

UACE MATHEMATICS PAPER 1 2012 and marking guide

Section A

1. Solve the simultaneous equations

3x - y + z = 3x - 2y + 4z = 32x + 3y - z = 4

- 2. (a) Prove that $\frac{tan\theta}{1+tan^2\theta} = sin2\theta$ (b) Solve $\sin 2\theta = \cos \theta$ for $0^0 \le \theta \le 90^0$.
- 3. Differentiate $\frac{3x-1}{\sqrt{x^2+1}}$ with respect to x.
- 4. A line passes through the points A(4, 6, 3 and B(1, 3, 3)
 - (a) Find the vector equation of the line
 - (b) Show that the point (2, 4, 3) lies on the line above
- 5. The sum of the first n terms of Geometric Progression (G.P) is $\frac{4}{3}(x^n 1)$. Find the nth term as an integral power of 2.
- 6. The line y = mx + c is a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{y^2} = 1$ when $\pm \sqrt{a^2m^2 + b^2}$ find the equations of the tangents to the ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ from the point $(0, \sqrt{5})$

7. Using a suitable substitution, find $\int \frac{\sin^{-1} 2x}{\sqrt{1-4x^2}}$.

8. Find the equation of the normal to the curve $x^2y + 3y^2 - 4x - 12 = 0$ at the point (0, 2).

Section **B**

- 9. If $z = \frac{(2-i)(5+12i)}{(1+2i)^2}$

 - (a) Find
 - (i) Modulus of z
 - (ii) Argument of z
 - (b) Represent z on a complex plane
 - (c) Write z in the polar form
- 10. (a) Solve the equation $8\cos^4 x 10\cos^2 x + 3 = 0$
 - (b) Prove that cos4A cos4B ncos4C = 4sin2Bsin2Ccos2A 1 given that A, B and C are angles of a triangle.
- 11. Find
 - (a) the derivative with respect to x of the following.
 - cos2x (i) 1+sin2x

(ii) In(secx + tanx)

(b) $\int_0^{\frac{\pi}{2}} x^2 sinx dx$

- 12. Triangle OAB has OA = a and OB = b. C is a point on OA such that $OC = \frac{2a}{3}$. D is the midpoint of AB. When CD is produced it meets OB at E., such that DE = nCD and BE = kb. Express DE in terms of
 - (a) n, a and b
 - (b) k, a and b

Hence find the values of n and k.

- 13. (a) Find the equation of the locus of a point which moves such that its distance from D(4, 5) is twice its distance from origin.
 - (b) The line y= mx intersects the curve $y=2x^2 x$ at points A and B. Find the equation of locus of the point P which divides AB in the ratio 2:5.
- 14. (a) On the same axis, sketch the curves y = x(x+2) and y = x(4x x)
 - (b) Find the area enclosed by the two curve in (a)
 - (c) Determine the volume of the solid generated when the area in (a) is rotated about the x-axis.
- 15. Solve for x in the following equation
 - (a) $9^{x} 3^{x+1} = 10$
 - (b) $\log_4 x^2 6 \log_x 4 1 = 0$
- 16. At 3.00pm, the temperature of a hot metal was 80° C and that of the surrounding is 20° C. At 3.03pm the temperature of the metal had dropped to 42° C. The rate of cooling of the metal was directly proportional to the difference between its temperature θ and that of the surroundings.
 - (a) (i) Write a differential equation to represent the rate of cooling of the metal.(ii) Solve the differential equation using the given conditions.
 - (b) Find the temperature of the metal at 3.05pm.

Marking guides

1. Solve the simultaneous equations 3x - y + z = 3x - 2y + 4z = 32x + 3y - z = 4Solution Method 1 3x - y + z = 3(i) x - 2y + 4z = 3.....(ii) 2x + 3y - z = 4(iii) 2Eqn. (i) – eqn. (ii) 5x - 2z = 3(iv) 3eqn. (i) + eqn. (iii) 11x + 2z = 13(v) Eqn. (iv) + eqn. (v)16x = 16x = 1 Substituting x into eqn. (iv) 5 – 2z = 3 => z = 1 Substituting x and z into eqn. (i) 3 - y + 1 = 3 = y = 1:: x = 1, y = 1 and z = 1Method 2

