find the point of intersection.
Solution
At the point of intersection r1 $=r 2$

$$
\begin{align*}
& \left(\begin{array}{c}
-2 \\
8 \\
-1
\end{array}\right)+\mu\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)=\left(\begin{array}{c}
8 \\
-1 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
-4 \\
1 \\
0
\end{array}\right) \tag{i}\\
& -2+\mu=8-4 \lambda \text { i.e. } \mu+4 \lambda=10 \ldots \ldots(\text { (i) } \\
& 8+3 \mu=-1+\lambda \text { i.e. } 3 \mu-\lambda=-9 \ldots \ldots . . . \text { (ii) } \tag{ii}\\
& -1-2 \mu=3 \text { i.e. } \mu=-2
\end{align*}
$$

Substituting for μ in equation (i)
$\lambda=3$
Checking with eqn. (ii) $3(-2)-3=-9$ i.e.
there is consistency.
Using $\mu=-2$, the point of intersection is
$\left(\begin{array}{c}-2 \\ 8 \\ -1\end{array}\right)-2\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)=\left(\begin{array}{c}-4 \\ 2 \\ 5\end{array}\right)$
Or point of intersection is $(-4,2,5)$
(b) Show that lines
$\frac{x}{1}=\frac{y+2}{2}=\frac{z-5}{-1}$ and $\frac{x-1}{-1}=\frac{y+3}{-3}=\frac{z-4}{1}$
intersect and find the point of intersection.

Solution

$\frac{x}{1}=\frac{y+2}{2}$ i.e $2 x-y=2$
Also
$\frac{x-1}{-1}=\frac{y+3}{-3}$ i.e. $-3 x+y=-6$
Eqn. (i) + Eqn. (ii) $-x=-4$ or $x=4$
Substituting for x in equation (i)
$2 \times 4-y=2 ; y=6$
Finding the value of z
$\frac{x}{1}=\frac{z-5}{-1}=>-x=z-5$
Substituting for x
$-4=z-5 ; z=1$
Checking for constancy using $\frac{y+3}{-3}=\frac{z-4}{1}$
$\Rightarrow \frac{6+3}{-3}=\frac{1-4}{1}=-3$ (consistent)
Given that $r_{1}=a_{1}+\lambda_{1} b_{1}$ and $r_{2}=a_{2}+\lambda_{2} b_{2}$ intersect; then the shortest distance between the lines is zero.
$\operatorname{Or}\left(a_{1}-a_{2}\right),\left(b_{1} \times b_{2}\right)=0$
(c) Show that the following lines are perpendicular
(i) $\frac{x-1}{2}=\frac{y}{1}=\frac{z-4}{4}$ and $\frac{x}{3}=\frac{y+2}{-2}=\frac{z}{-1}$

The first line is parallel to $b_{1}=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)$
The $2 n d$ line is parallel to $b_{2}=\left(\begin{array}{c}3 \\ -2 \\ -1\end{array}\right)$
$b_{1} \cdot b_{2}=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right) \cdot\left(\begin{array}{c}3 \\ -2 \\ -1\end{array}\right)=6-2-4=0$
\therefore the lines are perpendicular because $b_{1} . b_{2}=0$
(ii) $r_{1}=\mathrm{i}-\mathrm{j}+\lambda_{1}(\mathrm{i}+2 \mathrm{j}-\mathrm{k})$ and $r_{2}=2 i+j-k+\lambda_{2}(-2 i-4 j+2 k)$

Solution

The $1^{\text {st }}$ line is parallel to $b_{1}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$
The $2^{\text {nd }}$ line is parallel to $b_{2}=\left(\begin{array}{c}-2 \\ -4 \\ 2\end{array}\right)=2\left(\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right)$
Substituting for b_{1} into $b_{2} ; b_{2}=-2 b_{1}$
Hence the two lines are parallel.
The shortest (perpendicular) distance from a given point to the line.

There are several methods of calculating this; here two methods are discussed in examples below

Example 21

(a) Find the perpendicular distance from point, $\mathrm{A}(1,1,3)$ to the line $\frac{x+4}{2}=\frac{y+1}{3}=\frac{z-1}{3}$.
Solution

Approach 1

In the figure above
A is a point on the line
P is a point at which the perpendicular from
B meets the line
B is the vector parallel to the line
θ is the angle between $A B$ and the line (or the parallel vector)
Required is the distance $\mathrm{d}_{\mathrm{s}}=|B p|$
From the figure, $|B P|=|A B| \sin \theta$
But by definition: $|A B \times b|=|A B||b| \sin \theta$
$\Rightarrow|A B| \sin \theta=\frac{|A B \times b|}{|p|}$
Combining equations (i) and (ii)
$|P B|=\frac{|A B \times b|}{|b|}$

The shortest distance, $\mathrm{d}_{\mathrm{s}}=\frac{|A B \times b|}{|b|}$
From the given line in question $A(-4,-1,1)$
and $\mathrm{b}=\left(\begin{array}{l}2 \\ 3 \\ 3\end{array}\right)$
$A B=O B-O A=\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)-\left(\begin{array}{c}-4 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}5 \\ 2 \\ 2\end{array}\right)$
$\mathrm{AB} \times \mathrm{b}=\left(\begin{array}{l}5 \\ 2 \\ 2\end{array}\right) x\left(\begin{array}{l}2 \\ 3 \\ 3\end{array}\right)=\left(\begin{array}{c}0 \\ -11 \\ 11\end{array}\right)$
$|\mathrm{AB} \times \mathrm{b}|=\sqrt{\left[(-11)^{2}+11^{2}\right]}=11 \sqrt{2}$ and

$$
|b|=\sqrt{2^{2}+3^{2}+3^{2}}=\sqrt{22}
$$

$\mathrm{d}_{\mathrm{s}}=\frac{|A B \times b|}{|b|}=\frac{11 \sqrt{2}}{\sqrt{22}}=\sqrt{11}$ units

Approach 2

P is a point at which the perpendicular line meets the line

The vector equation of the line is
$r=\left(\begin{array}{c}-4 \\ -1 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 3 \\ 3\end{array}\right)$
Let $\lambda=\lambda 1$ at Q i.e. $p=\left(\begin{array}{c}-4 \\ -1 \\ 1\end{array}\right)+\lambda_{1}\left(\begin{array}{l}2 \\ 3 \\ 3\end{array}\right)$

$$
=\left(\begin{array}{c}
-4+2 \lambda_{1} \\
-1+3 \lambda_{1} \\
1+3 \lambda_{1}
\end{array}\right)
$$

Since $P B$ is perpendicular to the line, it is also perpendicular to b.

BP. $\left(\begin{array}{l}2 \\ 3 \\ 3\end{array}\right)=0$ i.e. $(p-B) \cdot\left(\begin{array}{l}2 \\ 3 \\ 3\end{array}\right)=0$
$\left\{\left(\begin{array}{c}-4+2 \lambda_{1} \\ -1+3 \lambda_{1} \\ 1+3 \lambda_{1}\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 3\end{array}\right)\right\} \cdot\left(\begin{array}{l}2 \\ 3 \\ 3\end{array}\right)=0$
$-10+4 \lambda_{1}-6+9 \lambda_{1}-6+9 \lambda_{1}=0$
$\lambda_{1}=1$
$\mathrm{BP}=\left(\begin{array}{l}-5+2 \\ -2+3 \\ -2+3\end{array}\right)=\left(\begin{array}{c}-3 \\ 1 \\ 1\end{array}\right)$
$|B P|=d_{s}=\sqrt{-3^{2}+1^{2}+1^{2}}=\sqrt{11}$ units
(b) Find the perpendicular distance from the point $A(4,-3,10)$ to the line L with vector equation $r=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$

Solution

Method 1

The shortest distance $\mathrm{d}_{\mathrm{s}}=\frac{|A B \times b|}{|b|}$
From the given line in question, $B(1,2,3)$
and $\mathrm{b}=\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$
$B A=O A-O B$
$=\left(\begin{array}{c}4 \\ -3 \\ 10\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{c}3 \\ -5 \\ 7\end{array}\right)$
$\mathrm{BA} \times \mathrm{b}=\left(\begin{array}{c}3 \\ -5 \\ 7\end{array}\right) \times\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{c}-3 \\ 15 \\ 12\end{array}\right)$
$|B A|=\sqrt{-3^{2}+15^{2}+12^{2}}=\sqrt{378}$
$|b|=\sqrt{3^{2}+-1^{2}+2^{2}}=\sqrt{14}$
$d_{\mathrm{s}}=\frac{|A B \times b|}{|b|}=\frac{\sqrt{378}}{\sqrt{14}}=\sqrt{27}=3 \sqrt{3}$
Method 2

$r=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$
Let $\lambda=\lambda_{1}$ at P i.e. $p=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda_{1}\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$

$$
=\left(\begin{array}{l}
1+3 \lambda_{1} \\
2-1 \lambda_{1} \\
3+2 \lambda_{1}
\end{array}\right)
$$

Since AP is perpendicular to the line, it is also perpendicular to b

AP. $\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)=0$
$\left\{\left(\begin{array}{l}1+3 \lambda_{1} \\ 2-1 \lambda_{1} \\ 3+2 \lambda_{1}\end{array}\right)-\left(\begin{array}{c}4 \\ -3 \\ 10\end{array}\right)\right\} \cdot\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)=0$
$\left(\begin{array}{c}-3+3 \lambda_{1} \\ 5-1 \lambda_{1} \\ -7+2 \lambda_{1}\end{array}\right) \cdot\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)=0$
$-9+9 \lambda_{1}-5+\lambda_{1}-14+4 \lambda_{1}=0$
$\lambda_{1}=2$
$\mathrm{AP}=\left(\begin{array}{c}-3+6 \\ 5-2 \\ -7+4\end{array}\right)=\left(\begin{array}{c}3 \\ 3 \\ -3\end{array}\right)$
$|A P|=\sqrt{3^{2}+3^{2}+-3^{2}}=\sqrt{27}=3 \sqrt{3}$ units
(c) The points A, B, C have position vectors $a=3 i-j+4 k, b=j-4 k, c=6 i+4 j+5 k$ respectively. Find the position vector of the point R on $B C$ such that AR is perpendicular to $B C$. Hence find the perpendicular distance of A from the line $B C$.

Solution

$B R=\lambda B C$
$O R-O B=\lambda(O C-O B)$
$O R=O B+\lambda(O C-O B)$
$r=\left(\begin{array}{c}0 \\ 1 \\ -4\end{array}\right)+\lambda\left[\left(\begin{array}{l}6 \\ 4 \\ 5\end{array}\right)-\left(\begin{array}{c}0 \\ 1 \\ -4\end{array}\right)\right]$
$=\left(\begin{array}{c}0 \\ 1 \\ -4\end{array}\right)+\lambda\left(\begin{array}{l}6 \\ 3 \\ 9\end{array}\right)$
$R=\left(\begin{array}{c}6 \lambda \\ 1+3 \lambda \\ -4+9 \lambda\end{array}\right)$
Perpendicular distance $=|A R|$
\Rightarrow AR. $B C=0$
$A R=O R-O A$
$=\left(\begin{array}{c}6 \lambda \\ 1+3 \lambda \\ -4+9 \lambda\end{array}\right)-\left(\begin{array}{c}3 \\ -1 \\ 4\end{array}\right)=\left(\begin{array}{c}-3+6 \lambda \\ 2+3 \lambda \\ -8+9 \lambda\end{array}\right)$
Hence $\left(\begin{array}{c}-3+6 \lambda \\ 2+3 \lambda \\ -8+9 \lambda\end{array}\right) \cdot\left(\begin{array}{l}6 \\ 3 \\ 9\end{array}\right)$
$-18+36 \lambda+6+9 \lambda-72+81 \lambda=0$
$126 \lambda=84$
$\lambda=\frac{84}{126}=\frac{2}{3}$
substituting for λ into $A R=\left(\begin{array}{c}-3+6 \lambda \\ 2+3 \lambda \\ -8+9 \lambda\end{array}\right)$ we get $A R=\left(\begin{array}{c}1 \\ 4 \\ -2\end{array}\right)$

$$
|A r|=\sqrt{1^{2}+4^{2}+-2^{2}}=\sqrt{21} \text { units }
$$

Distance between two lines
Note that:
(i) If r_{1} and r_{2} are parallel, the distance between the two lines is the length of any line segment $P_{1} P_{2}$ with P_{1} on r_{1} and P_{2} on r_{2} perpendicular to both lines

The perpendicular distance, $\mathrm{d}=\left|P_{1} P_{2}\right|$
But $\mathrm{P}_{1} \mathrm{P}_{2}=\mathrm{OP}_{2}-\mathrm{OP}_{1}$
$\Rightarrow P_{1} P_{2} \cdot b=0$, where b is a parallel vector to the lines.
This enables us to find the value of either $\mu_{1}-\mu_{2}$ or $\mu_{2}-\mu_{1}$ which is substituted to find $\mathrm{d}=\left|P_{1} P_{2}\right|$
(ii) If r_{1} and r_{2} are not parallel (skew lines), there are unique points P_{1} on r_{1} and P_{2} on r_{2} such that the length of the segment $P_{1} P_{2}$ is the shortest possible distance. The length $P_{1} P_{2}$ is the distance between the two lines
which is the common perpendicular to both lines r_{1} and r_{2}.
The distance, d, between skew lines
$r_{1}=a_{1}+\mu_{1} b_{1}$ and $r_{2}=a_{2}+\mu_{2} b_{2}$ is normally taken to be the shortest distance
$\mathrm{d}=\left\lceil\left(a_{1}-a_{2}\right) \cdot \hat{n}\right\rceil$, where $\hat{n}=\frac{n}{|n|}$ and $n=b_{1} \times b_{2}$.

