

This document is sponsores
The Science Foundation Cc
Uganda East Africa
Senior one to senior six
+256778633682, 753802
Based on, best for sciences

UACE MATHEMATICS PAPER 12012 and marking guides

Section A

1. The force $\binom{0}{2},\binom{0}{4},\binom{0}{3}$ and $\binom{0}{a} N$ at points $(p, 1),(2,3),(4,5)$ and $(6,1)$ respectively. The resultant force is $\binom{0}{3}$ acting at $(1,1)$. Find the values of a and p.
2. Two events A and B are such that $P(A)=\frac{1}{5}$ and $P(B)=\frac{1}{2}$. Find $P(A \cup B)$ when A and B are:
(a) independent
(b) mutually exclusive events
3. Use trapezium rule with four sub-interval places to estimate $\int_{0}^{4} \frac{1}{1+\sin x} \mathrm{dx}$. Give your answer correct to 3 decimal places
4. a) Show that the final velocity v of the body which starts with initial velocity u and moves with uniform acceleration a consequently covering a distance x, is given by $v=[u 2+2 a x]^{\frac{1}{2}}$
b) Find the value of x in (a) if $v=30 \mathrm{~m} / \mathrm{s}, u=10 \mathrm{~m} / \mathrm{s}$ and $a=5 \mathrm{~m} / \mathrm{s}^{2}$.
5. A teacher gave two tests in chemistry. Five students were graded as follows

	Grade				
Test 1	A	B	C	D	E
Test II	B	A	C	D	E

Determine the rank correlation coefficient between the two tests on your result.
6. A light inextensible string passes over a smooth pulley fixed at the top of a smooth plane inclined at 300 to the horizontal. A mass of 4 kg is attached to one end of the string and hangs freely. A mass, m is attached to the other end of the string and rests on the inclined plane. if the system is in equilibrium, find m.
7. The table below shows the cost y shillings for hiring a motor cycle for a distance x kilometres.

$x(k m)$	10	20	30	40
Cost(shs)	2800	3600	4400	5200

Use linear interpolation or extrapolation to calculate the:
(a) cost of hiring the motorcycle for a distance of 45 km
(b) the distance mukasa travelled if he paid shs. 4000.
8. A random variable X has the following probability distribution $P(X=0)=\frac{1}{8}, P(X=1)=P(X=2)=\frac{3}{8}$ and $P(X=3)=\frac{1}{8}$. Find the
(a) Mean value of x
(b) Variance of x.

Section B

9. The table below shows the marks obtained in an examination of 200 candidates

Marks (\%)	Number of candidates
$10-19$	18
$20-29$	34
$30-39$	58
$40-49$	42
$50-59$	24
$60-69$	10
$70-79$	6
$80-89$	8

(a) Calculate the
(i) Mean mark
(ii) Model mark
(b) Draw a cumulative frequency curve for the data.

Hence estimate the lowest mark for a distinction one if the top 5\% of the candidates qualify for the distinction.
10. At 11.45 a.m., ship A has position vector $\binom{0}{2} \mathrm{~km}$ and moving at $8 \mathrm{kmh}^{-1}$ in the direction N3OOE. At 12 noon, another ship B has position vector $\binom{0}{2} \mathrm{~km}$ and moving at $3 \mathrm{kmh}^{-1}$ in the direction South East.
(a) Find the position vector of ship A at noon
(b) If the ship after 12 noon maintains their courses, find
(i) time when they are closest
(ii) the least distance between them
11. (a) (i) Show that the equation $e^{x}-2 x-1=0$ has a root between $x=1$ and $x=1.5$.
(ii) Use linear interpolation to obtain an approximation for the root.
(b) (i) Solve the equation in (a)(i), Using each formula below twice

Take the approximation in (a)(ii) as the initial value.
Formula I: $\mathrm{x}_{\mathrm{n}+1}=\frac{1}{2}\left(\mathrm{e}^{\mathrm{x}_{\mathrm{n}}}+1\right)$
Formula I: $x_{n+1}=\frac{e^{x_{n}}\left(e^{x_{n}}-1\right)+1}{e^{x_{n}}-2}$
(ii) Deduce with a reason which of the two formulae is appropriate for solving the given equation in (a)(i).
Hence write down a better approximate root, correct to two decimal places.
12. A continuous random variable X has a probability density function (p.d.f) $f(x)$ as shown in the graph below

