

This document is sponsorec
The Science Foundation Cc
Uganda East Africa
Senior one to senior six
$+256778633682,753802$
Based on, best for sciences

UACE MATHEMATICS PAPER 12012 and marking guide

Section A

1. Solve the simultaneous equations
$3 x-y+z=3$
$x-2 y+4 z=3$
$2 x+3 y-z=4$
2. (a) Prove that $\frac{\tan \theta}{1+\tan ^{2} \theta}=\sin 2 \theta$
(b) Solve $\sin 2 \theta=\cos \theta$ for $0^{\circ} \leq \theta \leq 90^{\circ}$.
3. Differentiate $\frac{3 x-1}{\sqrt{x^{2}+1}}$ with respect to x .
4. A line passes through the points $A(4,6,3$ and $B(1,3,33)$
(a) Find the vector equation of the line
(b) Show that the point $(2,4,3)$ lies on the line above
5. The sum of the first n terms of Geometric Progression (G.P) is $\frac{4}{3}\left(x^{n}-1\right)$. Find the $\mathrm{n}^{\text {th }}$ term as an integral power of 2 .
6. The line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{y^{2}}=1$ when $\mathrm{c}=$ $\pm \sqrt{a^{2} m^{2}+b^{2}}$ find the equations of the tangents to the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$ from the point $(0, \sqrt{5})$
7. Using a suitable substitution, find $\int \frac{\sin ^{-1} 2 x}{\sqrt{1-4 x^{2}}}$.
8. Find the equation of the normal to the curve $x^{2} y+3 y^{2}-4 x-12=0$ at the point $(0,2)$.

Section B

9. If $Z=\frac{(2-i)(5+12 i)}{(1+2 i)^{2}}$
(a) Find
(i) Modulus of z
(ii) Argument of z
(b) Represent z on a complex plane
(c) Write z in the polar form
10. (a) Solve the equation $8 \cos ^{4} x-10 \cos ^{2} x+3=0$
(b) Prove that $\cos 4 A-\cos 4 B-n \cos 4 C=4 \sin 2 B \sin 2 C \cos 2 A-1$ given that A, B and C are angles of a triangle.
11. Find
(a) the derivative with respect to x of the following.
(i) $\frac{\cos 2 x}{1+\sin 2 x}$
(ii) $\operatorname{In}(\sec x+\tan x)$
(b) $\int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x$
12. Triangle $O A B$ has $O A=a$ and $O B=b$. C is a point on $O A$ such that $O C=\frac{2 a}{3}$. D is the midpoint of $A B$. When $C D$ is produced it meets $O B$ at E., such that $D E=n C D$ and $B E=k b$.
Express DE in terms of
(a) n, a and b
(b) k, a and b

Hence find the values of n and k.
13. (a) Find the equation of the locus of a point which moves such that its distance from $D(4,5)$ is twice its distance from origin.
(b) The line $y=m x$ intersects the curve $y=2 x^{2}-x$ at points A and B. Find the equation of locus of the point P which divides $A B$ in the ratio 2:5.
14. (a) On the same axis, sketch the curves $y=x(x+2)$ and $y=x(4 x-x)$
(b) Find the area enclosed by the two curve in (a)
(c) Determine the volume of the solid generated when the area in (a) is rotated about the x-axis.
15. Solve for x in the following equation
(a) $9^{x}-3^{x+1}=10$
(b) $\log _{4} x^{2}-6 \log _{x} 4-1=0$
16. At 3.00 pm , the temperature of a hot metal was $80^{\circ} \mathrm{C}$ and that of the surrounding is $20^{\circ} \mathrm{C}$. At 3.03 pm the temperature of the metal had dropped to $42^{\circ} \mathrm{C}$. The rate of cooling of the metal was directly proportional to the difference between its temperature θ and that of the surroundings.
(a) (i) Write a differential equation to represent the rate of cooling of the metal.
(ii) Solve the differential equation using the given conditions.
(b) Find the temperature of the metal at 3.05 pm .

Marking guides

1. Solve the simultaneous equations
$3 x-y+z=3$
$x-2 y+4 z=3$
$2 x+3 y-z=4$
Solution
Method 1
$3 x-y+z=3$
$x-2 y+4 z=3$
$2 x+3 y-z=4$
2Eqn. (i) - eqn. (ii)
$5 x-2 z=3$
3eqn. (i) + eqn. (iii)
$11 x+2 z=13$
Eqn. (iv) + eqn. (v)
$16 x=16$
$x=1$
Substituting x into eqn. (iv)
$5-2 z=3=>z=1$
Substituting x and z into eqn. (i)
$3-y+1=3 \Rightarrow y=1$
$\therefore \mathrm{x}=1, \mathrm{y}=1$ and $\mathrm{z}=1$