Example 22

Determine the shortest distance between the following pairs of lines
(a) $r_{1}=\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$ and
$r_{2}=\left(\begin{array}{c}1 \\ -1 \\ 4\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$

Solution

$r_{1}=\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$
$\Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$
So we have $A(2+\lambda,-\lambda, 3+2 \lambda)$
$r_{2}=\left(\begin{array}{c}1 \\ -1 \\ 4\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$
$\Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -1 \\ 4\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$
Thus $B(1+\mu,-1-\mu, 4+2 \mu)$
$A B=O B-O A$

$$
\begin{aligned}
& =\left(\begin{array}{c}
1+\mu \\
-1-\mu \\
4+2 \mu
\end{array}\right)-\left(\begin{array}{c}
2+\lambda \\
-\lambda \\
3+2 \lambda
\end{array}\right) \\
& =\left(\begin{array}{c}
-1+\mu-\lambda \\
-1-\mu+\lambda \\
1+2 \mu-2 \lambda
\end{array}\right)
\end{aligned}
$$

Now $A B . \mathrm{b}=0$
$\left(\begin{array}{c}-1+\mu-\lambda \\ -1-\mu+\lambda \\ 1+2 \mu-2 \lambda\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)=0$
$-1+\mu-\lambda+1+\mu-\lambda+2+4 \mu-4 \lambda=0$
$\lambda-\mu=\frac{1}{3}$
By substitution
$\mathrm{AB}=-\frac{4}{3} i-\frac{2}{3} j+\frac{1}{3} k$

$$
d=|A B|=\sqrt{\frac{16}{9}+\frac{4}{9}+\frac{1}{9}}=\frac{\sqrt{21}}{3} \text { units }
$$

(b) $\frac{x-2}{1}=\frac{y-1}{-1}=\frac{z-3}{2}$ and $\frac{x+1}{1}=\frac{y-3}{-1}=\frac{z-1}{2}$

Solution

Let $\frac{x-2}{1}=\frac{y-1}{-1}=\frac{z-3}{2}=\lambda$ and

$$
\frac{x+1}{1}=\frac{y-3}{-1}=\frac{z-1}{2}=\mu
$$

So we have
$A(2+\lambda, 1-\lambda, 3+2 \lambda)$ and $B(-1-\mu, 3+\mu, 1+2 \mu)$
$A B=O B-O A$
=
$\left(\begin{array}{c}-1+\mu \\ 3-\mu \\ 1+2 \mu\end{array}\right)-\left(\begin{array}{c}2+\lambda \\ 1-\lambda \\ 3+2 \lambda\end{array}\right)=\left(\begin{array}{c}-3+\mu-\lambda \\ 2-\mu+\lambda \\ -2+2 \mu-2 \lambda\end{array}\right)$
Now AB.b $=0$
$\left(\begin{array}{c}-3+\mu-\lambda \\ 2-\mu+\lambda \\ -2+2 \mu-2 \lambda\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)=0$
$-3+\mu-\lambda-2+\mu-\lambda-4+4 \mu-4 \lambda=0$
$\mu-\lambda=\frac{9}{6}=\frac{3}{2}$
By substitution;
$\mathrm{AB}=-\frac{3}{2} i-\frac{1}{2} j+k$
$\mathrm{d}=|A B|=\sqrt{\frac{9}{4}+\frac{1}{4}+1}=\frac{\sqrt{14}}{2}$ units
(c) $r_{1}=\left(\begin{array}{c}1 \\ -1 \\ 4\end{array}\right)+\mu\left(\begin{array}{c}0 \\ 2 \\ -2\end{array}\right)$ and
$r_{2}=\left(\begin{array}{l}2 \\ 3 \\ 2\end{array}\right)+\mu\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)$

Solution

$a_{1}-a_{2}=\left(\begin{array}{c}1 \\ -1 \\ 4\end{array}\right)-\left(\begin{array}{l}2 \\ 3 \\ 2\end{array}\right)=\left(\begin{array}{c}-1 \\ -4 \\ 2\end{array}\right)$ and
$b_{1} x b_{2}=\left(\begin{array}{c}0 \\ 2 \\ -2\end{array}\right) x\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}4 \\ 2 \\ 2\end{array}\right)$
$|n|=\sqrt{4^{2}+2^{2}+2^{2}}=\sqrt{24}$
$\hat{n}=\frac{1}{\sqrt{24}}\left(\begin{array}{l}4 \\ 2 \\ 2\end{array}\right)$
$\left(a_{1}-a_{2}\right) \cdot \hat{n}=\frac{1}{\sqrt{24}}\left(\begin{array}{c}-1 \\ -4 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}4 \\ 2 \\ 2\end{array}\right)$

$$
=\frac{1}{\sqrt{24}}(-4-8+4)=-\frac{8}{\sqrt{24}}
$$

$d=\left|\left(a_{1}-a_{2}\right) \cdot \hat{n}\right|=\left|-\frac{8}{\sqrt{24}}\right|=\frac{\sqrt{24}}{3}$
\therefore The distance apart is $\frac{\sqrt{24}}{3}$ units
(d) $r_{1}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and
$r_{2}=\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$

Solution

$$
\begin{aligned}
& a_{1}-a_{2}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)-\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right) \text { and } \\
& b_{1} x b_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) x\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) \\
& |n|=\sqrt{-1^{2}+-1^{2}+1^{2}}=\sqrt{3} \\
& \hat{n}=\frac{1}{\sqrt{3}}(-i-j+k) \\
& \left(a_{1}-a_{2}\right) \cdot \hat{n}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) \\
& \quad=\frac{1}{\sqrt{3}}(1-3-1)=-\frac{3}{\sqrt{3}} \\
& d=\left|\left(a_{1}-a_{2}\right) \cdot \hat{n}\right|=\left|-\frac{3}{\sqrt{3}}\right|=\sqrt{3} \\
& \therefore \text { The distance apart is } \sqrt{3} \text { units }
\end{aligned}
$$

Angle between two lines

The angle between two lines is equivalent to the angle between their parallel vectors.

It the illustration above, there are two angles: θ and $180-\theta$ i.e. is obtuse.

Example 23

(a) Determine the acute angle between each of the pairs of the lines
(i) $r_{1}=2 i+j-k+\lambda(2 i+3 j+6 k)$ and $r_{2}=i+2 j-3 k+\mu(2 i-2 j+k)$

Solution

r_{1} is parallel to $b_{1}=2 i+3 j+6 k$ and
r_{2} is parallel to $b_{2}=2 i-2 j+k$
Using $\mathrm{b}_{1} \mathrm{~b}_{2}=\left|b_{1}\right|\left|b_{2}\right| \cos \theta$
$(2 i+3 j+6 k) \cdot(2 i-2 j+k)$
$=\left(\sqrt{2^{2}+3^{2}+6^{2}} \cdot \sqrt{2^{2}+-2^{2}+1^{2}}\right) \cos \theta$
$4-6+6=(7)(3) \cos \theta$
$\cos ^{-1}\left(\frac{4}{21}\right)=79^{0}$
(ii) $\frac{x-2}{-4}=\frac{y-3}{3}=\frac{z+1}{-1}$ and $\frac{x-3}{2}=\frac{y-1}{6}=\frac{z+1}{-5}$

Solution

r_{1} is parallel to $b_{1}=\left(\begin{array}{c}-4 \\ 3 \\ -1\end{array}\right)$ and
r_{2} is parallel to $b_{2}=\left(\begin{array}{c}2 \\ 6 \\ -5\end{array}\right)$
Using $\mathrm{b}_{1} \mathrm{~b}_{2}=\left|b_{1}\right|\left|b_{2}\right| \cos \theta$
$\left(\begin{array}{c}-4 \\ 3 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}2 \\ 6 \\ -5\end{array}\right)$
$=\left(\sqrt{-4^{2}+3^{2}+-1^{2}} \cdot \sqrt{2^{2}+6^{2}+-5^{2}}\right) \cos \theta$
$-8+18+5=(\sqrt{26})(\sqrt{65}) \cos \theta$
$\cos ^{-1}\left(\frac{15}{\sqrt{1690}}\right)=68.6^{0}$
In general, angle θ between the lines
$r_{1}=a_{1}+\mu b_{1}$ and $r_{2}=a_{2}+\lambda b_{2}$ is
$\theta=\operatorname{arcos}\left(\frac{b_{1} b_{2}}{\left|b_{1}\right|\left|b_{2}\right|}\right)$
(b) Given the equation of two lines are $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$. Show that
(i) Their vector equations are respectively $\binom{0}{c_{1}}+\mu\binom{1}{m_{1}}$ and $\binom{0}{c_{2}}+\mu\binom{1}{m_{2}}$
where μ and λ are constant
Solution
$\Rightarrow \frac{x}{1}=\frac{y-c_{1}}{m_{1}}$ and $\frac{x}{1}=\frac{y-c_{2}}{m_{2}}$
i.e. $\binom{0}{c_{1}}+\mu\binom{1}{m_{1}}$ and $\binom{0}{c_{2}}+\mu\binom{1}{m_{2}}$
(ii) The angle, θ, between them is

$$
\tan ^{-1}\left(\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right)
$$

Solution

$$
\binom{1}{m_{1}} \cdot\binom{1}{m_{2}}
$$

$$
\begin{aligned}
& \quad=\sqrt{\left(1+m_{1}^{2}\right)} \cdot \sqrt{\left(1+m_{2}^{2}\right)} \cos \theta \\
& \left(1+m_{1} m_{2}\right)^{2}=\left(1+m_{1}^{2}+m_{2}^{2}+m_{1}^{2} m_{2}^{2}\right) \cos ^{2} \theta \\
& \sec ^{2} \theta=1+\tan ^{2} \theta=\frac{1+m_{1}^{2}+m_{2}^{2}+m_{1}^{2} m_{2}^{2}}{\left(1+m_{1} m_{2}\right)^{2}} \\
& \tan ^{2} \theta=\frac{1+m_{1}^{2}+m_{2}^{2}+m_{1}^{2} m_{2}^{2}}{\left(1+m_{1} m_{2}\right)^{2}}-1=\frac{\left(m_{1}-m_{2}\right)^{2}}{\left(1+m_{1} m_{2}\right)^{2}} \\
& \tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}} \\
& \theta=\tan ^{-1}\left(\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right)
\end{aligned}
$$

Exercise 4

1. Find the vector equation for the line passing through
(a) $(4,3)$ and is parallel to vector $i-2 j$

$$
\left[r=\binom{4}{3}+\lambda\binom{1}{-2}\right]
$$

(b) $(5,-1,3)$ and parallel to vector $4 i-3 j+k$

$$
\left[r=\left(\begin{array}{c}
5 \\
-1 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
4 \\
-3 \\
1
\end{array}\right)\right]
$$

2. Find a vector equation for the line joining the following point
(a) $(2,6)$ and $(5,-2)\left[r=\binom{2}{6}+\mu\binom{3}{-8}\right]$
(b) $(-1,2,-3)$ and $(6,3,0)$

$$
\left[r=\left(\begin{array}{c}
-1 \\
2 \\
-3
\end{array}\right)+\mu\left(\begin{array}{l}
7 \\
1 \\
1
\end{array}\right)\right]
$$

