

This document is sponsores
The Science Foundation Cc
Uganda East Africa
Senior one to senior six
+256778633682,753802
Based on, best for sciences

UACE MATHEMATICS PAPER 12011 and marking guides

Section A

1. Solve the equation $\log _{25} 4 x^{2}=\log _{5}\left(3-x^{2}\right)$
2. Find the equation of a line through the point $(2,3)$ and perpendicular to the line $x+2 y+5=0$
3. Evaluate $\int_{1}^{3}\left(\frac{3 x^{2}+4 x+1}{x^{3}+2 x^{2}+x}\right) d x$
4. A committee of 4 men and 3 women is to be formed from 10 men and 8 women. In how many ways can the committee be formed.
5. Show that $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{5}\right)=\tan ^{-1}\left(\frac{7}{9}\right)$
6. Given the $R=q \sqrt{1000-q^{2}}$; find
(a) $\frac{d R}{d q}$
(b) the value of q when R is maximum
7. Show that the points A, B and C with position vector $3 i+3 j+k, 7 i+4 k$ and $11 i+4 j+5 k$ respectively are vertices of a triangle.
8. (a) form a differential equation by eliminating the constants a and b from $x=a c c o s t+b \operatorname{sint}$
(b) State the order of the differential equation formed in (a) above.

SECTION B

9. (a) The first term of an Arithmetic Progression (A.P) is $1 / 2$. The sixth term of A.P is four times the fourth term. Find the common difference of the A.P.
(b) The roots of a quadratic equation $x^{2}+p x+q=0$ are α and β. Show that the quadratic equation whose roots are $\alpha^{2}-q \alpha$ and $\beta^{2}-q$ is given by $x^{2}-\left(p^{2}+p q-2 q\right) x+q^{2}(q+p+1)=0$.
10. (a) form a quadratic equation having $-3+4 i$ as one of its roots.
(b) Given $z_{1}=-1+i \sqrt{3}$ and $z_{2}=-1-i \sqrt{3}$
(i) Express $\frac{z_{1}}{z_{2}}$ in the form $\mathrm{a}+\mathrm{i} \sqrt{b}$, where a and b are real numbers
(ii) Represent $\frac{z_{1}}{z_{2}}$ on an Argand diagram.
(iii) Find $\left|\frac{z_{1}}{z_{2}}\right|$
11. In the diagram below, the curve $y=6-x^{2}$ meets the line $y=2$ at A and B and the x-axis at A and D.

Find
(a) coordinates of A, B, C, and D
(b) area of the shaded region, correct to one decimal place.
12. (a) Find the angle between the line $\mathrm{x}=\frac{y-1}{2}=\frac{z-2}{3}$ and $\frac{x}{2}=\frac{y+1}{3}=\frac{z+2}{4}$
(b) Find in vector form the equation of the line of intersection of two planes $2 x+3 y-z=4$ and $x-y+2 z=5$.
13. (a) Find the equation of the tangent to parabola $y^{2}=\frac{x}{16}$ at $\left(t^{2}, \frac{1}{4}\right)$.
(b) If the tangent to the parabola in (a) above at points $\mathrm{P}\left(p^{2}, \frac{1}{p}\right)$ and $\mathrm{Q}\left(q^{2}, \frac{1}{q}\right)$ meet on the line $y=2$.
(i) show that $\mathrm{p}+\mathrm{q}=16$
(ii) deduce that the midpoint of PQ lies on the line $y=2$
14. (a) Solve $3 \sin x+4 \operatorname{cox}=2$ for $-180^{\circ} \leq x \leq 180^{\circ}$.
(b) Show that in any triangle $A B \frac{a^{2}-b^{2}}{c^{2}}=\frac{\sin (A-B)}{\sin (A+B)}$
15. (a) Differentiate the following with respect to x.
(i) $(x+1)^{\frac{1}{2}}(x+2)^{2}$
(ii) $\frac{2 x^{2}+3 x}{(x-4)^{2}}$
(b) The base radius of a right circular cone increases and the volume changes by 2%. If the height of the cone remains constant, find the percentage increase in the circumference of the base.
16. (a) Solve the differential $\frac{d y}{d x}=\frac{\sin ^{2} x}{y^{2}}$, given that $\mathrm{y}=1$ when $\mathrm{x}=0$.
(b) It is observed that the rate at which a body cools is proportional to the amount by which its temperature exceeds that of its surroundings. A body at $78^{\circ} \mathrm{Cis}$ placed in a room at $20^{\circ} \mathrm{C}$ and after 5 minutes the body has cooled to $65^{\circ} \mathrm{C}$. What will be its temperature after further 5 minutes?