By using row reduction to echelon form Expressing the equation in matrix form

$$\begin{pmatrix} 3 & -1 & 1 \\ 1 & -2 & 4 \\ 2 & 3 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix}$$

The augmented matrix
$$\begin{pmatrix} 3 & -1 & 1 & 3 \\ 3 & -1 & 1 & 3 \end{pmatrix}$$

$$1 -2 4:3$$

Transforming augmented matrix a unity triangular matrix

$$\begin{array}{l} R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{1} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{1} \\ R_{1} \\ R_{1} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{1} \\ R_{1}$$

:: x = 1, y = 1 and z = 1

2. (a) Prove that $\frac{tan\theta}{1+tan^2\theta} = sin2\theta$ Solution

Considering LHS

$$\frac{\tan\theta}{1+\tan^2\theta} = \frac{2\sin\theta}{\cos\theta} + \left(1 + \frac{\sin^2\theta}{\cos^2\theta}\right)$$
$$= \frac{2\sin\theta}{\cos\theta} x \frac{\cos^2\theta}{\cos^2\theta + \sin^2\theta}$$
$$= \frac{2\sin\theta}{\cos\theta} x \frac{\cos^2\theta}{1}$$
$$= 2\sin\theta\cos\theta$$
$$= \sin2\theta$$

(b) Solve $\sin 2\theta = \cos \theta$ for $0^0 \le \theta \le 90^0$. Solution $2\sin\theta\cos\theta = \cos\theta$ $2\sin\theta\cos\theta - \cos\theta = 0$ $\cos\theta(2\sin\theta - 1) = 0$ Either $\cos\theta = 0 => \theta = \cos^{-1}\theta = 90^0$ Or $\sin\theta = \frac{1}{2} => \theta = \sin^{-1}(\frac{1}{2}) = 30^0$ Hence $\theta = 30^0$ or 90^0 .

3. Differentiate $\frac{3x-1}{\sqrt{x^2+1}}$ with respect to x. Solution Method 1 Let $y = \frac{3x-1}{\sqrt{x^2+1}}$ Using $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ $\frac{dy}{dx} = \frac{(x^2+1)^{\frac{1}{2}}\frac{d}{dx}(3x-1) - (3x-1)\frac{d}{dx}(x^2+1)^{\frac{1}{2}}}{(\sqrt{x^2+1})^2}$ $= \frac{3(x^2+1)^{\frac{1}{2}} - \frac{1}{2}(x^2+1)^{-\frac{1}{2}}(3x-1).2x}{x^2+1}$ $= \frac{3(x^2+1)^{\frac{1}{2}} - \frac{x(3x-1)}{x^2+1}}{x^2+1}$ $= \frac{3(x^2+1) - x(3x-1)}{x^2+1(x^2+1)^{\frac{1}{2}}}$ $= \frac{x+3}{(x^2+1)^{\frac{3}{2}}}$

Method 2

Let
$$y = \frac{3x-1}{\sqrt{x^2+1}}$$

Iny = $In\left(\frac{3x-1}{\sqrt{x^2+1}}\right) = In(3x-1) - In(x^2+1)^{\frac{1}{2}}$

$$= \ln(3x-1) - \frac{1}{2}\ln(x^{2}+1)$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{3}{3x-1} - \frac{x}{x^{2}+1}$$

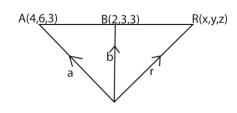
$$= \frac{3(x^{2}+1) - x(3x-1)}{(3x-1)(x^{2}+1)}$$

$$= \frac{x+3}{(3x-1)(x^{2}+1)} \cdot \frac{3x-1}{\sqrt{x^{2}+1}}$$

$$= \frac{x+3}{(3x-1)(x^{2}+1)} \cdot \frac{3x-1}{\sqrt{x^{2}+1}}$$

- 4. A line passes through the points A(4, 6, 3 and B(1, 3, 3)
 - (a) Find the vector equation of the line **Solution**