(a) Find the
(i) value of K
(ii) expression for the probability density function (p.d.f) of X
(b) Calculate the
(i) Mean of X
(ii) $\quad P(X<1.5 / X>0.5)$
13. (a) Show that the centre of gravity of a uniform thin hemispherical cup of radius, r is at a distance $\frac{r}{2}$ from the base
(b) The figure below is made of a thin hemispherical cup of radius 7 cm . It is welded to a stem of length 7 cm . The mass of the stem is one quarter that of the cup.

Find the distance from the base, of the centre of gravity.
14. (a) The length, width and height of a tank were all rounded off to $3.65 \mathrm{~cm}, 2.14 \mathrm{~m}$ and
2.5mrespectively.

Determine in m^{3} the least and greatest amount of water the tank can contain.
(b) A shop offered 25% discount on all items in its store and a second discount of 5% to any customer who paid cash
(i) Construct a flow chart which shows the amount paid for each item.
(ii) Using the flow chart in (b)(i) , compute the amount paid for the following items

Item	price	Mode of payment
mattress	125,000	cash
TV	340,000	credit

15. (a) A box of oranges contains 20 good and 4 bad oranges. If 5 oranges are picked at random, determine the probability that 4 are good and the other is bad
(b) An examination has 100 questions. A student has 60% chance of getting each question correct. A student fails the examination for a mark less than 55. A student gets a distinction for a mark 68 or more. Calculate the probability that a student
(i) fails the examination
(ii) gets a distinction
16. A gun of mass 3000 kg fires horizontally a shell at initial velocity of $300 \mathrm{~ms}^{-1}$. If the recoil of the gun is brought to rest by a constant opposing force 9000 N in two seconds, find the
(a) (i) initial velocity of recoil gun.
(ii) mass of the shell
(iii) gain in kinetic energy of the shell just after firing
(b) (i) displacement of the gun
(ii) Work done against the opposing force.

Marking guide

Section A

1. The force $\binom{0}{2},\binom{0}{4},\binom{0}{3}$ and $\binom{0}{a} \mathrm{~N}$ at points $(p, 1),(2,3),(4,5)$ and $(6,1)$ respectively. The resultant force is $\binom{0}{3}$ acting at $(1,1)$. Find the values of a and p.

Solution

By resolution of forces
$\binom{0}{3}=\binom{0}{3}+\binom{0}{4}+\binom{0}{3}+\binom{0}{a}$
$\binom{0}{3}=\binom{0}{9+a}$
$a=-6$
Taking moments about the origin
Using analytical approach
Sum of moments of individual forces $=$ moment of the resultant.
$\left|\begin{array}{ll}p & 0 \\ 1 & 2\end{array}\right|+\left|\begin{array}{ll}2 & 0 \\ 3 & 4\end{array}\right|+\left|\begin{array}{ll}4 & 0 \\ 5 & 3\end{array}\right|+\left|\begin{array}{ll}6 & 0 \\ 1 & a\end{array}\right|=\left|\begin{array}{ll}1 & 0 \\ 1 & 3\end{array}\right|$
$2 p-0+8-0+12-0+6 a-0=3-0$
$2 p+8+12+6(-6)=3$
$2 p+8+12-36=3$
$2 p=19$
$p=9.2$
Hence $a=-6$ and $p=9.5$
2. Two events A and B are such that $P(A)=\frac{1}{5}$ and $P(B)=\frac{1}{2}$. Find $P(A \cup B)$ when A and B are:
(a) independent

Solution

$P(A \cup B)=P(A)+P(B)-P(A) \cdot P(B)$

$$
\begin{aligned}
& =\frac{1}{5}+\frac{1}{2}-\frac{1}{5} \cdot \frac{1}{2} \\
& =\frac{7}{10}-\frac{1}{10}=\frac{6}{10}
\end{aligned}
$$