Marking guide

Section A

1. Solve the equation

$$
\log _{25} 4 x^{2}=\log _{5}\left(3-x^{2}\right)
$$

Solution

$\log _{25}(2 x)^{2}=\log _{5}\left(3-x^{2}\right)$
Expressing the L.H.S in terms of log5
$\frac{2 \log _{2} 2 x}{\log _{2} 25}=\log _{5}\left(3-x^{2}\right)$
$\frac{2 \log _{2} 2 x}{\log _{2} 5^{2}}=\log _{5}\left(3-x^{2}\right)$
$\frac{2 \log _{2} 2 x}{2}=\log _{5}\left(3-x^{2}\right)$
$\log _{2} 2 x=\log _{5}\left(3-x^{2}\right)$
$\Rightarrow 2 \mathrm{x}=3-\mathrm{x}^{2}$
$x^{2}+2 x-3=0$
$(x+3)(x-1)=0$
Either $\mathrm{x}=-3$ or $\mathrm{x}=1$
$\therefore \mathrm{x}=1$

OR

$\log _{25} 4 x^{2}=\log _{5}\left(3-x^{2}\right)$
Expressing the R.H.S in terms of $\log _{25}$
$\log _{25} 4 x^{2}=\frac{\log _{25}\left(3-x^{2}\right)}{\log _{25} 5}$
$\log _{25} 4 x^{2}=\frac{\log _{25}\left(3-x^{2}\right)}{\log _{25} 25^{\frac{1}{2}}}$
$=\frac{\log _{25}\left(3-x^{2}\right)}{\frac{1}{2}}$
$=2 \log _{25}\left(3-x^{2}\right)$
$\log _{25} 4 x^{2}=\log _{25}\left(3-x^{2}\right)^{2}$
$4 x^{2}=\left(3-x^{2}\right)^{2}$
$2 x=3-x^{2}$
$x^{2}+2 x-3=0$
$(x+3)(x-1)=0$
Either $\mathrm{x}=-3$ or $\mathrm{x}=1$
$\therefore \mathrm{x}=1$
2. Find the equation of a line through the point $(2,3)$ and perpendicular to the line $x+2 y+5=0$

Solution

Rearranging the equation
$y=-\frac{1}{2} x-\frac{5}{2}$
Gradient of the line is $-\frac{1}{2}$ then the
gradient of the perpendicular $=2$
$\Rightarrow \frac{y-3}{x-2}=2$

$$
y=2 x-1
$$

3. Evaluate $\int_{1}^{3}\left(\frac{3 x^{2}+4 x+1}{x^{3}+2 x^{2}+x}\right) d x$

Solution

Let $u=x^{3}+2 x^{2}+x$
$\frac{d u}{d x}=3 x^{2}+4 x+1$

x	u
1	4
3	48

$\Rightarrow \int_{1}^{3}\left(\frac{3 x^{2}+4 x+1}{x^{3}+2 x^{2}+x}\right) d x=\int_{4}^{48} \frac{1}{u} d u$

$$
=[\operatorname{In} u]_{4}^{48}
$$

$$
=\ln 48-\ln 4
$$

$$
=\ln \left(\frac{48}{4}\right)=\operatorname{In} 12=2.4849
$$

OR
$\int\left(\frac{3 x^{2}+4 x+1}{x^{3}+2 x^{2}+x}\right) d x=$
$\int\left(\frac{3 x^{2}+4 x+1}{u}\right) \cdot \int\left(\frac{d u}{3 x^{2}+4 x+1}\right)$
$=\int \frac{1}{u} d u=\operatorname{In} u+c$
$\therefore \int_{1}^{3}\left(\frac{3 x^{2}+4 x+1}{x^{3}+2 x^{2}+x}\right) d x=\left[\operatorname{In} x^{3}+2 x^{2}+x\right]_{1}^{3}$

$$
=\ln 48-\ln 4
$$

$$
=\ln \left(\frac{48}{4}\right)=\operatorname{In} 12=2.4849
$$

OR
$\frac{3 x^{2}+4 x+1}{x(x+1)^{2}}=\frac{A}{x}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}}$
$3 x^{2}+4 x+1=A(x+1)^{2}+B x(x+1)+C x$
When $x=-1$,
$3-4+1=-C \Rightarrow C=0$

When $\mathrm{x}=0 ; \mathrm{A}=1$
For coefficient of $x 2$
$3=A+B=>B=2$
Hence $\frac{3 x^{2}+4 x+1}{x(x+1)^{2}}=\frac{1}{x}+\frac{2}{x+1}$
$\int_{1}^{3} \frac{3 x^{2}+4 x+1}{x(x+1)^{2}} d x=\int_{1}^{3} \frac{1}{x} d x+2 \int_{1}^{3} \frac{1}{x+1} d x$
$=[\ln x+2 \operatorname{In}(x+1)]_{1}^{3}$
$=\left[\operatorname{In} x(x+1)^{2}\right]_{1}^{3}$
$=\ln 48-\ln 4$
$=\ln \left(\frac{48}{4}\right)=\operatorname{In} 12=2.4849$
4. A committee of 4 men and 3 women is to be formed from 10 men and 8women. In how many ways can the committee be formed?