Let point R(x, y, z) lie on the same line



AR is parallel to AB

$$r = \begin{pmatrix} 4 \\ 6 \\ 3 \end{pmatrix} + \lambda \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix} - \begin{pmatrix} 4 \\ 6 \\ 3 \end{bmatrix}$$
$$= \begin{pmatrix} 4 \\ 6 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ -3 \\ 0 \end{pmatrix}$$

(b) Show that the point (2, 4, 3) lies on the line above

Solution

If the point C(2, 4, 3) lies on the line, then this point must satisfy the above equation. So the value of λ must be same throughout

$$\begin{pmatrix} 2\\4\\3 \end{pmatrix} = \begin{pmatrix} 4\\6\\3 \end{pmatrix} + \lambda \begin{pmatrix} -3\\-3\\0 \end{pmatrix}$$
$$\begin{pmatrix} 2\\4\\3 \end{pmatrix} = \begin{pmatrix} 4-3\lambda\\6-3\lambda\\3 \end{pmatrix}$$
For i
$$2 = 4 - 3\lambda$$
$$\lambda = \frac{2}{3}$$
For j
$$4 = 6 - 3\lambda$$
$$\lambda = \frac{2}{3}$$

For k 3 = 3

Since the value of $\lambda = \frac{2}{3}$ is constant, then the point C(2, 4, 3) lies on the line in (a) above

- 5. The sum of the first n terms of Geometric Progression (G.P) is $\frac{4}{3}(x^n - 1)$. Find the nth term as an integral power of 2. Solution $s_n = \frac{a(r^n - 1)}{r - 1}$ Comparing with $s_n = \frac{4}{3}(x^n - 1)$. ⇒ a = 4 r - 1 = 3; r = 4The n^{th} term, $U_n = ar^n - 1$ $= 4 x^{4n-1}$ $= 4 \times 4^{2(n-1)}$ = 2^{2n} OR Given $s_n = \frac{4}{3}(x^n - 1)$ For n = 1First term a = $\frac{4}{3}(4^1 - 1)$ $=\frac{4}{3}(3)=4$ For n = 2First term a = $\frac{4}{3}(4^2 - 1)$ $=\frac{4}{3}((16-1)-4) = 4$ $=\frac{4}{3}(15-4)$ = 20 - 4 = 164r = 16 r = 4 $U_n = ar^n - 1$ = 4 x $^{4n-1}$ = 4 x 4 $^{2(n-1)}$ = 2 2n
- 6. The line y = mx + c is a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{y^2} = 1$ when $c = \pm \sqrt{a^2 m^2} + b^2$ find the equations of the tangents to the ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ from the point (0, $\sqrt{5}$) **Solution** y = mx + c

Substituting for c= $\pm \sqrt{a^2m^2 + b^2}$ $y = mx \pm \sqrt{a^2m^2 + b^2}$ For ellipse $\frac{x^2}{4} + \frac{y^2}{1} = 1$ a² = 2 and b² = 1 Substituting of a² and b² $y = mx \pm \sqrt{4m^2 + 1}$ For point $(0,\sqrt{5})$ lies on the tangent $\sqrt{5} = +\sqrt{4m^2 + 1}$ Squaring both sides $5 = 4m^2 + 1$ $4m^2 = 4$ $m^2 = 1$ m =±1 When m = 1 $y = x \pm \sqrt{5}$ Testing for the correct equation by substitution using $(x, y) = (0, \sqrt{5})$ $\sqrt{5} = 0 + \sqrt{5}$ Hence the equation of the tangent is $v = x + \sqrt{5}$ Testing for the correct equation by substitution using $(x, y) = (0, \sqrt{5})$ $\sqrt{5} = 0 \pm \sqrt{5}$ Hence the equation of the tangent is $y = x + \sqrt{5}$ When m = -1 $v = -x \pm \sqrt{5}$ Testing for the correct equation by substitution using $(x, y) = (0, \sqrt{5})$ $\sqrt{5} = 0 \pm \sqrt{5}$ Hence the equation of the tangent is $y = -x + \sqrt{5}$ ∴the equation of the tangent are $y = \pm x + \sqrt{5}$ 7. Using a suitable substitution, find $\int \frac{\sin^{-1} 2x}{\sqrt{1-4x^2}}$. Solution Let 2x = sinu 2dx = cosudu $dx = \frac{1}{2}cosudu$ $\Rightarrow \int \frac{\sin^{-1} 2x}{\sqrt{1-4x^2}} = \int \frac{u}{\sqrt{1-\sin^2 u}} \cdot \frac{1}{2} cosudu$