Method 2

By using row reduction to echelon form Expressing the equation in matrix form
$\left(\begin{array}{ccc}3 & -1 & 1 \\ 1 & -2 & 4 \\ 2 & 3 & -1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right)$
The augmented matrix
$\left(\begin{array}{ccc}3 & -1 & 1: 3 \\ 1 & -2 & 4: 3 \\ 2 & 3 & -1: 4\end{array}\right)$
Transforming augmented matrix a unity triangular matrix

$\Rightarrow\left(\begin{array}{cccc}1 & -\frac{1}{3} & \frac{1}{3} & : 1 \\ 0 & 1 & \frac{-11}{5} & \frac{-6}{5} \\ 0 & 0 & -96 & -6\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}: 1 \\ \frac{-6}{5} \\ -96\end{array}\right)$
$-96 z=-96 \Rightarrow>=1$
$y-\frac{11}{5} z=\frac{-6}{5}=>y=1$
$x-\frac{1}{3}+\frac{1}{3}=1 \Rightarrow x=1$
$\therefore \mathrm{x}=1, \mathrm{y}=1$ and $\mathrm{z}=1$
2. (a) Prove that $\frac{\tan \theta}{1+\tan ^{2} \theta}=\sin 2 \theta$

Solution
Considering LHS

$$
\begin{aligned}
\frac{\tan \theta}{1+\tan ^{2} \theta} & =\frac{2 \sin \theta}{\cos \theta}+\left(1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right) \\
& =\frac{2 \sin \theta}{\cos \theta} x \frac{\cos ^{2} \theta}{\cos ^{2} \theta+\sin ^{2} \theta} \\
& =\frac{2 \sin \theta}{\cos \theta} x \frac{\cos ^{2} \theta}{1} \\
& =2 \sin \theta \cos \theta \\
& =\sin 2 \theta
\end{aligned}
$$

(b) Solve $\sin 2 \theta=\cos \theta$ for $0^{\circ} \leq \theta \leq 90^{\circ}$.

Solution

$2 \sin \theta \cos \theta=\cos \theta$
$2 \sin \theta \cos \theta-\cos \theta=0$
$\operatorname{Cos} \theta(2 \sin \theta-1)=0$
Either $\cos \theta=0=>\theta=\cos ^{-1} 0=90^{\circ}$
Or $\sin \theta=1 / 2 \Rightarrow \theta=\sin ^{-1}(1 / 2)=30^{\circ}$
Hence $\theta=30^{\circ}$ or 90°.
3. Differentiate $\frac{3 x-1}{\sqrt{x^{2}+1}}$ with respect to x .

Solution

Method 1
Let $\mathrm{y}=\frac{3 x-1}{\sqrt{x^{2}+1}}$
Using $\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
$\frac{d y}{d x}=\frac{\left(x^{2}+1\right)^{\frac{1}{2}} \frac{d}{d x}(3 x-1)-(3 x-1) \frac{d}{d x}\left(x^{2}+1\right)^{\frac{1}{2}}}{\left(\sqrt{x^{2}+1}\right)^{2}}$
$=\frac{3\left(x^{2}+1\right)^{\frac{1}{2}}-\frac{1}{2}\left(x^{2}+1\right)^{-\frac{1}{2}}(3 x-1) \cdot 2 x}{x^{2}+1}$
$=\frac{3\left(x^{2}+1\right)^{\frac{1}{2}}-\frac{x(3 x-1)}{\left(x^{2}+1\right)^{\frac{1}{2}}}}{x^{2}+1}$
$=\frac{3\left(x^{2}+1\right)-x(3 x-1)}{x^{2}+1\left(x^{2}+1\right)^{\frac{1}{2}}}$
$=\frac{x+3}{\left(x^{2}+1\right)^{\frac{3}{2}}}$

Method 2

Let $y=\frac{3 x-1}{\sqrt{x^{2}+1}}$
$\operatorname{In} y=\operatorname{In}\left(\frac{3 x-1}{\sqrt{x^{2}+1}}\right)=\ln (3 x-1)-\ln \left(x^{2}+1\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& =\ln (3 x-1)-\frac{1}{2} \ln \left(x^{2}+1\right) \\
\frac{1}{y} \frac{d y}{d x} & =\frac{3}{3 x-1}-\frac{x}{x^{2}+1} \\
& =\frac{3\left(x^{2}+1\right)-x(3 x-1)}{(3 x-1)\left(x^{2}+1\right)} \\
& =\frac{x+3}{(3 x-1)\left(x^{2}+1\right)} \\
\frac{d y}{d x} & =\frac{x+3}{(3 x-1)\left(x^{2}+1\right)} \cdot \frac{3 x-1}{\sqrt{x^{2}+1}} \\
& =\frac{x+3}{\left(x^{2}+1\right)^{\frac{3}{2}}}
\end{aligned}
$$