3. (a) Point A and B have coordinates $(4,1)$ and $(2,-5)$ respectively. Find the vector equation fot the line which passes through the point A and perpendicular to point $A B$
$\left[r=\binom{4}{1}+\mu\binom{3}{-1}\right]$
(b) Point P and Q have coordinates $(3,5)$ and $(-3,-7)$ respectively. Find vector equation for the line which passes through the point P which is perpendicular to PQ
$\left[r=\binom{3}{5}+\mu\binom{2}{-1}\right]$
4. Find a vector equation for perpendicular bisector of the points
(a) $(6,3)$ and $(2,-5)\left[r=\binom{4}{-1}+\mu\binom{2}{-1}\right]$
(b) $(7,-1)$ and $(3,-3)\left[r=\binom{3}{5}+\mu\binom{2}{-1}\right]$
5. Points P, Q and R have position vectors $4 i-4 j, 2 i+2 j$ and $8 i+6 j$ respectively.
(a) Find a vector equation for L_{1} which is perpendicular bisector to points P and
Q. $\left[L_{1}=\binom{3}{-1}+\mu\binom{3}{1}\right]$
(b) Find a vector equation for L_{2} which is perpendicular bisector to points P and
Q. $\left[L_{2}=\binom{5}{4}+\mu\binom{2}{-3}\right]$
(c) Hence find the position vector of the point $\left[\frac{59}{11}, \frac{4}{11}\right]$
6. Two lines L_{1} and L_{2} have equations
$L_{1}:\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}0 \\ -1 \\ -3\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 3 \\ 6\end{array}\right)$ and
$L_{2}:\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$
(a) Show that L 1 and L 2 are concurrent (meet at a common point) and find the position vector of their point of intersection. [2i + 5j + 9k]
(b) Find the angle between L_{1} and $L_{2} .\left[15.6^{0}\right]$
7. Points P, Q, and R have coordinates $(-1,1)$,
$(4,6)$ and $(7,3)$ respectively.
(a) Show that the perpendicular distance from the point R to the line $P Q$ is $3 \sqrt{2}$.
(b) Deduce the area of the triangle $P Q R$ is 15 sq. units
8. Point A, B and C have position vectors
$-i+3 j+5 k, 5 i 6 j-4 k$ and $4 i+7 j+5 k$
respectively. P is the point $O N A B$ such that
$A P=\lambda A B$. Find
(a) $A B$
(b) CP
(c) The perpendicular distance from the point C to the line $A B[3 \sqrt{3}]\{m v$
9. Two lines L_{1} and L_{2} have vector equation $r_{1}=(2-3 \lambda) i+(1+\lambda) j+4 \lambda k$ and $r_{2}=(-1+3 \mu) i+3 j+(4-\mu) k$. Find
(a) The position vector of their common point of intersection. $[\mathrm{r}=-4 \mathrm{i}+3 \mathrm{j}+8 \mathrm{k}]$
(b) The angle between the lines [143.7 ${ }^{0}$]

The Plane

Equation of a plane

(I) Determining the equation of the plane given a vector perpendicular to the plane and one point contained in the plane.

In the figure, A is a point in the plane
n is the perpendicular vector to the plane and R is the general point in the plane

Since n is perpendicular to AR, then
n. $A R=0$
i.e. $n .(r-a)=0$ \qquad
Let $\mathrm{n}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right), \mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
Substituting these into equation (i)
$\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \cdot\left(\begin{array}{l}x-x_{1} \\ y-y_{1} \\ z-z_{1}\end{array}\right)=0$
$a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$
$a x+b y+c z-\left(a x_{1}+b y_{1}+c z_{1}\right)=0$
let $d=a x_{1}+b y_{1}+c z_{1}$
$\Rightarrow a x+b y+c z=d$
Hence the Cartesian equation of the plane is $a x+b y+c z=d$ where d is a constant and the coefficient of x, y and z form the perpendicular or normal vector.

Note: the above equation may be written as $\left(\begin{array}{l}x \\ y \\ z .\end{array}\right)$
$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=d$ i.e. $r . n=d$

This is called the scalar product of the vector equation of the plane

Example 24

(a) Find the vector normal to the plane
$3 x-2 y+z=7$

Solution

The coefficient of x, y and z is $3 i-2 j+k$
Hence the normal vector is $\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)$
(b) Find the equation of the plane that is normal to $5 \mathrm{i}-\mathrm{j}+2 \mathrm{k}$ and passes through $\mathrm{A}(4,1,-3)$

Solution
Either:
$\left(\begin{array}{l}x-4 \\ y-1 \\ z+3\end{array}\right) \cdot\left(\begin{array}{c}5 \\ -1 \\ 2\end{array}\right)=0$
$5 x-20-y+1+2 z+6=0$
$5 x-y+2 z=13$
Or:
Using the general equation $a x+b y+c z=d$
$5 x-y+2 z=(5 x 4)-1+(2 x-3)$
$5 x-y+2 z=13$
(c) Find the equation of the plane that is normal to $4 i+6 j+5 k$ and passes through the point with position vector $i+3 j+k$.

Solution

Either:
$\left(\begin{array}{l}x-1 \\ y-3 \\ z-1\end{array}\right) \cdot\left(\begin{array}{l}4 \\ 6 \\ 5\end{array}\right)=0$
$4 x-4+6 y-18+5 z-5=0$
$4 x 6 y+5 z=27$
Or:
Using the general equation $a x+b y+c z=d$
$4 x+6 y+5 z=(4 \times 1)+6 \times 3+(5 \times 1)$
$4 x 6 y+5 z=27$
(II) Determining the equation of the plane given three non-collinear points.
Several methods are employed including the four outlined in the following example.

Example 25

(a) Find the equation of the plane containing the points $A(1,1,1), B(5,0,0)$ and $C(3,2,1)$

Solution

Method 1

Let the equation of the plane be
$a x+b y+c z=d$
As the three points lie in the same plane, their coordinates satisfy the above equation

Substituting for A, B and C coordinates in the general equation

For $A(1,1,1): a+b+c=d$ \qquad
For $B(5,0,0): 5 a=d$
For $C(3,2,1): 3 a+2 b+c$
Solving for a, b, and c in terms of d :
From Eqn. (ii) $\mathrm{a}=\frac{1}{5} d$
Substituting for a into eqn. (i)
$\frac{1}{5} d+b+c=d=>\mathrm{b}+\mathrm{c}=\frac{4}{5} d$
Substituting for a into eqn. (iii)
$3\left(\frac{1}{5} d\right)+2 b+c=d \Rightarrow 2 b+c=\frac{2}{5} d$ \qquad
Eqn. (v) -eqn. (iv): $\mathrm{b}=-\frac{2}{5} d$
Substituting b into eqn. (iv)
$-\frac{2}{5} d+c=\frac{4}{5} d \Rightarrow c=\frac{6}{5} d$
Substituting a, b, and c into the equation
$a x+b y+c z=d$
$\Rightarrow \frac{1}{5} d x-\frac{2}{5} d y+\frac{6}{5} d z=d$

Multiplying through by $\frac{5}{d}$
$x-2 y+6 c=5$ is the equation of the plane

Method 2

One of the normal vectors of the plane is
$A B \cdot A C=0$
Where $A B=O B-O A=\left(\begin{array}{l}5 \\ 0 \\ 0\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)$
And $A C=O C-O A=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$
Now, $\mathrm{AB} \times \mathrm{AC}=\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right) x\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 6\end{array}\right)$
If $R(x, y, z)$ is the general point in the plane, then $A R$ is normal to $A B \times A C$.
$(r-a) \cdot(A B \times A C)=0$
$\left(\begin{array}{l}x-1 \\ y-1 \\ z-1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -2 \\ 6\end{array}\right)=0$
$x-1-2 y+2+6 z-6=0$
$x-2 y+6 z=5$

Method 3

Let R be the general point in the plane
The $A R=\mu A B+\lambda A C$ for scalars μ and λ.
$r-a=\mu A B+\lambda A C$
$r=a+\mu A B+\lambda A C$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$
Equating the coefficients of x, y and z
$x=1+4 \mu+\lambda$
$y=1-\mu+\lambda$
$z=1-\mu$
From eqn. (iii): $\mu=1-z$
Substituting for μ
$\lambda=y-1+(1-z)=y-z$
Substituting μ and λ in equation (i)

$$
\begin{aligned}
x & =1+4(1-z)+2(y-z) \\
& =1+4-4 z+2 y-2 z \\
x & -2 y+6 z=5
\end{aligned}
$$

Note that:
If the plane passes through the origin, then its equation is $r=\mu b+\lambda c$

- The plane $r=a+\mu b+\lambda c$ passes through point a with position vector a and is parallel to b and c.
- If the vectors a, b and c are coplanar, then the sum of the coefficients of a, b and c must be zero.

Method 4

This involves finding the determinant of a 3×3 matrix. Taking A as the principal point, we have

$$
\begin{aligned}
& \mathrm{AB} \times \mathrm{AC}=\left(\begin{array}{ccc}
x-1 & y-1 & z-1 \\
4 & -1 & -1 \\
2 & 1 & 0
\end{array}\right)=0 \\
& \Rightarrow \quad(x-1) 1-(\mathrm{y}-1) 2+(z-1) 6=0 \\
& \quad x-1-2 \mathrm{y}+2+6 \mathrm{z}-6=0 \\
& \quad \mathrm{x}-2 \mathrm{y}+6 \mathrm{z}=5
\end{aligned}
$$

(d) Find the equation of the plane containg the points $A(1,2,5), B(1,0,4)$ and $C(5,2,1)$

Solution

Using the determinant method
$A B=O B-O A$

$$
=\left(\begin{array}{l}
1 \\
0 \\
4
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right)=\left(\begin{array}{c}
0 \\
-2 \\
-1
\end{array}\right)
$$

$A C=O C-O A$

$$
=\left(\begin{array}{l}
5 \\
2 \\
1
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right)=\left(\begin{array}{l}
4 \\
0 \\
4
\end{array}\right)
$$

$\mathrm{AB} \times \mathrm{AC}=\left(\begin{array}{ccc}x-1 & y-2 & z-5 \\ 0 & -3 & -1 \\ 4 & 0 & -4\end{array}\right)=0$

$$
\Rightarrow \quad(x-1) 8-(y-2) 4+(z-5) 8=0
$$

$(x-1) 2-(y-2)+(z-5) 2=0$
$2 x-y+2 z=10$
(III) Determining the equation of the plane given one point and a line in the plane.

Here more points are obtained from the equation and the problem worked out as in (III).

Example 26

(a) Find the equation of the plane through the point ($1,0,1$) and containing the line $\frac{x}{1}=\frac{y}{-1}=\frac{z}{2}$.
Solution
The vector equation for the line is
$r=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$
Let $1^{\text {st }}$ given point be $P(1,0,-1)$:
Taking $\mu=0$: the $2^{\text {nd }}$ point is $\mathrm{O}(0,0,0)$
Taking $\mu=1$; the $3^{\text {rd }}$ point $Q(1,-1,2)$
Thus $\mathrm{OP}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $\mathrm{OQ}=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$
The normal vector is
$\mathrm{Op} \times \mathrm{OQ}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \times\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{l}-1 \\ -3 \\ -1\end{array}\right)$
The equation of the plane is
$\left(\begin{array}{l}x-0 \\ y-0 \\ z-0\end{array}\right) \cdot\left(\begin{array}{l}-1 \\ -3 \\ -1\end{array}\right)=0$
$x+3 y+z=0$
Using determinant method
$\mathrm{Op} \times \mathrm{OQ}=\left(\begin{array}{ccc}x & y & z \\ 1 & 0 & -1 \\ 1 & -1 & 2\end{array}\right)$
$x(-1)-y(3)+z(-1)=0$
$x+3 y+z=0$
$x+3 y+z=0$
(IV) Determining the equation of the plane given two lines in the plane.
This can be tackled in two ways

Example 27

Find the equation of the plane containing the lines
$\frac{x-3}{5}=\frac{y+1}{2}=\frac{z-3}{1}$ and
$\frac{x-3}{2}=\frac{y+1}{4}=\frac{z-3}{3}$