$$= \int \frac{u}{\cos u} \cdot \frac{1}{2} \cos u du$$

$$= \frac{1}{2} u du = \frac{1}{4} u^{2} + c$$

$$= \left(\frac{\sin^{-1} 2x}{2}\right)^{2}$$

$$\therefore \int \frac{\sin^{-1} 2x}{\sqrt{1 - 4x^{2}}} = \left(\frac{\sin^{-1} 2x}{2}\right)^{2}$$

8. Find the equation of the normal to the curve $x^2y + 3y^2 - 4x - 12 = 0$ at the point (0, 2). Solution $x^2y + 3y^2 - 4x - 12 = 0$ $x^2 \frac{dy}{dx} + 2xy + 6y \frac{dy}{dx} - 4 = 0$ $(x^2 + 6y) \frac{dy}{dx} = 4 - 2xy$ $\frac{dy}{dx} = \frac{4 - 2xy}{(x^2 + 6y)}$ At point (0, 2) $\frac{dy}{dx} = \frac{4 - 0}{(0 + 12)} = \frac{1}{3}$ Gradient of the normal = -3 Let a point (x, y) lie on the normal $\Rightarrow \frac{y - 2}{x - 0} = -3$ y = -3x + 2

Section **B**

9. If
$$z = \frac{(2-i)(5+12i)}{(1+2i)^2}$$

(a) Find
(i) Modulus of z

Solution

Method 1

$$z = \frac{(2-i)(5+12i)}{(1+2i)^2}$$

= $\frac{10+24i-5i+12}{1+4i-4}$
= $\frac{22+19i}{-3+4i}$
= $\frac{(22+19i)(-3-4i)}{(-3+4i)(-3-4i)}$
= $\frac{-66-88i-57i+76}{(-3)^2+(4i)^2}$
= $\frac{10-145i}{9+16} = \frac{10-145i}{25}$
 $z = \frac{2}{5} - \frac{29}{5}i$
 $|z| = \sqrt{\left(\frac{2}{5}\right)^2 + \left(\frac{29}{5}\right)^2} = 5.814$

Method 2

$$|z| = \left| \frac{(2-i)(5+12i)}{|(1+2i)|^2} \right|$$
$$= \frac{|(2-i)||(5+12i)|}{|(1+2i)|^2}$$
$$= \frac{|(2-i)||(5+12i)|}{|(1+2i)|^2}$$
$$= \frac{\sqrt{(2^2+(-1)^2)}.\sqrt{(5^2+12^2)}}{\left(\sqrt{(1^2+2^2)}\right)^2}$$

$$=\frac{\sqrt{5}.\sqrt{169}}{\left(\sqrt{2}\right)^2}5.814$$

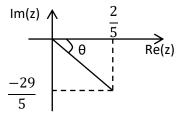
(ii) Argument of z

$$\begin{array}{c|c}
 y & \frac{2}{5} \\
 \theta & -29 \\
 \hline
 & 5 \\
 \hline
 & 5 \\
 \end{array}$$

$$\tan\theta = \frac{-29}{5}x\frac{5}{2} = \frac{-29}{2}$$
$$\theta = \tan^{-1}\left(\frac{-29}{2}\right) = -86.055$$
$$\operatorname{Arg}(z) = -86.055$$

Method 2

- Arg(z) = arg(2 i) + arg(5+ 12i) 2arg(1+ 2i) = -26.565[°] + 67.38[°] - 126.87[°] =-86.055[°]
 - (b) Represent z on a complex plane



(c) Write z in the polar form z = $5.814(\cos(-86.055^{\circ}) - i\sin(-86.055^{\circ}))$ = $5.814(\cos 0.478\pi - i\sin 0.478\pi)$