4. A line passes through the points $A(4,6,3$ and $B(1,3,33)$
(a) Find the vector equation of the line

Solution

Let point $R(x, y, z)$ lie on the same line

$A R$ is parallel to $A B$

$$
\begin{aligned}
& O P-O A=\lambda(O B-O A) \\
& r=\left(\begin{array}{l}
4 \\
6 \\
3
\end{array}\right)+\lambda\left[\left(\begin{array}{l}
1 \\
3 \\
3
\end{array}\right)-\left(\begin{array}{l}
4 \\
6 \\
3
\end{array}\right)\right] \\
&=\left(\begin{array}{l}
4 \\
6 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
-3 \\
-3 \\
0
\end{array}\right)
\end{aligned}
$$

(b) Show that the point $(2,4,3)$ lies on the line above

Solution

If the point $C(2,4,3)$ lies on the line, then this point must satisfy the above equation. So the value of λ must be same throughout
$\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)=\left(\begin{array}{l}4 \\ 6 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}-3 \\ -3 \\ 0\end{array}\right)$
$\left(\begin{array}{l}2 \\ 4 \\ 3\end{array}\right)=\left(\begin{array}{c}4-3 \lambda \\ 6-3 \lambda \\ 3\end{array}\right)$
For i
$2=4-3 \lambda$
$\lambda=\frac{2}{3}$
For j
$4=6-3 \lambda$
$\lambda=\frac{2}{3}$

For k
$3=3$
Since the value of $\lambda=\frac{2}{3}$ is constant, then the point $C(2,4,3)$ lies on the line in (a) above
5. The sum of the first n terms of Geometric Progression (G.P) is $\frac{4}{3}\left(x^{n}-1\right)$. Find the $\mathrm{n}^{\text {th }}$ term as an integral power of 2 .
Solution
$s_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
Comparing with $s_{n}=\frac{4}{3}\left(x^{n}-1\right)$.
$\Rightarrow a=4$

$$
r-1=3 ; r=4
$$

The $n^{\text {th }}$ term, $U_{n}=a r^{n}-1$

$$
\begin{aligned}
& =4 x^{4 n-1} \\
& =4 \times 4^{2(n-1)} \\
& =2^{2 n}
\end{aligned}
$$

OR
Given $s_{n}=\frac{4}{3}\left(x^{n}-1\right)$
For $\mathrm{n}=1$
First term $\mathrm{a}=\frac{4}{3}\left(4^{1}-1\right)$

$$
=\frac{4}{3}(3)=4
$$

For $\mathrm{n}=2$
First term $\mathrm{a}=\frac{4}{3}\left(4^{2}-1\right)$

$$
\begin{aligned}
& =\frac{4}{3}((16-1)-4)=4 \\
& =\frac{4}{3}(15-4) \\
& =20-4=16 \\
4 r & =16 \\
r & =4 \\
U_{n} & =a r^{n}-1 \\
& =4 \times 4 n-1 \\
& =4 \times 4^{2(n-1)} \\
& =2^{2 n}
\end{aligned}
$$

6. The line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{y^{2}}=1$ when $\mathrm{c}= \pm \sqrt{a^{2} m^{2}+b^{2}}$ find the equations of the tangents to the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$
from the point $(0, \sqrt{5})$

Solution

$$
y=m x+c
$$

Substituting for $\mathrm{c}= \pm \sqrt{a^{2} m^{2}+b^{2}}$
$\mathrm{y}=\mathrm{mx} \pm \sqrt{a^{2} m^{2}+b^{2}}$
For ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$
$a^{2}=2$ and $b^{2}=1$
Substituting of a^{2} and b^{2}
$y=m x \pm \sqrt{4 m^{2}+1}$
For point $(0, \sqrt{5})$ lies on the tangent
$\sqrt{5}= \pm \sqrt{4 m^{2}+1}$
Squaring both sides
$5=4 \mathrm{~m}^{2}+1$
$4 m^{2}=4$
$m^{2}=1$
$m= \pm 1$
When $\mathrm{m}=1$
$y=x \pm \sqrt{5}$
Testing for the correct equation by
substitution using $(x, y)=(0, \sqrt{5})$
$\sqrt{5}=0 \pm \sqrt{5}$
Hence the equation of the tangent is
$y=x+\sqrt{5}$
Testing for the correct equation by
substitution using $(x, y)=(0, \sqrt{5})$
$\sqrt{5}=0 \pm \sqrt{5}$
Hence the equation of the tangent is
$y=x+\sqrt{5}$
When $m=-1$
$y=-x \pm \sqrt{5}$
Testing for the correct equation by substitution using $(x, y)=(0, \sqrt{5})$
$\sqrt{5}=0 \pm \sqrt{5}$
Hence the equation of the tangent is
$y=-x+\sqrt{5}$
\therefore the equation of the tangent are
$y= \pm x+\sqrt{5}$
7. Using a suitable substitution,
find $\int \frac{\sin ^{-1} 2 x}{\sqrt{1-4 x^{2}}}$.
Solution
Let $2 \mathrm{x}=\sin \mathrm{u}$
$2 d x=\cos u d u$
$\mathrm{dx}=\frac{1}{2} \cos u d \mathrm{u}$
$\Rightarrow \quad \int \frac{\sin ^{-1} 2 x}{\sqrt{1-4 x^{2}}}=\int \frac{u}{\sqrt{1-\sin ^{2} u}} \cdot \frac{1}{2} \cos u d u$
$=\int \frac{u}{\cos u} \cdot \frac{1}{2} \cos u d u$
$=\frac{1}{2} u d u=\frac{1}{4} u^{2}+c$
$=\left(\frac{\sin ^{-1} 2 x}{2}\right)^{2}$
$\therefore \int \frac{\sin ^{-1} 2 x}{\sqrt{1-4 x^{2}}}=\left(\frac{\sin ^{-1} 2 x}{2}\right)^{2}$
8. Find the equation of the normal to the curve $x^{2} y+3 y^{2}-4 x-12=0$ at the point (0, 2).