Solution

Method 1

The corresponding vector equations of the above lines are as follows
$r_{1}=\left(\begin{array}{c}3 \\ -1 \\ 3\end{array}\right)+\mu\left(\begin{array}{l}5 \\ 2 \\ 1\end{array}\right)$ and
$r_{2}=\left(\begin{array}{c}3 \\ -1 \\ 3\end{array}\right)+\mu\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)$ respectively
Taking $\mu=0$, the $1^{\text {st }}$ point is $\mathrm{A}(3,-1,3)$
Taking $\mu=1$, the $2^{\text {nd }}$ point is $B(8,1,4)$
Taking $\lambda=1$, the $3^{\text {rd }}$ point is $C(5,3,6)$
So with three points obtained, the above methods can be used.
Now $\mathrm{AB}=\mathrm{OB}-\mathrm{OA}=\left(\begin{array}{l}8 \\ 1 \\ 4\end{array}\right)-\left(\begin{array}{c}3 \\ -1 \\ 3\end{array}\right)=\left(\begin{array}{l}5 \\ 2 \\ 1\end{array}\right)$
And $\mathrm{AC}=\mathrm{OC}-\mathrm{OA}=\left(\begin{array}{l}5 \\ 3 \\ 6\end{array}\right)-\left(\begin{array}{c}3 \\ -1 \\ 3\end{array}\right)=\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)$
The normal vector
$\mathrm{n}=\mathrm{AB} \times \mathrm{AC}=\left(\begin{array}{l}5 \\ 2 \\ 1\end{array}\right) x\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)=\left(\begin{array}{c}2 \\ -13 \\ 16\end{array}\right)$
Taking the point $(3,-1,3)$ which lies on the $1^{\text {st }}$ line: the equation of the plane is
$\left(\begin{array}{l}x-3 \\ y+1 \\ z-3\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -13 \\ 16\end{array}\right)=0$
$2 x-6-13 y-13+16 z-48=0$
$2 x-13 y+16 z=67$

Method 2

The parallel vectors of the given lines are $\left(\begin{array}{l}5 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)$ respectively.
The normal vector, $\mathrm{n}\left(\begin{array}{l}5 \\ 2 \\ 1\end{array}\right) x\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)=\left(\begin{array}{c}2 \\ -13 \\ 16\end{array}\right)$
Taking the point $(3,-1,3)$ as before
$\left(\begin{array}{l}x-3 \\ y+1 \\ z-3\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -13 \\ 16\end{array}\right)=0$
$2 x-13 y+16 z=67$
(V) Determining the equation of the plane given one point in the plane and a perpendicular line.
Example 28

Find the equation of the plane perpendicular to the line $\frac{x-1}{2}=\frac{y}{-1}=\frac{z}{3}$ and passing through point $B(1,-3,2)$
Solution
The parallel vector to the line is $2 i-j+3 k$ This means that this vector is also perpendicular to the plane
The equation of the plane is
$\left(\begin{array}{l}x-1 \\ y+3 \\ z-2\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)=0$
$2 x-2-y-3+3 z-6=0$
$2 x-y+3 z=11$
(VI) Determining the equation of the plane given two points in the plane.

Example 29

Find the equation of the plane containing the points $A(1,2,-1)$ and $B(4,-3,2)$
Solution
$\mathrm{a}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $\mathrm{b}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$
The normal vector is
$\mathrm{a} \times \mathrm{b}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right) x\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)=\left(\begin{array}{c}1 \\ -6 \\ -11\end{array}\right)$
the equation of the line is thus
$\left(\begin{array}{l}x-1 \\ y-2 \\ z+1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -6 \\ -11\end{array}\right)=0$
$x-6 y-11 z=0$
(VII) Determining the equation of the plane given two parallel lines.

Example 30

Find the equation of the plane passing through ($1,0,-1$) and parallel to the line $r_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+\mu\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$ and
$r_{2}=\left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)$

Solution

The normal vector, $\mathrm{n}=\mathrm{b}_{1} \times \mathrm{b}_{2}=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right) x\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)=\left(\begin{array}{c}-1 \\ -6 \\ 7\end{array}\right)$

Equation of the plane
$-x-6 y+7 z=-1(1)-6(0)+7(-1)$
$x+6 y-7 z=8$
(VIII) Determining the equation of the plane given a line in the plane and a parallel vector.

Example 31

Find the equation of the plane containing
$r=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$ and parallel to $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$

Solution

The normal vector
$\mathrm{n}=\mathrm{b}_{1} \times \mathrm{b}_{2}=\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right) x\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{c}-7 \\ -1 \\ 3\end{array}\right)$
Equation of the plane is
$-7 x-y+3 z=-7(1)-2+3(1)=-6$
$7 x+y-3 z=6$

Intersection of two planes

Two plane always on a line

Solving the two equations of the lines simultaneously gives equation of this line

Example 32

Find the Cartesian equation of the lines of intersection of the following planes
(a) $3 x-5 y+z=8$ and $2 x-3 y+z=3$

Solution

Method 1
Note: solving for three unknown from two equations is quite hard, so we express then in terms of a constant say λ
Let $3 x-5 y+z=8$ \qquad
and $2 x-3 y+z=3$
Eqn. (i) - eqn. (ii)
$x-2 y=5$
Let $x=\lambda \Rightarrow \lambda-26=5$ i.e. $y=\frac{1}{2}(\lambda-5)$
Substituting for x and y into eqn. (ii)
$2 \lambda-\frac{3}{2}(\lambda-5)+z=3 \Rightarrow z=\frac{1}{2}(-9-\lambda)$
So $\mathrm{x}=\lambda, y=\frac{1}{2}(\lambda-5), z=\frac{1}{2}(-9-\lambda)$
To eliminate fractions let $\lambda=1+2 \mu$
$\mathrm{x}=1+2 \mu, \mathrm{y}=-2+\mu, \mathrm{z}=-5-\mu$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ -5\end{array}\right)+\mu\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$, the vector
equation
$\frac{x-1}{2}=\frac{y+2}{1}=\frac{z+5}{-1}$ Cartesian equation

Method 2

The parallel vector

$$
\begin{aligned}
\mathrm{b}=\mathrm{n}_{1} \times \mathrm{n}_{2} & =\left(\begin{array}{c}
3 \\
-5 \\
1
\end{array}\right) x\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-1 \\
1
\end{array}\right) \\
& =-\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

The equation of the line is $r=a+\lambda\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$
From the equation $3 x-5 y+z$ and
$2 x-3 y+z=3$, subtracting
$\Rightarrow x-2 y=5$
when $x=1,1-2 y=5$ i.e. $y=-2$
substituting in the first equation
$3(1)-5(-2)+z=8$ i.e. $z=-5$
$r=\left(\begin{array}{c}1 \\ -2 \\ -5\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$ vector equation
OR
Substituting for r
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ -5\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$
$\frac{x-1}{2}=\frac{y+2}{1}=\frac{z+5}{-1}$ Cartesian equation
(b) $3 x+4 y+2 z=3$ and $2 x-3 y-z=1$

Let $3 x+4 y+2 z=3$ \qquad
and $2 x-3 y-z=1$
2en. (i) - eqn. (ii)
$17 y+7 z=3$
Let $y=\lambda, 17 \lambda+7 z=3=>z=\frac{3-17 \lambda}{7}$
Substituting for y and z into eqn. (i)
$3 x+4 \lambda+\frac{2}{7}(3-17 \lambda)=3 \Rightarrow x=\frac{1}{7}(5+2 \lambda)$
$x=\frac{1}{7}(5+2 \lambda), y=\lambda, z=\frac{3-17 \lambda}{7}$
Let $\lambda=1+7 \mu$ (to eliminate fractions)

Then $x=1+2 \mu, y=1+7 \mu$ and $z=-2-17 \mu$
The Cartesian equation is
$\frac{x-1}{2}=\frac{y-1}{7}=\frac{z+2}{-17}$

Method 2

Parallel vector
$\mathrm{b}=\mathrm{n} 1 \times \mathrm{n} 2=\left(\begin{array}{l}3 \\ 4 \\ 2\end{array}\right) x\left(\begin{array}{c}2 \\ -3 \\ -1\end{array}\right)=\left(\begin{array}{c}2 \\ 7 \\ -17\end{array}\right)$
The equation of the line is $r=a+\lambda\left(\begin{array}{c}2 \\ 7 \\ -17\end{array}\right)$

Let $3 x+4 y+2 z=3$
and $2 x-3 y-z=1$
2en. (i) - eqn. (ii)
$17 y+7 z=3$
Let $\mathrm{y}=1,17+7 \mathrm{z}=3=>\mathrm{z}=\frac{3-17}{7}=-2$
Substituting for y and z into eqn. (i)
$3 x+4+2(-2)=3=>x=1$
$r=\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 7 \\ -17\end{array}\right)$ vector equation
Or
Substituting for r
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 7 \\ -17\end{array}\right)$
$\frac{x-1}{2}=\frac{y-1}{7}=\frac{z+2}{-17}$, Cartesian equation

Intersection of three planes

Three planes may intersect at a point or on a line (if they meet)
 meeting at a point

Three planes meeting on aline
(book pages)
(I) Intersection of three planes at point

Example 33

Find the point of intersection of the three planes

$$
x+2 y-z=2,3 x-y+z=3 \text { and } 2 x+y-3 z=3
$$

Solution

Form simultaneous equation
$x+2 y-z=2 \ldots \ldots(i)$
$3 x-y+z=3 \ldots \ldots(i i)$
$2 x+y-3 z=3 \ldots \ldots i i l)$
Solving simultaneously the point of intersection is (1, 1, 1)
(II) Intersection of three planes at point

If a plane and a line meet, they do so at a particular point.

Example 33

(a) Find the point where the line $\frac{x-3}{-1}=\frac{y-1}{2}=\frac{z+3}{4}$ meets the plane $3 x-y+2 Z=8$
Solution
Expressing the equation of the line in parametric form
Let $\frac{x-3}{-1}=\frac{y-1}{2}=\frac{z+3}{4}=\lambda$
Then $x=3-\lambda, y=1+2 \lambda$ and $z=-3+4 \lambda$
Substituting for parametric equations into the equation of the plane
$3(3-\lambda)-(1+2 \lambda) 2(-3+4 \lambda)=8=>\lambda=2$
Substituting for λ into parametric equations
$x=3-2=1, y=1+2(2)=5$ and
$z=-3+4(2)=5$
Hence the point of intersection (x, y, z) is $(1,5,5)$
(b) Fins the position vector of a point where the line $r=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}5 \\ 3 \\ 2\end{array}\right)$ meets the plane $r .\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)=15$
Solution
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}5 \\ 3 \\ 2\end{array}\right)$
The parametric equations of the line are $x=2+5 \lambda, y=-1+3 \lambda$ and $z=3+2 \lambda$
The equation of the plane is $x+2 y-z=15$
Substituting parametric equations into the equation of the plane
$2+5 \lambda+(-1+3 \lambda)-(3+2 \lambda)=15$
$\lambda=2$
Substituting λ into parametric equations
$x=2+5(2)=12$
$y=(-1+3(2))=5$
$z=(3+2(2))=7$
Hence the point of intersection (x, y, z) is $(12,5,7)$

Perpendicular distance from a point to the plane

A. Perpendicular distance from the origin to the plane

Rewriting the equation $\mathbf{r} . \mathbf{n}=\mathbf{d}$ in the form r. $\widehat{\boldsymbol{n}}=d_{\mathbf{1}}$ where $\widehat{\boldsymbol{n}}$ is the unit normal to the plane Or

By using the general formula, the perpendicular distance d_{p} from a plane $\mathrm{ax}+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0$ to the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ is given by the expression
$d_{p}=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$

Example 34

(a) Find the distance from the origin to the plane $4 x+8 y-z=18$

Solution

The normal vector $\mathrm{n}=\left(\begin{array}{c}4 \\ 8 \\ -1\end{array}\right)$ and
$|n|=\sqrt{4^{2}+8^{2}+(-1)^{2}}=9$
Now $\hat{n}=\frac{1}{9}\left(\begin{array}{c}4 \\ 8 \\ -1\end{array}\right)$
$\Rightarrow \quad r \cdot \frac{1}{9}\left(\begin{array}{c}4 \\ 8 \\ -1\end{array}\right)=\frac{18}{9}=2$
Or
By using the general formula, rewrite the equation of the plane as
$4 x+8 y-z-18=0, a=4, b=8, c=-1$ and $d=-18$

At the origin $\left(x_{1}, y_{1}, z_{1}\right)=(0,0,0)$
$d_{p}=\frac{|4(0)+8(0)-1(0)-18|}{\sqrt{4^{2}+8^{2}+(-1)^{2}}}=\frac{18}{9}=2$ units
(b) Find the perpendicular distance from the origin to the plane r. $(2 i-14 j+5 k)=10$

Solution

The normal vector $\mathrm{n}=\left(\begin{array}{c}2 \\ -14 \\ 5\end{array}\right)$ and
$|n|=\sqrt{2^{2}+(-14)^{2}+5^{2}}=15$
Now $\hat{n}=\frac{1}{15}\left(\begin{array}{c}2 \\ -14 \\ 5\end{array}\right)$
$\Rightarrow r \cdot \frac{1}{15}\left(\begin{array}{c}2 \\ -14 \\ 5\end{array}\right)=\frac{10}{15}=\frac{2}{3}$
Or
By using the general formula, rewrite the equation of the plane as
$2 x-14 y+5 z-10=0, a=2, b=-14, c=5$ and $d=-10$

At the origin $\left(x_{1}, y_{1}, z_{1}\right)=(0,0,0)$
$d_{p}=\frac{|2(0)-14(0)+5(0)-10|}{\sqrt{2^{2}+(-14)^{2}+(-1)^{2}}}=\frac{10}{15}=\frac{2}{3}$ units

B. Perpendicular distance for a given point rather than origin to a plane

Several methods are employed

Example 35

(a) Determine the distance from the lane $12 x-3 y-4 z=39$ to the point $(5,3,1)$

Solution

Method1
The perpendicular distance d_{p} from a plane $a x+b y+c z+d=0$ to the point $\left(x_{1}, y_{1}, z_{1}\right)$ is given by the expression
$d_{p}=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}$
By substitution
$d_{p}=\frac{|12(5)-3(3)-4(1)+39|}{\sqrt{12^{2}+(-3)^{2}+(-4)^{2}}}=2$ units
Note that the equation of the plane should be rewritten in the form $f(x, y, z)=0$ before applying the formula.