10. (a) Solve the equation

 $8\cos^4 x - 10\cos^2 x + 3 = 0$ Solution

Let $\cos 2x = y$

⇒ $8y^2 - 6y - 4y + 3 = 0$ (2y - 1)(4y - 3) = 0 Either y = $\frac{1}{2}$ or y = $\frac{3}{4}$

If
$$y = \frac{1}{2} \Rightarrow \cos^2 x = \frac{1}{2}$$

 $\cos x = \pm \frac{1}{\sqrt{2}}$
Taking $\cos x = \frac{1}{\sqrt{2}}$
 $x = \cos^{-1} \left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$
Taking $\cos x = -\frac{1}{\sqrt{2}}$
 $x = \cos^{-1} \left(-\frac{1}{\sqrt{2}}\right) = 135^{\circ}$
If $y = \frac{3}{4} \Rightarrow \cos^2 x = \frac{3}{4}$
 $\cos x = \pm \frac{\sqrt{3}}{2}$
Taking $\cos x = \frac{\sqrt{3}}{2}$
 $x = \cos^{-1} \left(\frac{\sqrt{3}}{2}\right) = 30^{\circ}$
Taking $\cos x = -\frac{1}{\sqrt{2}}$
 $x = \cos^{-1} \left(-\frac{1}{\sqrt{2}}\right) = 150^{\circ}$
 $\therefore x = 30^{\circ}, 45^{\circ}, 135^{\circ}, 150^{\circ}$

 (b) Prove that cos4A - cos4B - cos4C = 4sin2Bsin2Ccos2A - 1 given that A, B and C are angles of a triangle

LHS = cos4A - cos4B -cos4C
= cos4A - [cos4B + cos4C]
= cos4A -
$$\left[2cos\left(\frac{4B+4C}{2}\right)cos\left(\frac{4B-4C}{2}\right)\right]$$

= cos4A - 2cos(2B + 2C)cos(2B - 2C)
= 2cos²2A - 1 - 2cos(2B + 2C)cos(2B - 2C) - 1
Now, A + B + C = 180⁰
2A + 2B + 2C = 360⁰
2B + 2C = (360⁰ - 2A)
cos (2B + 2C) = cos (360⁰ - 2A)
cos (2B + 2C) = cos 2A
By substitution, we have
= 2cos²2A - 2cos2Acos(2B - 2C) - 1
= 2cos2A[cos2A - cos(2B - 2C)] - 1
= 2cos2A[cos2A - cos(2B - 2C)] - 1
= 2cos2A[sin2Bsin2C] - 1

= 4cos2Asin2Bsin2C as required.

11. Find

(b) the derivative with respect to x of the following.

(i)
$$\frac{\cos 2x}{1+\sin 2x}$$

Method 1
Let $y = \frac{\cos 2x}{1+\sin 2x}$

$$\frac{dy}{dx} = \frac{(1+\sin 2x)\frac{d}{dx}\cos 2x - \cos 2x\frac{d}{dx}(1+\sin 2x)}{(1+\sin 2x)^2}$$

$$= \frac{-2\sin 2x - 2\sin^2 2x - 2\cos^2 2x}{(1+\sin 2x)^2}$$

$$= \frac{-2\sin 2x(1+\sin^2 2x)}{(1+\sin 2x)^2}$$

$$= \frac{-2}{1+\sin 2x}$$
Method 2
Let $y = \frac{\cos 2x}{1+\sin 2x}$
Iny = Incos 2x - In(1+\sin 2x)

$$\frac{1}{y}\frac{dy}{dx} = \frac{-2\sin 2x}{\cos 2x} - \frac{2\cos 2x}{1+\sin 2x}$$

$$= \frac{-2\sin 2x(1+\sin 2x) - 2\cos^2 2x}{\cos 2x(1+\sin 2x)}$$

$$= \frac{-2[\sin 2x+\sin^2 2x+2\cos^2 2x]}{\cos 2x(1+\sin 2x)}$$

$$= \frac{-2[\sin 2x+\sin^2 2x+2\cos^2 2x]}{\cos 2x(1+\sin 2x)}$$

$$= \frac{-2}{\cos 2x}$$

$$\frac{dy}{dx} = \frac{-2}{\cos 2x}$$

$$y = \frac{-2}{\cos 2x} \cdot \frac{\cos 2x}{1+\sin 2x}$$

(ii) In(secx + tanx) Solution

> Let y = In(secx + tanx) $\frac{dy}{dx} = \frac{secxtanx + sec^{2}x}{secx + tanx}$ $= \frac{secx(tanx + secx)}{secx + tanx}$ = secx