Solution

$x^{2} y+3 y^{2}-4 x-12=0$
$x^{2} \frac{d y}{d x}+2 x y+6 y \frac{d y}{d x}-4=0$
$\left(x^{2}+6 y\right) \frac{d y}{d x}=4-2 x y$
$\frac{d y}{d x}=\frac{4-2 x y}{\left(x^{2}+6 y\right)}$
At point (0, 2)
$\frac{d y}{d x}=\frac{4-0}{(0+12)}=\frac{1}{3}$
Gradient of the normal $=-3$
Let a point (x, y) lie on the normal
$\Rightarrow \frac{y-2}{x-0}=-3$

$$
y=-3 x+2
$$

Section B

9. If $z=\frac{(2-i)(5+12 i)}{(1+2 i)^{2}}$
(a) Find
(i) Modulus of z

Solution

Method 1

$$
\begin{aligned}
Z & =\frac{(2-i)(5+12 i)}{(1+2 i)^{2}} \\
& =\frac{10+24 i-5 i+12}{1+4 i-4} \\
& =\frac{22+19 i}{-3+4 i} \\
& =\frac{(22+19 i)(-3-4 i)}{(-3+4 i)(-3-4 i)} \\
& =\frac{-66-88 i-57 i+76}{(-3)^{2}+(4 i)^{2}} \\
& =\frac{10-145 i}{9+16}=\frac{10-145 i}{25} \\
z & =\frac{2}{5}-\frac{29}{5} i \\
|z| & =\sqrt{\left(\frac{2}{5}\right)^{2}+\left(\frac{29}{5}\right)^{2}}=5.814
\end{aligned}
$$

Method 2

$$
\begin{aligned}
|z| & =\left|\frac{(2-i)(5+12 i)}{|(1+2 i)|^{2}}\right| \\
& =\frac{|(2-i)||(5+12 i)|}{|(1+2 i)|^{2}} \\
& =\frac{|(2-i)||(5+12 i)|}{|(1+2 i)|^{2}} \\
& =\frac{\sqrt{\left(2^{2}+(-1)^{2}\right)} \cdot \sqrt{\left(5^{2}+12^{2}\right)}}{\left(\sqrt{\left(1^{2}+2^{2}\right)}\right)^{2}} \\
& =\frac{\sqrt{5} \cdot \sqrt{169}}{(\sqrt{2})^{2}} 5.814
\end{aligned}
$$

(ii) Argument of z

$\tan \theta=\frac{-29}{5} \times \frac{5}{2}=\frac{-29}{2}$
$\theta=\tan ^{-1}\left(\frac{-29}{2}\right)=-86.055$
$\operatorname{Arg}(z)=-86.055$

Method 2

$$
\begin{aligned}
\operatorname{Arg}(z) & =\arg (2-i)+\arg (5+12 i)-2 \arg (1+2 i) \\
& =-26.565^{\circ}+67.38^{0}-126.87^{\circ} \\
& =-86.055^{\circ}
\end{aligned}
$$

(b) Represent z on a complex plane

(c) Write z in the polar form

$$
\begin{aligned}
z & =5.814\left(\cos \left(-86.055^{\circ}\right)-i \sin \left(-86.055^{\circ}\right)\right. \\
& =5.814(\cos 0.478 \pi-i \sin 0.478 \pi
\end{aligned}
$$

10. (a) Solve the equation

$$
8 \cos ^{4} x-10 \cos ^{2} x+3=0
$$

Solution

Let $\cos 2 x=y$
$\Rightarrow 8 y^{2}-6 y-4 y+3=0$
$(2 y-1)(4 y-3)=0$
Either $\mathrm{y}=\frac{1}{2}$ or $\mathrm{y}=\frac{3}{4}$