(b) mutually exclusive events

Solution

$P(A \cup B)=P(A)+P(B)$

$$
\begin{aligned}
& =\frac{1}{5}+\frac{1}{2} \\
& =\frac{7}{10}
\end{aligned}
$$

3. Use trapezium rule with four sub-interval places to estimate $\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sin x} \mathrm{dx}$. Give your answer correct to 3 decimal places

Solution

$\mathrm{d}=\frac{\frac{\pi}{2}-0}{4}=\frac{\pi}{8}$

x	y	
0	1	
$\underline{\pi}$		0.72323
$\stackrel{8}{\pi}$		0.58579
$\stackrel{4}{\pi}$		0.51978
$\overline{2}$	0.5	
sum	1.5	1.82880
$\begin{aligned} \int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sin x} \mathrm{~d} & =\frac{1}{2} x \frac{\pi}{8}(1.5+2 \times 1.82880) \\ & =\frac{\pi}{16}(1.5+3.6576) \\ & =1.012692 \\ & =1.013(3 \mathrm{~d} . \mathrm{p}) \end{aligned}$		

4. (a) Show that the final velocity v of the body which starts with initial velocity u and moves with uniform acceleration a consequently covering a distance x, is
given by $v=\left[u^{2}+2 a x\right]^{\frac{1}{2}}$
Solution
Using $s=\frac{t}{2}(u+v)$ and $\mathrm{v}=\mathrm{u}+$ at

$$
t=\frac{v-u}{a}
$$

Substituting for $s=x$ and t

$$
x=\frac{\left(\frac{v-u}{a}\right)}{2}(u+v)=\left(\frac{v-u}{2 a}\right)(u+v)
$$

$$
2 a x=v^{2}-u^{2}
$$

$$
v=\left[u^{2}+2 a x\right]^{\frac{1}{2}}
$$

(b) Find the value of x in (a) if $v=30 \mathrm{~m} / \mathrm{s}$, $u=10 \mathrm{~m} / \mathrm{s}$ and $\mathrm{a}=5 \mathrm{~m} / \mathrm{s}^{2}$.

Solution

Substituting for $v=30 \mathrm{~m} / \mathrm{s}, \mathrm{u}=10 \mathrm{~m} / \mathrm{s}$ and $a=5 \mathrm{~m} / \mathrm{s}^{2}$.
$30=\left[10^{2}+10 x\right]^{\frac{1}{2}}$
$900=100+10 x$
$\mathrm{x}=80 \mathrm{~m}$
5. A teacher gave two tests in chemistry. Five students were graded as follows

	Grade				
Test 1	A	B	C	D	E
Test II	B	A	C	D	E

Determine the rank correlation coefficient between the two tests on your result.
Solution
Using spearman's method of rank
correlation

Test 1	Test II	R_{1}	R_{2}	d	$\mathrm{~d}^{2}$
A	B	1	2	-1	1
B	A	2	1	1	1
C	C	3	3	0	0
D	D	4	4	0	0
E	E	5	5	0	0

$p=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}=\frac{6 \times 2}{5(25-1)}=1-\frac{12}{120}$

$$
=0.9
$$

There is a very high positive correlation between the two tests.
OR:
Using Kendall's method

	A	B	C	D	E
Tests I	1	2	3	4	5
Test II	2	1	3	4	5
Agreements	3	3	2	1	$=9$
Disagreement	1	0	0	0	$=1$

$\mathrm{s}=9-1=8$
$\tau=\frac{2 s}{n(n-1)}=\frac{2 \times 8}{5(5-1)}=\frac{16}{20}=0.8$
There is high positive correlation between the two tests
6. A light inextensible string passes over a smooth pulley fixed at the top of a smooth plane inclined at 300 to the horizontal. A mass of 4 kg is attached to one end of the string and hangs freely. A mass, m is attached to the other end of the string and rests on the inclined plane. if the system is in equilibrium, find m.