Method 2

The parallel plane containing the point given is obtained and the absolute difference of the resulting length of the plane from the origin computed.
Equation of the plane: $12 x-3 y-4 z=39$..(i)
Equation of parallel plane $12 x-3 y-4 z=D$ for any constant D.
Since this parallel contains the point
$(5,-3,1): 12(5)-3(-3)-4(1)=65=D$
The parallel plane: $12 x-3 y-4 z=65$
In both planes, the normal vector
$\mathrm{n}=12 \mathrm{i}-3 \mathrm{j}-4 \mathrm{k}$
$|n|=\sqrt{12^{2}+(-3)^{2}+(-4)^{2}}=13$
Dividing equation by 13 :
$\frac{12}{13} x-\frac{3}{13} y-\frac{4}{13} z=\frac{65}{13}=5$
The distance between two planes is
$|5-3|=2$
\therefore the distance from point $(5,-3,1)$ to the plane $12 x-3 y-4 z=39$ is 2 units.

Method 3
$A P=\lambda n$ (AP is parallel to n)

Given the equation of the plane
$12 x-3 y-4 z=39$
Let $n=\left(\begin{array}{c}12 \\ -3 \\ -4\end{array}\right)$ and $A(5,-3,1)$
Substitute in AP $=\lambda n$
$p-a=\lambda n$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}5 \\ -3 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}12 \\ -3 \\ -4\end{array}\right)=\left(\begin{array}{c}5-12 \lambda \\ -3-3 \lambda \\ 1-4 \lambda\end{array}\right)$
$x=5-12 \lambda, \mathrm{y}=-3-3 \lambda, \mathrm{z}=1-4 \lambda$
Substitute these in the equation of the plane
$12 x-3 y-4 z=39$
$12(5-12 \lambda)-3(-3-3 \lambda)-4(1-4 \lambda)=39$
$\lambda=-\frac{2}{13}$
$\mathrm{AP}=-\frac{2}{13}\left(\begin{array}{l}12 \\ -3 \\ -4\end{array}\right)$
$|A P|=\frac{2}{13} \sqrt{12^{2}+(-3)^{2}+(-4)^{2}}=$ units

Angle between two planes

The angle say θ between the planes $r . n_{1}=d_{1}$ and $r . n_{2}=d_{2}$ is the angle between the normal vectors of the two planes. This is given by
$\theta=\cos ^{-1}\left(\frac{n_{1} \cdot n_{2}}{\left[n_{1}| | n_{2} \mid\right.}\right)$

Example 36

Determine the angle between the planes
$4 x+3 y+12 z=10$ and $4 x-3 y=7$

Solution

The normal $n_{1}=\left(\begin{array}{c}4 \\ 3 \\ 12\end{array}\right)$ and $n_{2}=\left(\begin{array}{c}4 \\ -3 \\ 0\end{array}\right)$ respectively.
$\left(\begin{array}{c}4 \\ 3 \\ 12\end{array}\right) \cdot\left(\begin{array}{c}4 \\ -3 \\ 0\end{array}\right)=\sqrt{4^{2}+3^{2}+12^{2}} \sqrt{4^{2}+-3^{2}} \cos \theta$
$16-9=\sqrt{169} \sqrt{25} \cos \theta$
$\theta=\cos ^{-1}\left(\frac{7}{65}\right)=83.8^{0}$
Angle between a line and a plane

The angle between a line and a plane is the angle between the normal vector to the plane and the parallel vector to the line.

Given a line $r=a+\lambda b$ and the plane $r . n=d$, the angle θ between them can be computed from the dot product of vectors as
b. $\mathrm{n}=|b||n| \cos (90-\theta)$
$=|b||n| \sin \theta$
$\theta=\sin ^{-1} \theta\left(\frac{b . n}{|b||n|}\right)$

Example 37

(a) Find the acute angle between the line $\frac{x+1}{4}=\frac{y-2}{1}=\frac{z-3}{-1}$ and the plane $3 x-5 y+4 z$ $=5$

Solution

The line is parallel to $\mathrm{b}=\left(\begin{array}{c}4 \\ 1 \\ -1\end{array}\right)$ and the
normal vector to the plane is $\mathrm{n}=\left(\begin{array}{c}3 \\ -5 \\ 4\end{array}\right)$
$\left(\begin{array}{c}4 \\ 1 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}3 \\ -5 \\ 4\end{array}\right)$
$=\sqrt{4^{2}+1^{2}+-1^{2}} \sqrt{3^{2}+-5^{2}+4^{2}} \sin \theta$
$3=\sqrt{900} \sin \theta$
$\theta=\sin ^{-1} \frac{3}{30}=5.7^{0}$
(b) Find the angle between the line
$r=\left(\begin{array}{c}-4 \\ 2 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}8 \\ 2 \\ -4\end{array}\right)$ and the plane
$4 x+3 y-3 z=-1$

Solution

The line is parallel to $b=\left(\begin{array}{c}8 \\ 2 \\ -4\end{array}\right)$ and the normal vector to the plane is $n=\left(\begin{array}{c}4 \\ 3 \\ -3\end{array}\right)$
$\left(\begin{array}{c}8 \\ 2 \\ -4\end{array}\right) \cdot\left(\begin{array}{c}4 \\ 3 \\ -3\end{array}\right)$
$=\sqrt{8^{2}+2^{2}+-4^{2}} \sqrt{4^{2}+3^{2}+-3^{2}} \sin \theta$
$50=\sqrt{2856} \sin \theta$
$\theta=\sin ^{-1} \frac{50}{\sqrt{2856}}=69.3^{0}$

Exercise 5

1. Find the equation of the plane containing points $\mathrm{P}(1,1,1), \mathrm{Q}(1,2,0)$ and $\mathrm{R}(-1,2,1)$. $[x+2 y+2 z=5]$
2. Find the equation of the plane containing point ($4,-2,3$) and parallel to the plane $3 x-7 z=12$
$[3 x-7 z=-9]$
3. Show that the point with position vector $7 i-5 j-4 k$ lies in the plane $r=4 i+3 j+2 k+\lambda(i-j-k)+\mu(2 i+3 j+k)$. Find the point at which the line $x=y-1=2 z$ intersects the plane $4 x-y+3 z=8[(2,3,1)]$
4. Find the parametric equation for the line through the point $(0,1,2)$ that is parallel to the plane $x+y+z=2$ and perpendicular to the line $\mathrm{x}=1+\mathrm{t}, \mathrm{y}=1-\mathrm{t}, \mathrm{z}=2 \mathrm{t}$. $[x=3 t, y=1-t, z=2-2 t]$
5. Find the distance between parallel planes $z=x+2 y+1$ and $3 x+6 y-3 z=4\left[\frac{7 \sqrt{6}}{18}\right]$
6. Two planes are given by their parametric equation: $x=r+s, y=3 s, z=2 r$ and $x=1+r+s, y=2+r, z=-3+s$. Find the Cartesian equation of the in intersection point. [$6 x-2 y-3 z=0$]
7. The equation of a plane P is given by r. $\left(\begin{array}{l}2 \\ 6 \\ 9\end{array}\right)=33$, where r is position vector of P Find the perpendicular distance from the origin to the plane[3 units]
8. The line through point $(1,-2,3)$ and parallel to the line $\frac{x}{3}=\frac{y+1}{-1}=z+1$ meets the lane $x+2 y+2 z=8$ at Q. Find the coordinates of Q. $\left[\left(6, \frac{-11}{3}, \frac{14}{3}\right)\right]$
9. (a) Find the angle between the plane $x+4 y-z=72$ and the line $r=9 i+6 j+8 k$. [34.5 ${ }^{0}$]
10. Obtain the equation of the plane that passes through ($1,-2,2$) and perpendicular to the line $\frac{x-9}{4}=\frac{y-6}{-1}=\frac{z-8}{1}[4 x-y+z=8]$
11. Find the parametric equations of the line of intersection of the planes $x+y+z=4$ and x $-\mathrm{y}+2 \mathrm{z}+2=0$

$$
[x=3+t, y=2 t, z=1+3 t]
$$

12. Find the points of intersection of the three planes $2 x-y+3 z=4,3 x-2 y+6 z=4$ and $7 x-4 y+5 z=11 .[(5,6,0)]$
13. Find the Cartesian equation of the plane with parametric vector equation
$r=\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)+\mu\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
$[x+2 y-3 z=0]$
14. Find the Cartesian equation of the plane containing the position vector $\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$ and parallel to the vectors $\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)$.
[3y $z=10]$
15. Find the Cartesian equation of the plane containing the points with position vectors
$\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right),\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}3 \\ -3 \\ 3\end{array}\right)$

$$
[3 x+2 y+z=6]
$$

16. Find the perpendicular distance from the plane $r .(2 i-14 j+5 k)=10$ to the origin $\left[\frac{2}{3}\right]$
17. Find the position vector of the point where the line $r=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}5 \\ 3 \\ 2\end{array}\right)$ meets the plane r. $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)=15 \quad\left[\left(\begin{array}{c}12 \\ 5 \\ 5\end{array}\right)\right]$
18. Two line have vector equations
$r=\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and
$r=\left(\begin{array}{l}4 \\ 4 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$. Find the position
vector of the point of intersection of the two lines and the Cartesian equation of the plane containing the two lines.

$$
\left[\left(\begin{array}{c}
5 \\
3 \\
-1
\end{array}\right), 5 x-y+3 z=19\right]
$$

Example 38 (mixed questions)

1. The position vector of point A is $2 i+3 j+k$, of B is $5 j+4 k$ and of C is $i+2 j+12 k$. Show that $A B C$ is a triangle.