If $y=\frac{1}{2}=>\cos ^{2} x=\frac{1}{2}$
$\cos x= \pm \frac{1}{\sqrt{2}}$
Taking $\cos x=\frac{1}{\sqrt{2}}$
$x=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ}$
Taking $\cos x=-\frac{1}{\sqrt{2}}$
$x=\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=135^{\circ}$
If $y=\frac{3}{4} \Rightarrow \cos ^{2} x=\frac{3}{4}$
$\cos x= \pm \frac{\sqrt{3}}{2}$
Taking $\cos x=\frac{\sqrt{3}}{2}$
$x=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)=30^{\circ}$
Taking $\cos x=-\frac{1}{\sqrt{2}}$
$x=\cos ^{-1}\left(-\frac{1}{\sqrt{2}}\right)=150^{\circ}$
$\therefore \mathrm{x}=30^{\circ}, 45^{\circ}, 135^{\circ}, 150^{\circ}$
(b) Prove that $\cos 4 \mathrm{~A}-\cos 4 \mathrm{~B}-\cos 4 \mathrm{C}=$ $4 \sin 2 B \sin 2 C \cos 2 A-1$ given that A, B and C are angles of a triangle

$$
\begin{aligned}
\text { LHS } & =\cos 4 \mathrm{~A}-\cos 4 \mathrm{~B}-\cos 4 \mathrm{C} \\
& =\cos 4 \mathrm{~A}-[\cos 4 \mathrm{~B}+\cos 4 \mathrm{C}] \\
& =\cos 4 \mathrm{~A}-\left[2 \cos \left(\frac{4 B+4 \mathrm{C}}{2}\right) \cos \left(\frac{4 B-4 \mathrm{C}}{2}\right)\right] \\
& =\cos 4 \mathrm{~A}-2 \cos (2 \mathrm{~B}+2 \mathrm{C}) \cos (2 \mathrm{~B}-2 \mathrm{C}) \\
& =2 \cos ^{2} 2 \mathrm{~A}-1-2 \cos (2 \mathrm{~B}+2 \mathrm{C}) \cos (2 \mathrm{~B}-2 \mathrm{C}) \\
& =2 \cos ^{2} 2 \mathrm{~A}-2 \cos (2 \mathrm{~B}+2 \mathrm{C}) \cos (2 \mathrm{~B}-2 \mathrm{C})-1 \\
& \text { Now, } \mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}
\end{aligned}
$$

$$
2 A+2 B+2 C=360^{\circ}
$$

$$
2 B+2 C=\left(360^{\circ}-2 A\right)
$$

$\cos (2 B+2 C)=\cos \left(360^{\circ}-2 A\right)$
$\cos (2 B+2 C)=\cos 2 A$
By substitution, we have
$=2 \cos ^{2} 2 \mathrm{~A}-2 \cos 2 \mathrm{~A} \cos (2 \mathrm{~B}-2 \mathrm{C})-1$
$=2 \cos 2 \mathrm{~A}[\cos 2 \mathrm{~A}-\cos (2 \mathrm{~B}-2 \mathrm{C})]-1$
$=2 \cos 2 A\left[2 \sin \left(\frac{2 B+2 C+2 B-2 C}{2}\right) \sin \left(\frac{2 B+2 C-2 B+2 C}{2}\right)\right]-1$
$=2 \cos 2 \mathrm{~A}[\sin 2 \mathrm{~B} \sin 2 \mathrm{C}]-1$
$=4 \cos 2 A \sin 2 B \sin 2 C$ as required.
11. Find
(b) the derivative with respect to x of the following.
(i) $\frac{\cos 2 x}{1+\sin 2 x}$

Method 1
Let $\mathrm{y}=\frac{\cos 2 x}{1+\sin 2 x}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(1+\sin 2 x) \frac{d}{d x} \cos 2 x-\cos 2 x \frac{d}{d x}(1+\sin 2 x)}{(1+\sin 2 x)^{2}} \\
& =\frac{-2 \sin 2 x-2 \sin ^{2} 2 x-2 \cos ^{2} 2 x}{(1+\sin 2 x)^{2}} \\
& =\frac{-2 \sin 2 x\left(1+\sin ^{2} 2 x\right)}{(1+\sin 2 x)^{2}} \\
& =\frac{-2}{1+\sin 2 x}
\end{aligned}
$$