(个): $T-4 g=0$
$\mathrm{T}=4 \mathrm{~g}$ \qquad (i)
(7) $T-m g \sin 30^{\circ}=0$

$$
\mathrm{T}=\mathrm{mg} \sin 30^{\circ}
$$

Equating eqn. (i) and eqn. (ii)
$4 \mathrm{~g}=\mathrm{mg} \sin 30^{\circ}$
$\mathrm{m}=\frac{4}{\sin 30^{\circ}}=8 \mathrm{~kg}$
7. The table below shows the cost y shillings for hiring a motor cycle for a distance x kilometres.

x(km)	10	20	30	40
Cost(shs)	2800	3600	4400	5200

Use linear interpolation or extrapolation to calculate the:
(a) cost of hiring the motorcycle for a distance of 45 km
Solution
Extract

A	B	C
30	40	45
4400	5200	x

Gradient $\mathrm{AB}=$ gradient BC
$\frac{5200-4400}{40-30}=\frac{x-5200}{45-40}$
$\frac{800}{10}=\frac{x-5200}{5}$
x = shs. 5600
Hence the cost of hiring a motorcycle for a distance of 45 km is shs. 5600
(b) the distance mukasa travelled if he paid shs. 4000.
Extract

A	B	C
30	x	40
3600	4000	5200

Gradient $A B=$ gradient $B C$
$\frac{4000-3600}{x-30}=\frac{5200-4000}{40-x}$
$\frac{400}{x-30}=\frac{1200}{40-x}$
$400(40-x)=1200(x-30)$
$4(40-x)=12(x-30)$
$16 \mathrm{x}=520$
$\mathrm{x}=32.5 \mathrm{~km}$

Hence the distance that costs shs.
4000 is 32.5 km
8. A random variable X has the following probability distribution
$P(X=0)=\frac{1}{8}, P(X=1)=P(X=2)=\frac{3}{8}$ and
$P(X=3)=\frac{1}{8}$. Find the

Solution

x	0	1	2	3
$P(X=x)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$
$x P(X=x)$	0	$\frac{3}{8}$	$\frac{6}{8}$	$\frac{3}{8}$
$\mathrm{X}^{2} P(X=x)$	0	$\frac{3}{8}$	$\frac{12}{8}$	$\frac{9}{8}$

(a) Mean value of x

Mean $=E(X)=\frac{3}{8}+\frac{6}{8}+\frac{3}{8}=1.5$
(b) Variance of x.

$$
\begin{aligned}
& \operatorname{Var}(X)=E\left(x^{2}\right)-(E(x))^{2} \\
& E\left(x^{2}\right)=\frac{3}{8}+\frac{12}{8}+\frac{9}{8}=3 \\
& \operatorname{Var}(X)=3-(1.5)^{2}=0.75
\end{aligned}
$$

Section B

9. The table below shows the marks obtained in an examination of 200 candidates

Marks (\%)	Number of candidates
$10-19$	18
$20-29$	34
$30-39$	58
$40-49$	42
$50-59$	24
$60-69$	10
$70-79$	6
$80-89$	8

(a) Calculate the
(i) Mean mark
(ii) Model mark
(b) Draw a cumulative frequency curve for the data.
Hence estimate the lowest mark for a distinction one if the top 5% of the candidates qualify for the distinction.

Solution

Marks $(\%)$	X	f	fx	cf
$10-19$	14.5	18	261	18
$20-29$	24.5	34	833	52
$30-39$	34.5	58	2001	110
$40-49$	44.5	42	1869	152
$50-59$	54.5	24	1308	176
$60-69$	64.5	10	645	186
$70-79$	74.5	6	447	192
$80-89$	84.3	8	676	200
		$\Sigma \mathrm{f}=200$	$\Sigma \mathrm{fx}=8040$	

(a) (i) mean $=\frac{\sum f x}{\Sigma f}=\frac{8040}{200}=40.2 \%$
(ii) mode $=\operatorname{Li}+\left(\frac{\Delta_{1}}{\Delta_{1}+\Delta_{2}}\right) c$

$$
\begin{aligned}
& =29.5+10\left(\frac{24}{24+16}\right) \\
& =29.5+\frac{240}{40} \\
& =35.5 \%
\end{aligned}
$$