Solution

The committee can be formed in ${ }^{10} \mathrm{C}_{4}$ and
${ }^{8} C_{3}$ ways
$={ }^{10} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{3}$
$=210 \times 56$
$=11760$ ways
5. Show that

$$
\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{5}\right)=\tan ^{-1}\left(\frac{7}{9}\right)
$$

Solution
Let $\mathrm{A}=\tan ^{-1}\left(\frac{1}{2}\right) ; \mathrm{B}=\tan ^{-1}\left(\frac{1}{5}\right), \mathrm{C}=\tan ^{-1}\left(\frac{7}{9}\right)$
$\Rightarrow \tan \mathrm{A}=\frac{1}{2} ; \tan \mathrm{B}=\frac{1}{5} ; \tan \mathrm{C}=\frac{7}{9}$
For $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{5}\right)=\tan ^{-1}\left(\frac{7}{9}\right)$
$A+B=C$
$\tan (\mathrm{A}+\mathrm{B})=\tan \mathrm{C}$
$\tan C=\frac{\tan A+\tan B}{1-\tan A \tan B}=\frac{\frac{1}{2}+\frac{1}{5}}{1-\left(\frac{1}{2}\right)\left(\frac{1}{5}\right)}$

$$
=\frac{\frac{7}{10}}{1-\frac{1}{10}}=\frac{7}{9}
$$

Hence $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{5}\right)=\tan ^{-1}\left(\frac{7}{9}\right)$
6. Given the $R=q \sqrt{1000-q^{2}}$; find
(a) $\frac{d R}{d q}$

Solution

$$
R=q \sqrt{1000-q^{2}}
$$

$$
\begin{aligned}
& \operatorname{InR}=\operatorname{Inq}+\frac{1}{2} \operatorname{In}\left(1000-q^{2}\right) \\
& \begin{aligned}
\frac{1}{R} \frac{d R}{d q} & =\frac{1}{q}+\frac{1}{2}\left(\frac{-2 q}{1000-q^{2}}\right) \\
\frac{d R}{d q} & =\left[\frac{1}{q}-\frac{q}{1000-q^{2}}\right] \cdot q\left(1000-q^{2}\right)^{\frac{1}{2}} \\
& =\frac{\sqrt{1000-q^{2}}}{1}-\frac{q^{2}}{\sqrt{1000-q^{2}}} \\
& =\frac{\left(1000-q^{2}\right)-q^{2}}{\sqrt{1000-q^{2}}} \\
& =\frac{1000-2 q^{2}}{\sqrt{1000-q^{2}}}
\end{aligned}
\end{aligned}
$$

OR
Let $\mathrm{u}=\mathrm{q}=>\frac{d u}{d q}=1$

$$
\begin{aligned}
\mathrm{v} & =\sqrt{1000-q^{2}}=>\frac{d v}{d q}=\frac{1}{2}\left(\frac{-2 q}{\sqrt{1000-q^{2}}}\right) \\
& =\frac{-q}{\sqrt{1000-q^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d R}{d q} & =\sqrt{1000-q^{2}}(1)+\frac{-q}{\sqrt{1000-q^{2}}} \cdot q \\
& =\sqrt{1000-q^{2}}-\frac{q^{2}}{\sqrt{1000-q^{2}}} \\
& =\frac{1000-2 q^{2}}{\sqrt{1000-q^{2}}}
\end{aligned}
$$