Method 2

$$
\begin{aligned}
& \text { Let } \mathrm{y}
\end{aligned} \begin{aligned}
& \text { Iny }=\ln \cos 2 x \\
& 1+\sin 2 x \\
& \frac{1}{y} \frac{d y}{d x}=\frac{-2 \sin 2 x}{\cos 2 x}-\ln (1+\sin 2 \mathrm{x}) \\
&=\frac{-2 \sin 2 x(1+\sin 2 x}{\cos 2 x(1+\sin 2 x)-2 \cos ^{2} 2 x} \\
&=\frac{-2\left[\sin 2 x+\sin ^{2} 2 x+2 \cos ^{2} 2 x\right]}{\cos 2 x(1+\sin 2 x)} \\
&=\frac{-2}{\cos 2 x} \\
& \frac{d y}{d x}=\frac{-2}{\cos 2 x} \mathrm{y}=\frac{-2}{\cos 2 x} \cdot \frac{\cos 2 x}{1+\sin 2 x} \\
& \frac{d y}{d x}=\frac{-2}{1+\sin 2 x}
\end{aligned}
$$

(ii) $\ln (\sec x+\tan x)$

Solution

Let $\mathrm{y}=\ln (\sec \mathrm{x}+\tan \mathrm{x})$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\sec x \tan x+\sec ^{2} x}{\sec x+\tan x} \\
& =\frac{\sec x(\tan x+\sec x}{\sec x+\tan x} \\
& =\sec x
\end{aligned}
$$

(b) $\int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x$

Solution

Method 1

Using integration by parts
$\int u\left(\frac{d v}{d x}\right) d x=u v-\int v\left(\frac{d u}{d x}\right) d x$
Let $\mathrm{u}=\mathrm{x}^{2}, \frac{d u}{d x}=\sin x$

$$
\begin{aligned}
\frac{d u}{d x}=2 x, \mathrm{v} & =-\cos \mathrm{x} \\
\int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x & =-\mathrm{x}^{2} \cos \mathrm{x}-2 \int(-\operatorname{cox}) x d x \\
& =-x^{2} \cos \mathrm{x}+2 \int x \cos x d x
\end{aligned}
$$

Let $\mathrm{u}=\mathrm{x}, \frac{d y}{d x}=\cos x$

$$
\begin{aligned}
& \frac{d u}{d x}=1, v=\sin \mathrm{x} \\
& \int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x \\
& =-x^{2} \cos x+2\left[\sin x-\int(\sin x) \cdot 1 d x\right] \\
& =-x^{2} \cos \mathrm{x}+2 \mathrm{x} \sin \mathrm{x}-2 \int \sin x d x \\
& =-x^{2} \cos x+2 x \sin x+2 \cos x+c \\
& \int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x=\left[-x^{2} \cos x+2 x \sin x+2 \cos x\right]_{0}^{\frac{\pi}{2}} \\
& =\left[-\left(\frac{\pi}{2}\right)^{2} \cos \frac{\pi}{2}+2 \cdot \frac{\pi}{2} \sin \frac{\pi}{2}+2 \operatorname{co} \frac{\pi}{2}\right]-2 \cos \frac{\pi}{2} \\
& =\pi-2
\end{aligned}
$$

Method 2

Using simplified form (special case) of integration by parts

	Differentiate	integrate	
+	x^{2}		$\sin x$
-	$2 x$		$-\cos x$
+	2		$-\sin x$
-	0		$\cos x$

$\int_{0}^{\frac{\pi}{2}} x^{2} \sin x d x=\left[-x^{2} \cos x+2 x \sin x+2 \cos x\right]_{0}^{\frac{\pi}{2}}$
$=\left[-\left(\frac{\pi}{2}\right)^{2} \cos \frac{\pi}{2}+2 \cdot \frac{\pi}{2} \sin \frac{\pi}{2}+2 \cos \frac{\pi}{2}\right]-2 \cos \frac{\pi}{2}$
$=\pi-2$
12. Triangle $O A B$ has $O A=a$ and $O B=b . C$ is a point on $O A$ such that $O C=\frac{2 a}{3}$. D is the midpoint of $A B$. When $C D$ is produced it meets $O B$ at E., such that $D E=n C D$ and $B E$ $=\mathrm{kb}$. Express DE in terms of
(a) n, a and b

Solution

$$
\begin{aligned}
\mathrm{DE} & =\mathrm{nCD} \\
& =\mathrm{n}(\mathrm{CA}+\mathrm{AD}) \\
& =\mathrm{n}\left[\frac{1}{3} a+\frac{1}{2}(B O+O A]\right.
\end{aligned}
$$

$=\mathrm{n}\left[\frac{1}{3} a+\frac{1}{2}(-b+a)\right]$
$=\mathrm{n}\left[\frac{1}{3} a-\frac{1}{2} b+\frac{1}{2} a\right]$
$=\mathrm{n}\left[\frac{5}{6} a-\frac{1}{2} b\right]$
$=\frac{5 n}{6} a-\frac{n}{2} b$
(b) k, a and b

Solution

$D E=D B+B E$
$=\frac{1}{2} A B+k b$
$=\frac{1}{2}(-b+a)+k b$
$=-\frac{1}{2} b+\frac{1}{2} a+k b$
$=\frac{1}{2} a+\frac{1}{2}(2 k-1) b$