Solution

$$
\begin{aligned}
& a=2 i+3 k+k \\
& b=5 j+4 k
\end{aligned}
$$

$$
c=i+2 j+12 k
$$

Two conditions must b fulfilled:

$1^{\text {st }}$ condition

For a triangle to be, $\overline{A B}+\overline{B C}+\overline{C A}=0$
$\overline{A B}+\overline{B C}+\overline{C A}=0$

$$
=(O B-O A)+(O C-O B)+(O A-O C)
$$

$=\left(\begin{array}{l}0 \\ 5 \\ 4\end{array}\right)-\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)+\left(\begin{array}{c}1 \\ 2 \\ 12\end{array}\right)-\left(\begin{array}{l}0 \\ 5 \\ 4\end{array}\right)+\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)-\left(\begin{array}{c}1 \\ 2 \\ 12\end{array}\right)$
$=\left(\begin{array}{c}-2 \\ 2 \\ 3\end{array}\right)+\left(\begin{array}{c}1 \\ -3 \\ 8\end{array}\right)+\left(\begin{array}{c}1 \\ 1 \\ -11\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

Second condition

We work out for any angle and if it is not 0° or 180°, then we conclude that $A B C$ is a triangle

Now finding angle A
From dot product of vectors
$\mathrm{AB} \cdot \mathrm{AC}=|A B||A C| \cos A$

$$
\begin{aligned}
& \cos A=\frac{A B \cdot A C}{|A B||A C|} \\
& \begin{aligned}
A B \cdot A C & =(-2 \mathrm{i}+2 \mathrm{j}+3 \mathrm{k}) \cdot(-1-\mathrm{j}+11 \mathrm{k}) \\
& =2-2+33=33 \\
|A B| & =\sqrt{(-2)^{2}+2^{2}+3^{2}} \\
& =\sqrt{4+4+9}=\sqrt{17} \\
|A C| & =\sqrt{(-1)^{2}+1^{2}+11^{2}} \\
& =\sqrt{1+1+121}=\sqrt{123} \\
A & =\cos ^{-1}\left(\frac{33}{\sqrt{17 \times 123}}\right)=43.8^{0}
\end{aligned}
\end{aligned}
$$

Since A is not 0° or 180°, hence $A B C$ is a triangle
NB. The above two conditions must be clearly shown in order for the candidate to get all the marks.
2. (a) Find the point of intersection of the lines $\frac{x-3}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$

Solution

Let $\frac{x-3}{4}=\frac{y-7}{4}=\frac{z+3}{-5}=\mu$
$\Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}5 \\ 7 \\ -3\end{array}\right)+\mu\left(\begin{array}{c}4 \\ 4 \\ -5\end{array}\right)$ \qquad
And
$\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}=\lambda$
$\Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}8 \\ 4 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}7 \\ 1 \\ 3\end{array}\right)$
Equating eqn. (i) and eqn. (ii)
$\left(\begin{array}{c}5 \\ 7 \\ -3\end{array}\right)+\mu\left(\begin{array}{c}4 \\ 4 \\ -5\end{array}\right)=\left(\begin{array}{l}8 \\ 4 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}7 \\ 1 \\ 3\end{array}\right)$
Equating corresponding unit vectors
$5+4 \mu=8+7 \lambda$
$4 \mu-7 \lambda=3$
$7+4 \mu=4+\lambda$
$4 \mu-\lambda=-3$.
Eqn. (iii) - eqn.(iv)
$-6 \lambda=6$
$\lambda=-1$
Substituting λ in eqn. (ii)
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}8 \\ 4 \\ 5\end{array}\right)+-1\left(\begin{array}{l}7 \\ 1 \\ 3\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}8-7 \\ 4-1 \\ 5-3\end{array}\right)=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$
$\therefore(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1,3,2)$
(b) The equations of a line and a plane are $\frac{x-2}{1}=\frac{y-2}{2}=\frac{z+3}{2}$ and $2 x+y+4 z=9$ respectively. P is a point on the line where x $=3, N$ is the foot of the perpendicular from P to the plane. Find the coordinates of N.

Solution

Line equation
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$
$x=2+\lambda$
When $\mathrm{x}=3$
$3=2+\lambda ; \lambda=1$
$\Rightarrow O P=\left(\begin{array}{l}2 \\ 2 \\ 3\end{array}\right)+\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)=\left(\begin{array}{l}3 \\ 4 \\ 5\end{array}\right)$
$\therefore \mathrm{P}(3,4,5)$
Plane equation: $2 x+y+4 z=9$
$r\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)=9$
$\therefore n=\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)$
$N P=n$
$N P=O P-O N$
$O N=O P-N P$

$$
=\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right)-\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right)
$$

$\therefore \mathrm{N}(1,3,1)$
3. (a) Find the Cartesian equation of the plane through the points whose position vectors are $2 i+2 j+3 k, 3 i+j+2 k$ and $-2 j+4 k$.
(06marks)

Solution

Method 1

Let $O A=2 i+2 j+3 k$

$$
\begin{aligned}
& O B=3 i+j+2 k \\
& O C=-2 j+4 k
\end{aligned}
$$

Let R be the general point in the plane
Then $A R=\mu(A B)+\lambda A C$
$O R=O A+\mu(O B-O A)+\lambda(O C-O A)$

$$
\begin{align*}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)= & \left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right)+\mu\left[\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)-\left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right)+\right. \\
& \left.\lambda\left[\left(\begin{array}{c}
0 \\
-2 \\
4
\end{array}\right)-\left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right)\right]\right] \\
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)= & \left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)+\lambda\left(\begin{array}{c}
-2 \\
-4 \\
1
\end{array}\right) \tag{i}
\end{align*}
$$

$x=2+\mu-2 \lambda$ \qquad
$y=2-\mu-4 \lambda$
$z=3-\mu+\lambda$
Eqn (i) + eqn. (ii)
$(x+y)=4-6 \lambda$ \qquad
Eqn. (i) and eqn. (iii)
$x+z=5-\lambda$
$\lambda=-x-z+5$
Substituting for λ into eqn. (iv)
$x+y=4-6(-x-z+5)$
$5 x-y+6 z-26=0$

Method 2

Let the equation of the plane be
$a x+b y+c z=d$
Substituting point $(2,2,3)$ in equation
$2 a+2 b+3 c=d$ \qquad
Substituting point ($3,1,2$) in equation
$3 a+b+2 c=d$
Substituting point ($0,-2,4$) in equation
$-2 b+4 c=d$ \qquad
We have to solve for a, b, c and d
3Eqn.(i) - 2Eqn. (ii)

$$
\begin{array}{r}
6 a+6 b+9 c=3 d \\
-6 a+2 b+4 c=2 d \\
\hline 4 b+5 c=d . . \tag{iv}
\end{array}
$$

2eqn. (iii) + eqn. (iv)

$$
\begin{aligned}
-4 b+8 c & =2 d \\
+4 b+4 c & =d \\
\hline 13 c & =3 d \\
c & =\frac{3}{13} d
\end{aligned}
$$

From eqn. (iv)
$4 \mathrm{~b}+\frac{15}{13} d=d ; 4 \mathrm{~b}=\mathrm{d}-\frac{15}{13} d=\frac{-1}{26} d$
From eqn. (i)
$2 \mathrm{a}-\frac{2}{26} d+\frac{9}{13} d=\mathrm{d}$
$2 \mathrm{a}=\mathrm{d}+\frac{2}{26} d-\frac{9}{13} d=\frac{10}{26} d$
$a=\frac{5}{26} d$
Substituting for a, b, c in the equation of the plane
$\frac{5}{26} d x-\frac{1}{26} d y+\frac{3}{13} d=d$
Multiplying through by $\frac{26}{d}$
$5 x-y+6 z=26$
(b) Determine the angle between the plane in (a) and the line $\frac{x-2}{2}=\frac{y}{-4}=z-5$. (06marks)
Let $\mathrm{n}=$ normal vector to the plane
$b=$ parallel vector to the plane
$\Rightarrow b=2 i-4 j+k$
$\mathrm{n}=5 \mathrm{i}-\mathrm{j}+6 \mathrm{k}$
Let $\theta=$ angle between the line and the plane
b.n $=|b||n| \sin \theta$
$\left(\begin{array}{c}2 \\ -4 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}5 \\ -1 \\ 6\end{array}\right)=\left(\sqrt{2^{2}+(-4)^{2}+1^{2}}\right.$.
$\left.\sqrt{5^{2}+(-1)^{2}+6^{2}}\right) \sin \theta$
$10+4+6=(\sqrt{21} \cdot \sqrt{62}) \sin \theta$

$$
=\sqrt{1302} \sin \theta
$$

$\sin \theta=\frac{20}{\sqrt{1302}} ; \theta=33.66^{\circ}(2 D)$
4. Three points $A(2,-1,0), B(-2,5,-4)$ and C are on a straight line such that $3 A B=2 A C$. Find the coordinates of C .

Solution

Method 1

$3(A B)=2 A C$
$\frac{3}{2} A B=A C$
$\frac{3}{2}(O B-O A)=O C-O A$
$\frac{3}{2}\left[\left(\begin{array}{c}-2 \\ 5 \\ -4\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)\right]=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$
$\frac{3}{2}\left(\begin{array}{c}-4 \\ 6 \\ -4\end{array}\right)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$
$\left(\begin{array}{c}-6 \\ 9 \\ -6\end{array}\right)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-6 \\ 9 \\ -6\end{array}\right)+\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-4 \\ 8 \\ -6\end{array}\right)$
Hence coordinates of C are ($-4,8,-6$)

Method 2

Using ratio theorem

C divides externally in the ratio $3:-1$
$\mathrm{OC}=\frac{3(O B)-1(O A)}{3+(-1)}$
OC $=\frac{1}{2}\left\{3\left(\begin{array}{c}-2 \\ 5 \\ -4\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)\right\}$

$$
=\frac{1}{2}\left(\begin{array}{c}
-8 \\
16 \\
12
\end{array}\right)=\left(\begin{array}{c}
-4 \\
8 \\
-6
\end{array}\right)
$$

Hence C(-4, 8, -6)

Method 3

B divides AC internally in ration of 2:1
$\left(\begin{array}{c}-2 \\ 5 \\ -4\end{array}\right)=\frac{1}{3}\left\{2\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)\right\}$
$3\left(\begin{array}{c}-2 \\ 5 \\ -4\end{array}\right)=2\left(\begin{array}{l}x \\ y \\ z\end{array}\right)+\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\frac{1}{2}\left\{\left(\begin{array}{c}-6 \\ 15 \\ 12\end{array}\right)-\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)\right\}$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}-8 \\ 16 \\ -12\end{array}\right)=\left(\begin{array}{c}-4 \\ 8 \\ -6\end{array}\right)$
Hence C(-4, 8, -6)
5. (a) Line A is the intersection of two planes whose equations are
$3 x-y+z=2$ and $x+5 y+2 z=6$. Find the equation of the line.
$3 x-y+z=2$
$x+5 y+2 z=6$
5eqn. (i) + eqn. (ii)

$$
\begin{array}{r}
15 x-5 y+5 z=10 \tag{ii}\\
+\quad x+5 y+2 z=6 \\
\hline 16 x+7 z=16
\end{array}
$$

Let $x=\lambda$
$16 \lambda+7 z=16$

$$
z=\frac{1}{7}(16-16 \lambda)
$$

Substituting for x and z in equation (i)

$$
\begin{aligned}
& 3 \lambda-y+\frac{1}{7}(16-16 \lambda)=2 \\
& 21 \lambda-7 y+16-16 \lambda=14 \\
& y=\frac{1}{7}(2+5 \lambda) \\
& \text { let } \lambda=1+7 \mu \\
& \text { => } x=1+7 \mu \\
& y=\frac{1}{7}(2+5(1+7 \mu)) \\
& =\frac{1}{7}(2+5+35 \mu) \\
& =1+5 \mu \\
& z=\frac{1}{7}(16-16(1+7 \mu)) \\
& \left.=\frac{1}{7}(16-16-16 \times 7 \mu)\right) \\
& =-16 \mu \\
& \underline{r}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\mu\left(\begin{array}{c}
7 \\
5 \\
-16
\end{array}\right) \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\mu\left(\begin{array}{c}
7 \\
5 \\
-16
\end{array}\right) \\
& \frac{x-1}{7}=\frac{y-1}{5}=\frac{-z}{16}
\end{aligned}
$$

(b) Given that line B is perpendicular to the plane $3 x-y+z=2$ and passes through the point $C(1,1,0)$, find the
(i) Cartesian equation of line B

Solution

Normal to the plane $b=3 i-j+k$

$$
\begin{aligned}
r & =a+\lambda b \\
& =\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right) \\
\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
3 \\
-1 \\
1
\end{array}\right) \\
\frac{x-1}{3} & =\frac{y-1}{-1}=\frac{z}{1}
\end{aligned}
$$

(ii) angle between line B and line A in (a) above

Solution

Let $b_{1}=7 i+5 j-16 k$ and $b_{2}=3 i-j+k$ and $\theta=$ angle between line A and line B

$$
\mathrm{b}_{1} \cdot \mathrm{~b}_{2}=\left|b_{1}\right|\left|b_{2}\right| \cos \theta
$$

$$
b_{1} \cdot b_{2}=(7 i+5 j-16 k) \cdot(3 i-j+k)
$$

$$
=21-5-16=0
$$

$\left|b_{1}\right|\left|b_{2}\right| \cos \theta=0$
$\cos \theta=0$
$\theta=\cos ^{-1} 0=90^{0}$
6. (a) The points A and B have position vectors a and b. A point C with vector position c lies on $A B$ such that $\frac{A C}{A B}=\lambda$.
Show that $\mathrm{c}=(1-\lambda) a+\lambda b$. (04marks)

Solution

$$
\begin{aligned}
& \frac{\overline{A C}}{\overline{\overline{A B}}=\lambda} \overline{\overline{A C}=\lambda \overline{A B}} \overline{\overline{O C}-\overline{O A}=\lambda(\overline{O B}-\overline{O A}} \\
& \mathrm{c}-\mathrm{a}=\lambda(\mathrm{b}-\mathrm{a}) \\
& \mathrm{c}=\mathrm{a}+\lambda(\mathrm{b}-\mathrm{a}) \\
& \quad=(1-\lambda) \mathrm{a}+\lambda \mathrm{b}
\end{aligned}
$$