(b) $\int_0^{\frac{\pi}{2}} x^2 sinx dx$

Solution

Method 1

Using integration by parts

$$\int u \left(\frac{dv}{dx}\right) dx = uv - \int v \left(\frac{du}{dx}\right) dx$$
Let $u = x^2$, $\frac{du}{dx} = sinx$
 $\frac{du}{dx} = 2x$, $v = -cosx$
 $\int_0^{\frac{\pi}{2}} x^2 sinx dx = -x^2 cosx - 2 \int (-cox) x dx$
 $= -x^2 cosx + 2 \int x cosx dx$
Let $u = x$, $\frac{dy}{dx} = cosx$

$$\frac{du}{dx} = 1, v = \sin x$$

$$\int_{0}^{\frac{\pi}{2}} x^{2} \sin x dx$$

$$= -x^{2} \cos x + 2[\sin x - \int (\sin x) \cdot 1 dx]$$

$$= -x^{2} \cos x + 2x \sin x - 2 \int \sin x dx$$

$$= -x^{2} \cos x + 2x \sin x + 2 \cos x + c$$

$$\int_{0}^{\frac{\pi}{2}} x^{2} \sin x dx = [-x^{2} \cos x + 2x \sin x + 2\cos x]_{0}^{\frac{\pi}{2}}$$

$$= \left[-\left(\frac{\pi}{2}\right)^{2} \cos \frac{\pi}{2} + 2 \cdot \frac{\pi}{2} \sin \frac{\pi}{2} + 2\cos \frac{\pi}{2} \right] - 2\cos \frac{\pi}{2}$$

$$= \pi - 2$$

Method 2

Using simplified form (special case) of integration by parts

	Differentiate	integrate
+	x ² _	sinx
-	2x	-cosx
+	2	-sinx
-	0	COSX
π		π

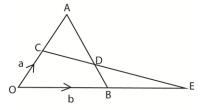
$$\int_{0}^{\frac{\pi}{2}} x^{2} sinx dx = \left[-x^{2} cos x + 2x sin x + 2cos x\right]^{\frac{\pi}{2}}$$

$$= \left[-\left(\frac{\pi}{2}\right)^2 \cos\frac{\pi}{2} + 2 \cdot \frac{\pi}{2} \sin\frac{\pi}{2} + 2 \cdot \cos\frac{\pi}{2} \right] - 2 \cos\frac{\pi}{2}$$

= π - 2

12. Triangle OAB has OA = a and OB = b. C is a point on OA such that OC = $\frac{2a}{3}$. D is the midpoint of AB. When CD is produced it meets OB at E., such that DE = nCD and BE = kb. Express DE in terms of (a) n, a and b

Solution



$$= n(CA + AD)$$
$$= n\left[\frac{1}{3}a + \frac{1}{2}(BO + OA)\right]$$

$$= n \left[\frac{1}{3}a + \frac{1}{2}(-b + a) \right]$$
$$= n \left[\frac{1}{3}a - \frac{1}{2}b + \frac{1}{2}a \right]$$
$$= n \left[\frac{5}{6}a - \frac{1}{2}b \right]$$
$$= \frac{5n}{6}a - \frac{n}{2}b$$

(b) k, a and b

DE = DB + BE
=
$$\frac{1}{2}AB + kb$$

= $\frac{1}{2}(-b + a) + kb$
= $-\frac{1}{2}b + \frac{1}{2}a + kb$
= $\frac{1}{2}a + \frac{1}{2}(2k - 1)b$

Hence find the values of n and k.