(b)

5% of $200=\frac{5}{100} \times 200=10$
From the graph the $190^{\text {th }}$ value is 76.5
Hence the lowest mark is 76.5%
10. At 11.45 a.m, ship A has position vector $\binom{5}{1} \mathrm{~km}$ and moving at $8 \mathrm{kmh}^{-1}$ in the direction $\mathrm{N} 30^{\circ} \mathrm{E}$. At 12 noon, another ship B has position vector $\binom{8}{7} \mathrm{~km}$ and moving at $1.5 \mathrm{kmh}^{-1}$ in the direction South East.
(a) Find the position vector of ship A at noon

Solution

Let $\mathrm{V}_{\mathrm{a}}=$ velocity of A
$r_{a}=$ position vector of A
$\mathrm{Vb}=$ velocity of B
$r_{b}=$ position vector of B

$V_{b}=\binom{3 \cos 45^{0}}{3 \sin 45^{\circ}}=\binom{1.5 \sqrt{2}}{-1.5 \sqrt{2}}$
Let $r a=$ position vector of A at time t
At noon $t=\frac{15}{60}=\frac{1}{4}$

$$
\begin{aligned}
\mathrm{r}_{\mathrm{a}} & =\binom{5}{1}+\binom{4}{4 \sqrt{3}} t \\
& =\binom{5}{1}+\binom{4}{4 \sqrt{3}} \cdot \frac{1}{4} \\
& =\binom{6}{1+\sqrt{3}}=\binom{6}{2.73205} \mathrm{~km}
\end{aligned}
$$

(b) If the ship after 12 noon maintains their courses, find
(i) time when they are closest
(ii) the least distance between them

Solution
$a=\binom{6}{1+\sqrt{3}}$
$\mathrm{b}=\binom{8}{7}$
Let $\mathrm{t}=$ time taken for ships to be closest to each other.
$r=a+V t$
$r_{a}=\binom{6}{1+\sqrt{3}}+\binom{4}{4 \sqrt{3}} t$
$r_{b}=\binom{8}{7}+\binom{1.5 \sqrt{2}}{-1.5 \sqrt{2}} t$

$$
\begin{aligned}
&{ }_{A} r_{B}=r_{a}-r_{b} \\
&=\binom{-2}{-6+\sqrt{3}}+\binom{4-1.5 \sqrt{2}}{4 \sqrt{3}+1.5 \sqrt{2}} t \\
&{ }_{A} r_{B}=r_{a}-r_{b}=\binom{-2}{-4.268}+\binom{1.87868}{9.04952} t \\
&=\binom{-2+1.87868 t}{-4.268+9.04952 t} \\
&\left({ }_{A} r_{B}\right)^{2}=(-2+1.87868 t)^{2}+(-4.268+9.04952 t)^{2} \\
&=85.42325 t^{2}-84.7617 t+22.2158
\end{aligned}
$$

The minimum distance, ds is attained when

$$
\begin{aligned}
\frac{d}{d x}\left({ }_{A} r_{B}\right)= & \frac{d}{d x}\left({ }_{A} r_{B}\right)^{2}=0 \\
\Rightarrow & 170.8465 \mathrm{t}-84.7617=0 \\
& \mathrm{t}=\frac{84.7617}{170.8465} \times 60=30 \mathrm{~min} 44 \mathrm{mins}
\end{aligned}
$$

Time $=12.00+30 \mathrm{~min}=12: 30 \mathrm{pm}$
Minimum distance, $d s=\left|{ }_{A} r_{B}\right|$

$$
\begin{aligned}
d_{s}{ }^{2} & =(-2+1.87868 \times 0.5)^{2}+(-4.268+9.04952 \times 0.5)^{2} \\
& =1.191
\end{aligned}
$$

$$
\mathrm{d}_{\mathrm{s}}=1.091 \mathrm{~km}
$$

Or
For minimum distance to be reached

$$
{ }_{A} V_{B \cdot A} r_{B}=0
$$

$\operatorname{Naw}_{\mathrm{A}} \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}$

$$
\begin{aligned}
& \quad=\binom{1.87868}{9.04952} \\
& \Rightarrow \quad\binom{-2+1.87868 t}{-4.26795+9.04952 t} \cdot\binom{1.87868}{9.04952}=0 \\
& 85.42325 \mathrm{t}=42.3803 \\
& t=0.5 \mathrm{~h} \\
& \\
& \text { Hence } \mathrm{ds}=1.091 \mathrm{~km} \text { as before }
\end{aligned}
$$