Hence find the values of n and k.
Equating DE in (a) to DE in (b)
$\frac{5 n}{6} a-\frac{n}{2} b=\frac{1}{2} a+\frac{1}{2}(2 k-1) b$
For a
$\frac{5 n}{6} a=\frac{1}{2} a=>\mathrm{n}=\frac{3}{5}$
For b
$-\frac{n}{2}=\frac{1}{2}(2 k-1)$
$-n=2 k-1$
$-\frac{3}{5}=2 k-1$
$2 \mathrm{k}=\frac{2}{5}$
$k=\frac{1}{5}$
13. (a) Find the equation of the locus of a point which moves such that its distance from $D(4,5)$ is twice its distance from origin.
Solution

$\mathrm{OP}=\sqrt{x^{2}+y^{2}}$
$\mathrm{PD}=\sqrt{(x-4)^{2}+(y-5)^{2}}$
$P D=30 P$

$$
\begin{aligned}
& \sqrt{(x-4)^{2}+(y-5)^{2}}=\sqrt{x^{2}+y^{2}} \\
& (x-4)^{2}+(y-5)^{2}=9\left(x^{2}+y^{2}\right) \\
& 8 x^{2}+8 y^{2}+8 x+10 y-41=0
\end{aligned}
$$

(b) The line $y=m x$ intersects the curve $y=2 x^{2}$ $-x$ at points A and B. Find the equation of locus of the point P which divides $A B$ in the ratio 2:5.

Solution

Substituting for $y=m x$ into $y=2 x^{2}-x$
$\mathrm{mx}=2 \mathrm{x} 2-\mathrm{x}$
$2 x 2-x-m x=0$
$x(2 x-1-m)=0$
Either $x=0$
Or
$2 x=m+1$
$\mathrm{x}=\frac{m+1}{2}$
If $x=0, y=0$
$(x, y)=(0,0)$
If $\mathrm{x}=\frac{m+1}{2}, \mathrm{y}=\frac{m(m+1)}{2}$
$(\mathrm{x}, \mathrm{y})=\left(\frac{m+1}{2}, \frac{m(m+1)}{2}\right)$
$\mathrm{A}(0,0) \quad \mathrm{P}(\mathrm{x}, \mathrm{y}) \quad \mathrm{B}\left(\frac{m+1}{2}, \frac{m(m+1)}{2}\right)$
$\mathrm{AP}=\frac{2}{7} A B$
$\binom{x-0}{y-0}=\frac{2}{7}\binom{\frac{m+1}{2}-0}{\frac{m(m+1)}{2}-0}$
$\binom{x}{y}=\frac{2}{7}\binom{\frac{m+1}{2}}{\frac{m(m+1)}{2}}=\binom{\frac{m+1}{7}}{\frac{m(m+1)}{7}}$
$x=\frac{m+1}{7}$
$\mathrm{m}=7 \mathrm{x}-1$
$\mathrm{y}=\frac{m(m+1)}{7}$.
Substituting m into equation (ii)
$y=\frac{(7 x-1)(7 x-1+1)}{7}$
$y=7 x^{2}-x$
14. (a) On the same axis, sketch the curves
$y=x(x+2)$ and $y=x(4 x-x)$

Solution

Considering $y=x(x+2)$
If $x=0, y=0$
If $y=0$

$$
\begin{aligned}
& \mathrm{x}(\mathrm{x}+2)=0 \\
& \mathrm{x}=0 \text { or } \mathrm{x}=-2 \\
& (\mathrm{x}, \mathrm{y})=(0,0) \text { and }(-2,0) \\
& \text { Finding the turning point } \\
& \mathrm{y}=\mathrm{x}^{2}+2 \mathrm{x} \\
& \frac{d y}{d x}=2 x+2 \\
\Rightarrow & 2 \mathrm{x}+2=0 \\
& \mathrm{x}=-1 ; \mathrm{y}=1-2=-1
\end{aligned}
$$

The turning point $=(-1,-1)$
Finding the nature of the turning point;

x	-2	-1	0
$\frac{d y}{d x}$	-2	0	2

OR
By finding the second derivative
$\frac{d y}{d x}=2 x+2$
$\frac{d^{2} y}{d x^{2}}=2(\mathrm{~min})$
Hence the turning point is minimum
Considering $y=x(x-4)$
Finding intercept
If $x=0, y=0$
$(x, y)=(0,0)$
If $y=0$
$x(x-4)=0$
Either $x=0$ or $x=4$
$(x, y)=(0,0)$ and $(0,4)$
Finding the turning point
$y=4 x-x^{2}$
$\frac{d y}{d x}=4-2 x$
$\Rightarrow 0=4-2 x$
$\mathrm{x}=2, \mathrm{y}=4$
The turning point $=(2,4)$
Finding the nature of the turning point