Equating DE in (a) to DE in (b)

$$\frac{5n}{6}a - \frac{n}{2}b = \frac{1}{2}a + \frac{1}{2}(2k - 1)b$$

For a

$$\frac{5n}{6}a = \frac{1}{2}a = > n = \frac{3}{5}$$

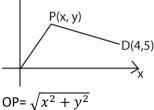
For b

$$-\frac{n}{2} = \frac{1}{2}(2k - 1)$$

-n = 2k - 1
$$-\frac{3}{5} = 2k - 1$$

2k = $\frac{2}{5}$
k = $\frac{1}{5}$

 (a) Find the equation of the locus of a point which moves such that its distance from D(4, 5) is twice its distance from origin.



 $PD = \sqrt{(x-4)^2 + (y-5)^2}$ PD = 3OP $\sqrt{(x-4)^2 + (y-5)^2} = \sqrt{x^2 + y^2}$ $(x-4)^2 + (y-5)^2 = 9(x^2 + y^2)$ $8x^2 + 8y^2 + 8x + 10y - 41 = 0$

- (b) The line y= mx intersects the curve $y=2x^2$ - x at points A and B. Find the equation of locus of the point P which divides AB in the ratio 2:5. Solution Substituting for y = mx into $y = 2x^2 - x$ mx = 2x2 - x $2x^2 - x - mx = 0$ x(2x - 1 - m) = 0Either x = 0Or 2x = m+1 $\mathbf{x} = \frac{m+1}{2}$ If x = 0, y = 0(x, y) = (0, 0)If $x = \frac{m+1}{2}$, $y = \frac{m(m+1)}{2}$ $(\mathbf{x}, \mathbf{y}) = \left(\frac{m+1}{2}, \frac{m(m+1)}{2}\right)$ P(x,y) $B\left(\frac{m+1}{2},\frac{m(m+1)}{2}\right)$ A(0,0) $AP = \frac{2}{7}AB$ $\binom{x-0}{y-0} = \frac{2}{7} \binom{\frac{m+1}{2} - 0}{\frac{m(m+1)}{2} - 0}$ $\binom{x}{y} = \frac{2}{7} \left(\frac{\frac{m+1}{2}}{\frac{m(m+1)}{2}} \right) = \left(\frac{\frac{m+1}{7}}{\frac{m(m+1)}{7}} \right)$ $x = \frac{m+1}{7}$(i) m =7x -1 $y = \frac{m(m+1)}{7}$(ii) Substituting m into equation (ii) $y = \frac{(7x - 1)(7x - 1 + 1)}{7}$ y = 7x² - x
- 14. (a) On the same axis, sketch the curves y = x(x+2) and y = x(4x - x)Solution Considering y = x(x+2)If x = 0, y = 0If y = 0

$$x(x + 2) = 0$$

$$x = 0 \text{ or } x = -2$$

$$(x, y) = (0,0) \text{ and } (-2, 0)$$
Finding the turning point
$$y = x^{2} + 2x$$

$$\frac{dy}{dx} = 2x + 2$$

$$\Rightarrow 2x + 2 = 0$$

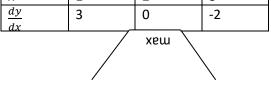
$$x = -1; y = 1 - 2 = -1$$
The turning point = (-1, -1)
Finding the nature of the turning
$$x -2 -1$$

$$\frac{dy}{dx}$$
 -2 0 2

point; 0

OR

By finding the second derivative $\frac{dy}{dx} = 2x + 2$ $\frac{d^2y}{dx^2} = 2 \text{ (min)}$ Hence the turning point is minimum Considering y = x(x - 4)**Finding intercept** If x = 0, y = 0(x, y) = (0, 0)If y = 0x(x-4) = 0Either x = 0 or x = 4(x,y) = (0, 0) and (0, 4)Finding the turning point $y = 4x - x^2$ $\frac{dy}{dx} = 4 - 2x$ $\Rightarrow \quad 0 = 4 - 2x$ x = 2, y = 4The turning point = (2, 4)Finding the nature of the turning point 1 2 3 х



Or

By finding the second derivative;

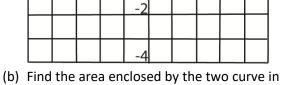
$$\frac{dy}{dx} = 4 - 2x$$
$$\frac{d^2y}{dx^2} = -2 \text{ (max)}$$