11. (a) (i) Show that the equation
$\mathrm{e}^{\mathrm{x}}-2 \mathrm{x}-1=0$ has a root between $\mathrm{x}=1$ and $x=1.5$.

Solution

Using sign change method
Let $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}-2 \mathrm{x}-1$
$f(1)=e-2-1=-2.817$
$f(1.5)=e^{1.5}-3-1=0.4817$
Since $f(1) . f(1.5)<0$, the root lies between $x=1$ and $x=1.5$.
(ii) Use linear interpolation to obtain an approximation for the root.

Solution

Extract

A	B	C
1	x	1.5
-0.2817	0	0.4817

Gradient $A B=$ gradient $A C$

$$
\begin{gathered}
\frac{0+0.2817}{x-1}=\frac{0.4817+0.2817}{1.5-1} \\
\frac{0.2817}{x-1}=\frac{0.7634}{0.5}
\end{gathered}
$$

$$
x=1.1845
$$

(c) (i) Solve the equation in (a)(i), Using each formula below twice
Take the approximation in (a)(ii) as the initial value.
Formula I: $x_{n+1}=\frac{1}{2}\left(e^{x_{n}}+1\right)$
Solution
$\mathrm{x}_{0}=1.18$
$x_{1}=\frac{1}{2}\left(e^{1.18}+1\right)=2.127187$
$x_{2}=\frac{1}{2}\left(e^{2.127187}+1\right)=4.6956145$

Formula I: $x_{n+1}=\frac{e^{x_{n}}\left(x_{n}-1\right)+1}{e^{x_{n}}-2}$

Solution

$\mathrm{x}_{0}=1.18$
$x_{1}=\frac{e^{1.18}(1.18-1)+1}{e^{1.18}-2}=1.2642$
$x_{2}=\frac{e^{1.2642}(1.2642-1)+1}{e^{1.2642}-2}=1.2565$
(ii) Deduce with a reason which of the two formulae is appropriate for solving the given equation in (a)(i). Hence write down a better approximate root, correct to two decimal places.

Solution

In formula I, the sequence 1.18, 2.12187, 4.6926 diverges, hence the formula is not suitable In formula II. The sequence 1.18, 1.2642, 1.2565 converges, hence the formula is suitable for solving equation.
A better approximation $=1.26$ (2d.p)
12. A continuous random variable X has a probability density function (p.d.f) $f(x)$ as shown in the graph below

(a) Find the
(i) value of K

Solution

Area of the graph = 1

$$
\begin{aligned}
\Rightarrow & \frac{1}{2} \times 2 \times K=1 \\
& K=1
\end{aligned}
$$

(ii) expression for the probability density function (p.d.f)of X

Solution

Let $f(x)=y$

Gradient OP = gradient OQ
$\frac{y-0}{x-0}=\frac{1-0}{1-0}$
$y=x$

Gradient $A P=$ gradient $A B$
$\frac{y-1}{x-1}=\frac{0-1}{2-1}$
$y=2-x$
$f(x) \begin{cases}x & 0 \leq x \leq 1 \\ 2-2 & 1 \leq x \leq 2 \\ 0 & \text { elsewhere }\end{cases}$
(b) Calculate the
(i) Mean of X

Solution

$$
\begin{aligned}
\mathrm{E}(\mathrm{x}) & =\int_{\text {all }} x f(x) d x \\
& =\int_{0}^{1} x \cdot x d x+\int_{1}^{2} x(2-x) d x \\
& =\left[\frac{x^{3}}{3}\right]_{0}^{1}+\left[x^{2}-\frac{x^{3}}{3}\right]_{1}^{2} \\
& =\left(\frac{1}{3}-0\right)+\left[\left(4-\frac{8}{3}\right)-\left(1-\frac{1}{3}\right)\right] \\
& =\frac{1}{3}+\frac{4}{3}-\frac{2}{3}=1
\end{aligned}
$$