(b) The vector equation of two lines are;
$r_{1}=2 i+j+\lambda(i+j+2 k)$ and
$r_{2}=2 i+2 j+t k+\mu(i+2 j+k)$
where i, j and k are unit vectors and λ, μ and t are constants. Given that the two lines intersect, find
(i) the value of t.
$x=2+\lambda=2+\mu$
$y=1+\lambda=2+2 \mu \ldots \ldots$. (ii)
$z=2 \lambda=t+\lambda$
From eqn. (i)
$2+\lambda=2+\mu$
$\lambda=\mu$
From eqn. (ii)
$1+\lambda=2+2 \mu$
$1+\mu=2+2 \mu$
$\mu=\lambda=-1$
From eqn. (iii)
$2 \lambda=t+\lambda$
$2(-1)=t-1$

$$
t=-1
$$

(ii) the coordinates of the point of intersection. (08marks)

$$
\begin{aligned}
& x=2+\lambda=2-1=1 \\
& y=1+\lambda=1-1=0 \\
& z=2 \lambda=2(-1)=-2 \\
& \therefore(x, y, z)=(1,0,-2)
\end{aligned}
$$

7. Determine the angle between the lines
$\frac{x+4}{8}=\frac{y-2}{2}=\frac{z+1}{-4}$ and the plane $4 x+3 y-3 z$
$+1=0$ (05marks)
$\left(\begin{array}{c}8 \\ 2 \\ -4\end{array}\right) \cdot\left(\begin{array}{c}4 \\ 3 \\ -3\end{array}\right)=$
$\sqrt{8^{2}+2^{2}+(-4)^{2}} \cdot \sqrt{4^{2}+3^{2}+(-3)^{2}} \sin \theta$
$32+6+12=\sqrt{84 \times 34} \sin \theta$
$\sin \theta=\frac{50}{\sqrt{2856}}$
$\theta=69.33^{0}$
8. The position vectors of the vertices of a triangle are O, r and s, where O is the origin. Show that its area (A) is given by $4 A^{2}$
$=|r|^{2}|s|^{2}-(r . s)^{2}$. (06marks)

$r . s=|r||s| \cos \theta$
$(r . s)^{2}=|r|^{2}|s|^{2} \cos ^{2} \theta$
$\sin ^{2} \theta=1-\frac{(r . s)^{2}}{|r|^{2}|s|^{2}}=\frac{|r|^{2}|s|^{2}-(r . s)^{2}}{|r|^{2}|s|^{2}}$
$A=\frac{1}{2}|r||s| \sin \theta$
$2 \mathrm{~A}=|r||s| \sin \theta$
$4 \mathrm{~A}^{2}=|r|^{2}|s|^{2} \sin ^{2} \theta$
$4 \mathrm{~A}^{2}=|r|^{2}|s|^{2} \cdot \frac{|r|^{2}|s|^{2}-(r . s)^{2}}{|r|^{2}|s|^{2}}$
$4 \mathrm{~A}^{2}=|r|^{2}|s|^{2}-(r . s)^{2}$
Hence, find the area of a triangle when
$r=\binom{2}{3}$ and $s=\binom{1}{4}$ (06marks)
$|r|^{2}=2^{2}+3^{2}=13$
$|s|^{2}=1^{2}+4^{2}=17$
$r . s=\binom{2}{3} \cdot\binom{1}{4}=\left(\begin{array}{lll}2 & x & 1\end{array}\right)+\left(\begin{array}{ll}3 & x\end{array}\right)=14$
$\therefore 4 A^{2}=13 \times 17-14^{2}=25$
$A=\sqrt{\frac{25}{4}}=2.5$ units
9. Given the plane $4 x+3 y-3 z-4=0$
(a) Show that the point $A(1,1,1)$ lies on the plane (02marks)

Solution

Substitute $A(1,1,1)$ into the equation of plane
$4 \times 1+3 \times 1-3 \times 1-4=0$
Hence the point lies on the plane
(b) Find the perpendicular distance from the plane to the point $B(1,5,1)$
(03marks)
$\mathrm{d}=\frac{|4 \times 1+3 \times 5-3 \times 1-4|}{\sqrt{4^{2}+3^{2}+(-3)^{2}}}=2.058$
10. (a) Determine the perpendicular distance of the point $(4,6)$ from the line $2 x+4 y-3=0$ (03marks)

Solution

Perpendicular distance, $d=\frac{[2(4)+4(6)-3]}{\sqrt{2^{2}+4^{2}}}=$ $\frac{29}{\sqrt{20}}=64846$
(b) Show that the angle θ, between two lines with gradient λ_{1} and λ_{2} is given by $\theta=\tan ^{-1}\left(\frac{\lambda_{1}-\lambda_{2}}{1+\lambda_{1} \lambda_{2}}\right)$.Hence find the acute angle between the lines $x+y+7=0$ and $\sqrt{3 x}-y+5=0$ (09 marks)
Solution

$\operatorname{Tan} \alpha=\lambda_{2}, \tan \beta=\lambda_{1}$
$\alpha+\theta=\beta ; \theta=\beta-\alpha$

$$
\begin{aligned}
\tan \theta & =\tan (\beta-\alpha) \\
& =\frac{\tan \beta-\tan \alpha}{1+\tan \alpha \tan \beta} \\
& =\left(\frac{\lambda_{1}-\lambda_{2}}{1+\lambda_{1} \lambda_{2}}\right) \\
\therefore \theta & =\tan ^{-1}\left(\frac{\lambda_{1}-\lambda_{2}}{1+\lambda_{1} \lambda_{2}}\right)
\end{aligned} \begin{aligned}
& \text { But } \lambda_{1}=-1 \text { and } \lambda_{2}=\sqrt{3} \\
& \theta
\end{aligned}=\tan ^{-1}\left(\frac{-1-\sqrt{3}}{1+(-1 x \sqrt{3})}\right)=75^{\circ} \quad .
$$

Topical revision questions

1. (a) The position vectors of points A, B and C are $2 i-j+5 k, i-2 j+k$ and $3 i+j-2 k$ respectively. Give that L and M are the midpoint of $A C$ and $C B$. Show that $L M$ is parallel to BA.
(b) Show that the points with position vectors $4 i-8 j-13 k, 5 i-2 j-3 k$ and $5 i+4 j+10 k$ are vertices of a triangle
2. (a) The position vector of a body of mass 12 .5 kg is $8 \mathrm{t}^{2} \mathrm{i}+6 \mathrm{tj}$ meters at a given time t . determine the
(i) Velocity after $4 \mathrm{~s} .[64 i+6 j]$
(ii) The force acting on the body [200N horizontally]
(b) The vector OA is represented by displacement vector a and $O B$ by b. Point R divides $A B$ in the ration λ : μ. Find the position vector of R in terms of vectors a and b and the scalars λ and μ. $\left[r=\frac{\mu}{\mu+\lambda} a+\frac{\lambda}{\mu+\lambda} b\right]$
(c) If the points P, Q and R have position vector p, q and r respectively, and M is the midpoint of $Q R$, show that the position vector of N is a point on PM that $\mathrm{PN}: \mathrm{NM}=2: 1$ is $\frac{1}{3}(p+q+r)$.
3. (a) Determine a unit vector perpendicular to the plane containing the points $\mathrm{A}(0,2,-4)$,
$B(2,0,2)$ and $C(-8,4,0) \sqrt{230}$
(b) Find the equation of the plane $[5 x+14 y+3 z=16]$
(c) Show that the point $(5,-4,3)$ lies on the plane [does on lie on the line]
(d) Write down the equation in form of $r=a+\mu b$ of the perpendicular through
the point $\mathrm{P}(3,4,2)$ to the plane $[r=3 i+4 j+2 k+\mu(4 i+14 j+3 k)]$
(e) If the perpendicular meats the plane at N. determine NP [4.022units]
4. (a) A and B are points whose position vectors are $a=2 i+k$ and $b=i-j+3 k$ respectively. Determine the position vector of the point P that divides $A B$ in the ratio 4:1 $\left[\frac{1}{5}(6 i-4 j+16 k)\right]$
(b) Given that $\mathrm{a}=\mathrm{i}-3 \mathrm{j}+3 \mathrm{k}$ and $b=-i-3 j+2 k$ determine
(i) The equation of the plane containing a and $\mathrm{b}[-3 x+5 y+6 z=0]$
(ii) The angle the line $\frac{x-4}{4}=\frac{y}{3}=\frac{z-1}{2}$ makes with the plane in (i) above. [19.446 ${ }^{\circ}$]
5. A vector $X Y$ of magnitude a units makes an angle of α with the horizontal. Another vector $Y Z$ beginning from the end Y, inclined at an angle β to the same horizontal axis is of magnitude b units. If θ is the angle between the positive directions of the two vectors, where $\theta=\beta-\alpha$ is acute, show that the resultant vector $X Z$ has a magnitude $x z$ equal to $\sqrt{a^{2}+b^{2}+2 a b \cos \theta}$ units and is inclined at an angle $\alpha+\sin ^{-1}\left(\frac{b \sin \theta}{x z}\right)$ to the horizontal. Hence or otherwise calculate the magnitude and direction of the resultant vector of vectors $X Y$ and $Y Z$, inclined at 30° and 75° to the horizontal and magnitude 9 and 6 units respectively. [47.7 ${ }^{\circ}$]
6. (a) The position vector of points A and B
with respect to the origin O are
$\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}4 \\ -1 \\ 2\end{array}\right)$ respectively. Determine the equation of the line $A B$

$$
\left[r=\left(\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right)+\mu\left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right)\right]
$$

(b) Find the equation of the plane OPQ where O is the origin and P and Q are points whose position vectors are $\left(\begin{array}{l}0 \\ 3 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$ respectively $\left[r \cdot\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)=\right.$
0 or $-2 x+z=o$
(c) (i) Given that R is a point at which $A B$ meets the plane OPQ, find the
coordinates of $\mathrm{R} \quad[(7,-7,14)]$
(ii) Show that the point $\mathrm{S}(1,-1,2)$ lies on OR.
7. The points A, B, and C have position vectors $(-2 \mathrm{i}+3 \mathrm{j}),(\mathrm{i}-2 \mathrm{j})$, and $(8 \mathrm{i}-5 \mathrm{j})$ respectively.
(a) Find the vector equation of line $A C$

$$
\left[r=\binom{-2}{3}+\lambda\binom{10}{-8}\right]
$$

(b) Determine the coordinates of D if $A B C D$ is a parallelogram $[5,0]$
(c) Write down the vector equation of the line through which point B perpendicular to AC and find where it meets AC $\left[\frac{93}{41},-\frac{17}{41}\right]$
8. (a) In the triangle $A B C, P$ is the point on $B C$ such that $B P: P C=\lambda: \mu$.
Show that $(\lambda+\mu) A P=\lambda A C+\mu A B$
(b) Three non collinear points A, B, and C have position vectors a, b, and c respectively with respect to 0 . The point M on $A C$ is such that $A M: M C=2: 1$ and the point N on $A B$ is such that $A N: N B=$ 2:1.
(i) Show that $\mathrm{BM}=\frac{1}{3} a-b+\frac{2}{3} c$, and find a similar expression for CN

$$
\left[C N=\frac{1}{3} a+\frac{2}{3} b-c\right]
$$

(ii) The line BM and CN intersect at L . Given that $\mathrm{BL}=\mathrm{rBM}$ and $\mathrm{CL}=s C N$, where r and s are scalars, express $B L$ and $C L$ in terms of r, s, a, b, and c.

$$
\left[\begin{array}{l}
B L=\frac{1}{3} s a-r b+\frac{2}{3} r c ; \\
C L=\frac{1}{3} s a-\frac{2}{3} s b-s c ;
\end{array}\right]
$$