Hence the turning point is maximum

digitalteachers.co.ug

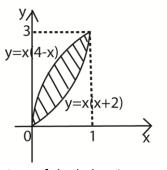
Finding the point of intersection of the
curves
$$x^{2} + 2x = 4x - x^{2}$$

 $2x^{2} - 2x = 0$
 $2x(x - 1) = 0$
Either x = 0 or x = 1;
If x = 0, y = 0; (x, y) = (0, 0)
If x = 1, y = 3; (x, y) = (1, 3)



2

(a)



-4

Area of shaded region

$$= \int_0^1 (4x - x^2) dx - \int_0^1 (x^2 + 2x) dx$$

$$= \left[2x^2 - \frac{x^3}{3} \right]_0^1 - \left[\frac{x^3}{3} + x^2 \right]_0^1$$

$$= \left[2 - \frac{1}{3} \right]_0^1 - \left[\frac{1}{3} + 1 \right]_0^1 = \frac{1}{3}$$
sq. units

 (c) Determine the volume of the solid generated when the area in (a) is rotated about the x-axis.
 Solution

$$V = \pi \int_0^1 [(4x - x^2)^2 - (x^2 + 2x)^2]$$

= $\pi \int_0^1 (12x^2 - 12x^3)$
= $\pi [4x^3 + 3x^4]_0^1$
= $\pi (4 - 3)$
= π cubic units

15. Solve for x in the following equation

(a)
$$9^{x} - 3^{x+1} = 10$$

Solution
 $9^{x} - 3^{x+1} = 10$
 $3^{2x} - 3^{x} \cdot 3^{1} = 10$
Let $y = 3^{x}$
 $\Rightarrow y^{2} - 3y = 10$
 $(y - 5)(y + 2) = 0$
Either $y = 5$ or $y = -2$
If $y = 5$
 $3^{x} = 5$
 $x \log 3 = \log 5$
 $x = \frac{\log 5}{\log 3} = 1.465$
If $y = -2$
 $3^{x} = -2$
 $x \log 3 = \log -2$
 $x = \frac{\log -2}{\log 3}$ (invalid)

(b) $\log_4 x^2 - 6 \log_x 4 - 1 = 0$ Solution Expressing the logs to base 4 $2\log_{4} x - \frac{\log_{4} 4^{6}}{\log_{4} x} = 1$ $2\log_{4} x - \frac{6}{\log_{4} x} = 1$ Let $\log_4 x = y$ $2y^2 - y - 6 = 0$ (y-2)(2y+3) = 0Either y = 2 or y = $-\frac{3}{2}$ If y = 2 $\log_4 x = 2$ $4^2 = x$ x = 16 If y = -1.5 $log_4 x = -1.5$ $4^{-1.5} = x$ $x = \frac{1}{8}$

16. At 3.00pm, the temperature of a hot metal was 80° C and that of the surrounding is 20° C. At 3.03pm the temperature of the metal had dropped to 42° C. The rate of cooling of the metal was directly proportional to the difference between its temperature θ and that of the surroundings.

(a) (i) Write a differential equation to represent the rate of cooling of the metal

Solution

 $-\frac{d\theta}{dt} \propto (\theta - 20)$ $\frac{d\theta}{dt} = -k(\theta - 20)$ By separating variable $\frac{d\theta}{\theta - 20} = -kdt$ $\int \frac{d\theta}{\theta - 20} = -k\int dt$ $In(\theta - 20) = -kt + c$ $\theta - 20 = e^{-kt + c}$ $\theta - 20 = e^{-kt} \cdot e^{c}$ Let $e^{c} = A$ $\theta = 20 + Ae^{-kt}$ (ii) Solve the differential equation using

- the given conditions. Solution At time t = 0, θ = 80⁰ A = 80 - 20 = 60 θ = 20 + 60 e^{-kt} At time t = 3min, θ = 42⁰C 42 - 20 = 60 e^{-kt} 22 60 e^{-kt} k = $\frac{1}{3}In\left(\frac{60}{22}\right)$
- (b) Find the temperature of the metal at 3.05pm

Solution

After 5 min

$$\theta = 20 + 60e^{-\frac{5}{3}In\left(\frac{60}{22}\right)} = 31.27^{\circ}C$$

Thank you Dr. Bbosa Science