(ii) $P(X<1.5 / X>0.5)$

Solution

$\mathrm{P}(\mathrm{X}<1.5 / \mathrm{X}>0.5)=\frac{p(x<1 \cap x>0.5)}{P(x>0.5)}$
$=\frac{P(0.5<x<1.5)}{1-P(x<0.5)}$
$=\frac{\int_{0.5}^{1} x d x+\int_{1}^{1.5}(2-x) d x}{1-\int_{0}^{0.5} x d x}$
$=\frac{\left[\frac{x^{2}}{2}\right]_{0.5}^{1}+\left[2 x-\frac{x^{2}}{2}\right]_{1}^{1.5}}{1-\left[\frac{x^{2}}{2}\right]_{0}^{0.5}}$
$=\frac{(0.5-0.125)+(1.875-1.5)}{0.875}$
$=\frac{0.75}{0.875}=0.8751$
13. (a) Show that the centre of gravity of a uniform thin hemispherical cup of radius, r is at a distance $\frac{r}{2}$ from the base
Solution

If we divide the hemisphere into slices parallel to its plane face each slice is approximately a circular ring with its centre of gravity at its centre.

Considering a ring shown in the diagram above, its is approximately a cylinder of radius $r \sin \theta$ and width $r \delta \theta$
Surface area of the ring $=(2 \pi r \sin \theta) r \delta \theta$
Let $\mathrm{w}=$ weight per unit area.

Body	weight	Distance of C.O.G from y -axis
Element (ring)	$\left(2 \pi r^{2} \sin \theta\right) \mathrm{w}$	$\mathrm{r} \cos \theta$
Hemisphere	$2 \pi r^{2} w$	\bar{x}

Equating moments along y-axis
$\left.\int_{0}^{\frac{\pi}{2}} 2 \pi r^{2} \sin \theta \mathrm{w}\right) \mathrm{r} \cos \theta \mathrm{d} \theta=2 \pi r^{2} \mathrm{w} \bar{x}$
$\pi r^{3} \mathrm{w} \int_{0}^{\frac{\pi}{2}} 2 \sin \theta \cos \theta \mathrm{~d} \theta=2 \pi r^{2} \mathrm{w} \bar{x}$
$r \int_{0}^{\frac{\pi}{2}} \sin 2 \theta \mathrm{~d} \theta=2 \bar{x}$
$-\frac{1}{2} r[\cos 2 \theta]_{0}^{\frac{\pi}{2}}=2 \bar{x}$
$-\frac{1}{2} r(-1-1)=2 \bar{x}$
$r=2 \bar{x}$
$\bar{x}=\frac{r}{2}$
(b) The figure below is made of a thin hemispherical cup of radius 7 cm . It is welded to a stem of length 7 cm . The mass of the stem is one quarter that of the cup.

Find the distance from the base, of the centre of gravity.

Solution

Area of hemispherical cup $=2 \pi r^{2}$

$$
\begin{aligned}
& =2 \pi(49) \\
& =98 \pi
\end{aligned}
$$

Area of a circle $=\pi r^{2}$

$$
\begin{aligned}
& =\pi(49) \\
& =49 \pi
\end{aligned}
$$

Let w be weight per unit area

Body	weight	Distance of C.O.G from y-axis
Circular base	$49 \pi \mathrm{w}$	0
stem	$\frac{1}{4}(98 \pi w)$	3.5 cm
Hemispherical cup	$98 \pi \mathrm{w}$	10.5 cm
Whole figure	$171.5 \pi \mathrm{~m}$	\bar{x}

Sum of moments = sum of moments
$49 \pi w \times 0+\frac{1}{4}(98 \pi w) \times 3.5+98 \pi w \times 10.5$
$=171.5 \pi w \bar{x}$
$0+85.75 \pi w+1029 \pi w=171.5 \pi w \bar{x}$
$1114.75 \pi \mathrm{w}=171.5 \pi \mathrm{w} \bar{x}$
$\bar{x}=\frac{1114.75}{171.5}=6.5$
Hence the distance from the base of the centre of gravity of the figure is 6.5 cm
14. (a) The length, width and height of a tank were all rounded off to $3.65 \mathrm{~cm}, 2.14 \mathrm{~m}$ and 2.5 m respectively. Determine in m^{3} the least and greatest amount of water the tank can contain.