Or
By finding the second derivative;
$\frac{d y}{d x}=4-2 x$
$\frac{d^{2} y}{d x^{2}}=-2(\max)$
Hence the turning point is maximum

Finding the point of intersection of the curves
$x^{2}+2 x=4 x-x^{2}$
$2 x^{2}-2 x=0$
$2 x(x-1)=0$
Either $x=0$ or $x=1$;
If $x=0, y=0 ;(x, y)=(0,0)$
If $x=1, y=3 ;(x, y)=(1,3)$

(b) Find the area enclosed by the two curve in (a)

Area of shaded region
$=\int_{0}^{1}\left(4 x-x^{2}\right) d x-\int_{0}^{1}\left(x^{2}+2 x\right) d x$
$=\left[2 x^{2}-\frac{x^{3}}{3}\right]_{0}^{1}-\left[\frac{x^{3}}{3}+x^{2}\right]_{0}^{1}$
$=\left[2-\frac{1}{3}\right]_{0}^{1}-\left[\frac{1}{3}+1\right]_{0}^{1}=\frac{1}{3}$ sq. units
(c) Determine the volume of the solid generated when the area in (a) is rotated about the x-axis.

Solution

$$
\begin{aligned}
\mathrm{V} & =\pi \int_{0}^{1}\left[\left(4 x-x^{2}\right)^{2}-\left(x^{2}+2 x\right)^{2}\right] \\
& =\pi \int_{0}^{1}\left(12 x^{2}-12 x^{3}\right) \\
& =\pi\left[4 x^{3}+3 x^{4}\right]_{0}^{1} \\
& =\pi(4-3) \\
& =\pi \text { cubic units }
\end{aligned}
$$

15. Solve for x in the following equation
(a) $9^{x}-3^{x+1}=10$

Solution
$9^{x}-3^{x+1}=10$
$3^{2 x}-3^{x} \cdot 3^{1}=10$
Let $y=3^{x}$
$\Rightarrow y^{2}-3 y=10$
$(y-5)(y+2)=0$
Either $\mathrm{y}=5$ or $\mathrm{y}=-2$
If $y=5$
$3^{x}=5$
$x \log 3=\log 5$
$x=\frac{\log 5}{\log 3}=1.465$
If $y=-2$
$3^{x}=-2$
$x \log 3=\log -2$
$x=\frac{\log -2}{\log 3}($ invalid $)$
(b) $\log _{4} x^{2}-6 \log _{x} 4-1=0$

Solution

Expressing the logs to base 4
$2 \log _{4} x-\frac{\log _{4} 4^{6}}{\log _{4} x}=1$
$2 \log _{4} x-\frac{6}{\log _{4} x}=1$
Let $\log _{4} x=y$
$2 y^{2}-y-6=0$
$(y-2)(2 y+3)=0$
Either $\mathrm{y}=2$ or $\mathrm{y}=-\frac{3}{2}$
If $y=2$
$\log _{4} x=2$
$4^{2}=x$
$x=16$
If $y=-1.5$
$\log _{4} x=-1.5$
$4^{-1.5}=x$
$x=\frac{1}{8}$
16. At 3.00 pm , the temperature of a hot metal was $80^{\circ} \mathrm{C}$ and that of the surrounding is $20^{\circ} \mathrm{C}$. At 3.03 pm the temperature of the metal had dropped to $42^{\circ} \mathrm{C}$. The rate of cooling of the metal was directly proportional to the difference between its temperature θ and that of the surroundings.
(a) (i) Write a differential equation to represent the rate of cooling of the metal
Solution
$-\frac{d \theta}{d t} \propto(\theta-20)$
$\frac{d \theta}{d t}=-k(\theta-20)$
By separating variable
$\frac{d \theta}{\theta-20}=-k d t$
$\int \frac{d \theta}{\theta-20}=-k \int d t$
$\operatorname{In}(\theta-20)=-k t+c$
$\theta-20=e^{-k t+c}$
$\theta-20=e^{-k t} . e^{c}$
Let $e^{c}=A$
$\theta=20+A e^{-k t}$
(ii) Solve the differential equation using the given conditions.

Solution

At time $\mathrm{t}=0, \theta=80^{0}$
$A=80-20=60$
$\theta=20+60 e^{-k t}$
At time $t=3 \mathrm{~min}, \theta=42^{\circ} \mathrm{C}$
$42-20=60 e^{-k t}$
$2260 e^{-k t}$
$\mathrm{k}=\frac{1}{3} \operatorname{In}\left(\frac{60}{22}\right)$
(b) Find the temperature of the metal at 3.05 pm

Solution

After 5 min
$\theta=20+60 e^{-\frac{5}{3} \operatorname{In}\left(\frac{60}{22}\right)}=31.27^{\circ} \mathrm{C}$

Dr. Bbosa Science