(iii) Hence by using triangle BLC or otherwise find r and $\mathrm{s}\left[r=\frac{2}{5}, s=\frac{3}{5}\right]$
9. Find the distance of the point $(-2,0,6)$ from the plane $2 x-y+3 z=21$ [1.8708 units]
10. $A B C D$ is a quadrilateral with $A(2,-2), B(5,-1)$, $C(6,2)$ and $D(3,1)$. Show that the quadrilateral is a rhombus.
11. The points $P(4,-6,1), Q(2,8,4)$ and $R(3,7$, 14) lie in the same plane. Find the angle between PQ and QR. [84.5 ${ }^{\circ}$]
12. (a) Given that $\mathrm{OP}=\left(\begin{array}{c}4 \\ -3 \\ 5\end{array}\right)$ and $\mathrm{OQ}=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$,
find the coordinates of the point R such that $P R: P Q=1: 2$ and the points P, Q and R are collinear. [$R(2.5,-1.5,3.5)]$
(b) Show that the vector $5 \mathrm{i}-2 \mathrm{j}+\mathrm{k}$ is perpendicular to the line $r=i-4 j+\lambda(2 i+3 j-4 k)$.
(c) Find the equation of the plane through the point with position vector $5 i-2 j+3 k$ perpendicular to the vector $3 \mathrm{i}+4 \mathrm{j}-\mathrm{k}$. $[3 x+4 y-z=4]$
13. Calculate the area of a triangle with vertices $(-1,3),(5,2),(4,-1)$ [7.6811 sq. units]
14. PQRS is a quadrilateral with vertices $P(1,-2)$, $Q(4,-1), R(5,2)$ and $S(2,1)$.
[show that $P Q$ is parallel to $S R$ and $P S$ is parallel to $Q R$ and that $|P Q|=|S P|=$ $|Q R|=|P S|$ and $P R$ and $Q S$ are perpendicular]
15. The vector equation of lines P and Q are given as $r_{p}=t(4 i+3 j)$ and $r_{q}=2 i+12 j+5(i-j)$
Use the dot product to find the angle between P and Q. [8.13 ${ }^{\circ}$]
16. The vector equations of two lines are $r_{1}=\binom{5}{-6}+\lambda\binom{3}{1}$ and $r_{2}=\binom{4}{1}+\mu\binom{-2}{3}$. Determine the point where r_{1} meets r_{2}. [8, -5]
17. The equation of three planes P, Q and R are $2 x-y+3 z=3,3 x+y+2 z=7$ and $x+7 y-5 z=13$ respectively. Determine where the three planes intersect. [(-2, 5, 4)]
18. (a) Find in Cartesian form the equation of the line passing through the points $A(1,2$. 5), $B(1,0,4)$ and $C(5,2,1)$. [since $A B=B C$, points A, B and C are not collinear]
(b) Find the angle between the line $\frac{x+4}{8}=\frac{y-2}{2}=\frac{z+1}{-4}$ and the plane $4 x+3 y-3 z+1 .\left[69.32^{0}\right]$
19. Show that the equation of the line through points $(1,2,1)$ and $(4,-2,2)$ is given as $\frac{x-1}{3}=\frac{y-2}{-4}=z-1$
20. (a) Show that the equation of the plane through points with position vector $-2 i+4 k$
perpendicular to vector $i+3 j-2 k$ is
$x+3 y-2 z+10=0$
(b)(i) Show that the vector $2 i-5 j+3.5 k$ is perpendicular to the plane $r=2 i-j+\lambda(4 i+3 j+2 k)$.
(ii) Calculate the angle between the vectors
$3 i-2 j+k$ and the line in $b(i)$ above. [66.6 ${ }^{0}$]
21. Find the point of intersection of the line $\frac{x}{5}=\frac{y+2}{2}=\frac{z-1}{4}$ with the plane
$3 x+4 y+2 z-25=0[(5,0,5)]$
22. (a) Find the Cartesian equation of the plane through $A(0,3,-4), B(2,-1,2)$ and $C(7,4,-1)$. Show that $Q(10,13,-10)$ lies in the same plane
(b) Express the equation of the plane in (a) in the scalar product form.

$$
\left[r \cdot\left(\begin{array}{c}
3 \\
-6 \\
-5
\end{array}\right)=2\right]
$$

(c) Find the area of $A B C$ in (a) [25.1 Sq. Units]
23. The vertices of a triangle are $P(2,-1,5)$, $Q(7,1,-3)$ and $R(12,-2,0)$. Show that $\angle P Q R=$ 90°. Find the coordinates of S if PQRS is a rectangle $[(8,-4,8)]$
24. (a)Find the equation of the perpendicular line from Pont $A=\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)$ onto the line $r=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)$. What is the distance of A from r.
$\left[O P=\left(\begin{array}{c}2 \\ -1 \\ 4\end{array}\right)+\mu\left(\begin{array}{c}-\frac{4}{9} \\ \frac{14}{9} \\ \frac{-8}{9}\end{array}\right) ; 1.795\right.$ units $]$
(b) Find the angle contained between the line $O R$ and $x-y$ plane, where $O R=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)$ [41.81 ${ }^{0}$]
25. Given that vectors $O A=(3,-2,5)$ and $O B=(9,1,-1)$, find the position vector of point C such that C divides $A B$ internally in the ration 5:-3
$\left[x i+y j+z k=18 i+\frac{11}{2}-10 k\right]$
26. (a) In a triangle $A B C$, the altitudes from B and C meat the opposite sides at E and F
respectively. BE and CF intersect at O. Taking O as the origin, Use the dot product to prove that $A O$ is perpendicular to $B C$.
(b) Prove that $\angle A B C=900$ given that A is $(0,5,-3), B(2,3,-4)$ and $C(1,-1,2)$. Find the coordinates of D if $A B C D$ is a rectangle. [(-1, 1, 3)]
27. Find the equation of the plane through the point $(1,2,3)$ and perpendicular to the vector $r=4 i+5 j+k .[4 x 5 y+z=17]$
28. (a) Find the equation of the line through $A(2,2,5)$ and $B(1,2,3)$.
$\left[\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 5\end{array}\right)+\mu\left(\begin{array}{c}-1 \\ 0 \\ -2\end{array}\right)\right]$
(b) If the line in (a) above meets the line $\frac{x-1}{1}=\frac{y-2}{0}=\frac{z-1}{3}$ at P , find the
(i) Coordinate of $P[3,2,7)$
(ii) Angle between the lines [171.9 ${ }^{\circ}$]
29. Given that the vector ai $-2 j+k$ and $2 a i+a j-$ $4 k$ are perpendicular, find the values of a. [-1, 2]
30. (a) Determine the coordinates of the point of intersection of the line $\frac{x+1}{2}=\frac{y-3}{5}=\frac{z+2}{-1}$ and the plane $x+y+z=12[3,13,-4]$
(b) Find the angle between the line $\frac{x+1}{2}=\frac{y-3}{5}=\frac{z+1}{-1}$ and the plane $x+y+z=12\left[50.7685^{\circ}\right.$ or $\left.39.2515^{\circ}\right]$
31. Find the point of intersection of the plane $11 x-3 y+7 z=8$ and the line $r=\left(\begin{array}{c}-3 \\ 1 \\ 5\end{array}\right)+\mu\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$ where μ is a scalar [-4, -1, 7]
32. (a) Given the vector $a=3 i-2 j+k$ and $b=i-2 j+2 k$, find
(i) the acute angle between the vectors. [36.7 ${ }^{0}$]
(ii) vector c such that it is perpendicular to both vectors a and b . $\left[c\left(\begin{array}{l}2 \\ 5 \\ 4\end{array}\right)\right]$
(b) Given that $O A=a$ and $O B=b$, Point R is on $O B$ such that $O R$: $R B=4: 1$. Point P is on $B A$ such that $B P: P A=2: 3$ and when $R P$ and $O A$ are both produced they meet at point Q . Find
(i) OR and OP in terms of a and b.

$$
\left[O R=\frac{4}{5} b, O P=\frac{1}{5}(2 a+3 b)\right]
$$

(ii) OQ in terms of a. $\left[\frac{8}{5} a\right]$
33. A point P has coordinates $(1,-2,3)$ and a certain plane has equation $x+2 y+2 z=8$. The line through P parallel to the line $\frac{x}{3}=\frac{y+1}{-1}=z+1$ meets the plane at a point
Q. Find the coordinates of $Q\left[\left(6, \frac{-11}{3}, \frac{14}{3}\right)\right]$
34. Given that the position vectors of A, B, and C are $O A=\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right), O B=\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)$ and $O C=\left(\begin{array}{c}7 \\ -2 \\ 2\end{array}\right)$
(a) Prove that A, B and C are collinear
(b) Find the angle between $O A$ and $O B$ [106.1 ${ }^{0}$]
(c) If OABD is parallelogram, find the position vectors of E and F such that E divides DA in ratio 1:2 and F divides it externally in ratio 1:2.

$$
\left[E=\left(\begin{array}{c}
\frac{5}{3} \\
2 \\
\frac{-4}{3}
\end{array}\right), F=\left(\begin{array}{c}
3 \\
10 \\
-8
\end{array}\right)\right]
$$

35. Given the vectors $a=i-3 j+3 k$ and $b=-i-3 j+2 k$; find the
(i) Acute angle between vectors a and b [30.86 ${ }^{\circ}$]
(ii) Equation of the plane containing a and b $[-3 x+5 y+6 z=0]$
36. The position vectors of A and B are $O A=2 i-4 j-k$ and $O B=5 i-2 j+3 k$ respectively. The line $A B$ is produced to meet the plane $2 x+6 y-3 z=-5$ at point C. Find the
(a) coordinates of $C[(8,0,7)]$
(b) angle between AB and the plane [9.169 ${ }^{\circ}$]
37. The points $P(2,3), Q(-11,8)$ and $R(-4,-5)$ are vertices of a parallelogram PQRS which has PR as the diagonal. Find the coordinates of the vertex S. [S(9, -10)]
38. (a) Find the angle between the planes $x-2 y+z=0$ and $x-y=1\left[30^{\circ}\right]$
(b) Two lines are given by the parametric equation: $-i+2 j+k+t(i-2 j+3 k)$ and
$-3 i-+p j+7 k+s(i-j+2 k)$. If the lines intersect, find
(i) values of t, s and p.
$[t=10, s=12, p=-6]$
(ii) coordinates of the points of intersection [(9, 18, 31)]
39. given the points $A(-3,3,4), B(5,7,2)$ and $C(1,1,4)$, find the vector equation of a line which joins the mid-point of $A B$ and $B C$
$\left[\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 5 \\ 3\end{array}\right)+\mu\left(\begin{array}{c}2 \\ -1 \\ 0\end{array}\right)\right]$
40. (a) The equation of the plane R is r. $\left(\begin{array}{c}4 \\ 3 \\ -2\end{array}\right)=16$. Where r is the position vector of R. Find the perpendicular distance of the plane from the origin [2.971 units]
(b) Find the Cartesian equation of the plane through the point $P(1,0-2)$ and $Q(3,-1,1)$ and parallel to the line with a vector equation
$r=2 i++(2 \alpha-1) j+(5-\alpha) k$ $[-5 x+2 y+4 z+13=0]$
41. Find the equation of the line through point $(2,3)$ and perpendicular to line $x+2 y+5=0$ [$y=2 x-1$]
42. Show that the points A, B and C with position vectors $3 i+3 j+k, 8 i+7 j+4 k$ and $11 i+4 j+5 k$ respectively are vertices of a triangle.
43. (a) Find the angle between the lines
$x=\frac{y-1}{2}=\frac{z-2}{3}$ and $\frac{x}{2}=\frac{y+1}{3}=\frac{z+2}{4} .\left[8.53^{0}\right]$
(b) Find in vector form the equation of the line of intersection of two planes $2 x+3 y-2=4$ and $x-y+2 z=5$

$$
\left[\begin{array}{c}
r=\left(\begin{array}{c}
0 \\
\frac{13}{5} \\
\frac{19}{5}
\end{array}\right)+t\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) \text { or } \\
r=\left(\begin{array}{c}
\frac{19}{5} \\
\frac{-6}{5} \\
0
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right) \text { or } \\
r=\left(\begin{array}{c}
\frac{13}{5} \\
0 \\
\frac{-6}{5}
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)
\end{array}\right]
$$

44. A line passes through the point $A(4,6,3)$ and $B(1,3,3)$.
(a) Find the vector equation of the line

$$
\left[r=\left(\begin{array}{l}
4 \\
6 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
-3 \\
-3 \\
0
\end{array}\right)\right]
$$

(b) Show that the point $C(2,4.3)$ lies on the line in (a) above.
45. Triangle $O A B$ has $O A=a$ and $O B=b . C$ is a point on $O A$ such that $O C=\frac{2}{3} a$. D is the midpoint of $A B$. When $C D$ is produced it meets OB produced at E ., such that $\mathrm{DE}=\mathrm{nCD}$ and $\mathrm{BE}=\mathrm{kb}$. Express DE in terms of
(a) n , a and b $\left[\frac{5 n}{6} a+\frac{n}{2} b\right]$
(b) k, a and b $\left[\frac{1}{2} a+\frac{2 k-1}{2} b\right]$

Hence find the values of n and k.
$\left[n=\frac{3}{5}, k=\frac{1}{5}\right]$

Thank you
Dr. Bbosa Science