Solution

Let $\mathrm{V}=$ volume of water in the tank
L= length of the tank
W = width of the tank
$\mathrm{H}=$ height of the tank
V = LWH
Maximum volume (Vmax)
Vmax $=(L+\Delta I)(W+\Delta w)(H+\Delta h)$
$=(3.65+0.005)(2.14+0.005)(2.5+0.05)$
$=(3.655)(2.145)(2.55)$
$=19.992 \mathrm{~m}^{3}$ (3d.p)
Minimum volume (Vmin)
$V \min =(\mathrm{L}-\Delta \mathrm{l})(\mathrm{W}-\Delta \mathrm{W})(\mathrm{H}-\Delta \mathrm{h})$
$=(3.65-0.005)(2.14-0.005)(2.5-0.05)$
$=(3.645)(2.135)(2.45)$
$=19.066 \mathrm{~m}^{3}$ (3d.p)
(b) A shop offered 25% discount on all items in its store and a second discount of 5\% to any customer who paid cash
(i) Construct a flow chart which shows the amount paid for each item.

(ii) Using the flow chart in (b)(i), compute the amount paid for the following items

Item	price	Mode of payment
mattress	125,000	cash
TV	340,000	credit

Solution
Amount paid for mattress is

$$
\begin{aligned}
A & =0.95 C \\
& =0.95 \times 0.75 \times 125,000 \\
& =89062.5
\end{aligned}
$$

Amount paid for TV is

$$
\begin{aligned}
A & =0.75 \mathrm{P} \\
& =0.75 \times 340,000 \\
& =225000
\end{aligned}
$$

15. (a) A box of oranges contains 20 good and 4 bad oranges. If 5 oranges are picked at random, determine the probability that 4 are good and the other is bad

Solution

$\mathrm{P}(\mathrm{X}=4)=\frac{{ }^{20} C_{4} \cdot{ }^{4} C_{1}}{{ }^{24} C_{5}}=0.456$
(b) An examination has 100 questions. A student has 60% chance of getting each question correct. A student fails the examination for a mark less than 55. A student gets a distinction for a
mark 68 or more. Calculate the probability that a student
(i) fails the examination
(ii) gets a distinction

Solution

$\mathrm{n}=100$
$p=60 \%=0.6$
$q=40 \%=0.4$
$\mu=n p=100 \times 0.6=60$
$\sigma=\sqrt{n p q}=\sqrt{100 \times 0.6 \times 0.4}=4.8990$
let $\mathrm{x}=$ mark scored
(i) $P(x<55)=P(x \leq 54)$

$P(z<-1.123)=P(z>1.123)$

$$
\begin{aligned}
& =0.5-(\mathrm{P}(0<\mathrm{z}<1.123) \\
& =0.5-0.3692 \\
& =0.1308
\end{aligned}
$$

(ii) $P(x \geq 68)=P\left(z \leq \frac{67.5-60}{4.899}\right)$

$$
=\mathrm{P}(z \geq 1.5309)
$$

$$
\begin{aligned}
\mathrm{P}(z \geq 1.531) & =0.5-\mathrm{P}(0 \leq \mathrm{z} \leq 1.531) \\
& =0.5-0.4371 \\
& =0.0629
\end{aligned}
$$

16. A gun of mass 3000 kg fires horizontally a shell at initial velocity of $300 \mathrm{~ms}^{-1}$. If the recoil of the gun is brought to rest by a constant opposing force 9000N in two seconds, find the

Solution

Thank you
Dr. Bbosa Science