(b) the value of q when R is maximum

$$
\text { For } \mathrm{R}_{\max } ; \frac{d R}{d q}=0
$$

$$
\Rightarrow \frac{1000-2 q^{2}}{\sqrt{1000-q^{2}}}=0
$$

$$
2 q^{2}=1000
$$

$$
q=\sqrt{500}
$$

7. Show that the points A, B and C with position vector $3 i+3 j+k, 7 i+4 k$ and $11 i+4 j+5 k$ respectively are vertices of a triangle.
Solution
For a triangle to be
$A B+B C+A C=0$
$(O B-O A)+(O C-O B)+(O A-O C)=0$
$=\left[\left(\begin{array}{l}8 \\ 7 \\ 4\end{array}\right)-\left(\begin{array}{l}3 \\ 3 \\ 1\end{array}\right)\right]+\left[\left(\begin{array}{c}11 \\ 4 \\ 5\end{array}\right)-\left(\begin{array}{l}8 \\ 8 \\ 4\end{array}\right)\right]+\left[\left(\begin{array}{l}3 \\ 3 \\ 1\end{array}\right)-\left(\begin{array}{c}11 \\ 4 \\ 5\end{array}\right)\right]$
$=\left(\begin{array}{l}5 \\ 4 \\ 0\end{array}\right)+\left(\begin{array}{c}3 \\ -3 \\ 1\end{array}\right)+\left(\begin{array}{l}-8 \\ -1 \\ -4\end{array}\right)$
$=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
Hence A, B and C are vertices of a triangle
8. (a) form a differential equation by
eliminating the constants a and b from
$x=a c c o s t+b s i n t$
Solution
$\mathrm{x}=\mathrm{accost}+\mathrm{b} \operatorname{sint}$
$\frac{d x}{d t}=-a \sin t+b \cos t$
$\frac{d^{2} x}{d t^{2}}=-a \cos t-b \sin t$
$=-(a c \cos t+b \operatorname{sint})$
$=-\mathrm{x}$
(b) State the order of the differential equation formed in (a) above.

Solution

It is a second order differential equation because the highest power of the differential coefficient is 2 .

SECTION B

9. (a) The first term of an Arithmetic Progression (A.P) is $1 / 2$. The sixth term of A.P is four times the fourth term. Find the common difference of the A.P.
Solution
$\mathrm{U}_{6}=\mathrm{a}+5 \mathrm{~d}$
$\mathrm{U}_{4}=\mathrm{a}+3 \mathrm{~d}$
But $\mathrm{U}_{6}=2 \mathrm{U}_{4}$
$\Rightarrow a+5 d=4(a+3 d)$
$-3 a=7 d$
$\mathrm{d}=-\frac{3}{7} a$
Given $\mathrm{a}=1 / 2$
$\mathrm{d}=-\frac{3}{7} x \frac{1}{2}=-\frac{3}{14}$
(b) The roots of a quadratic equation $x^{2}+p x+q=0$ are α and β. Show that the quadratic equation whose roots are $\alpha^{2}-q \alpha$ and $\beta^{2}-q$ is given by $x^{2}-\left(p^{2}+p q-2 q\right) x+q^{2}(q+p+1)=0$

Solution
$\alpha+\beta=-p$
$\alpha \beta=q$
sum of roots $=\alpha^{2}-q \alpha+\beta^{2}-q$
$=\left(\alpha^{2}+\beta^{2}\right)-q(\alpha+\beta)$
$=(\alpha+\beta)^{2}-2 \alpha \beta-q(\alpha+\beta)$
$=p^{2}=2 q+p q$
Product of roots

$$
\begin{aligned}
\left(\alpha^{2}-q \alpha\right)\left(\beta^{2}-q\right) & =\alpha^{2} \beta^{2}-q \beta \alpha^{2}-q a \beta^{2}+q^{2} \alpha \beta \\
& =(\alpha \beta)^{2}-q \alpha \beta(\alpha+\beta)+q^{2} \alpha \beta \\
& \left.=q^{2}+q^{2} p+q^{3}\right) \\
& =q^{2}(q+p+1)
\end{aligned}
$$

Hence the equation
$x^{2}-\left(p^{2}+p q-2 q\right) x+q^{2}(q+p+1)=0$
10. (a) form a quadratic equation having $-3+4 i$ as one of its roots.

Solution

Since $-3+4 i$ is a root, then its conjugate $-3-4 i$ is a root
Sum of roots $=-3+4 i-3-4 i=-6$
Product of roots $=(-3+4 i)(-3-4 i)=25$
Hence equation is $z^{2}+6 z+25=0$
OR
Let $z=-3+4 i=>z+3-4 i=0$
Also $z=-3+4 i=>z+3+4 i=0$
Multiplying the two equations together
$(z+3-4 i)(z+3+4 i)=0$
$z^{2}+6 z+25=0$
(a) Given $z_{1}=-1+i \sqrt{3}$ and $z_{2}=-1-i \sqrt{3}$
(i) Express $\frac{z_{1}}{z_{2}}$ in the form $\mathrm{a}+\mathrm{i} \sqrt{b}$, where a and b are real numbers

Solution

$$
\begin{aligned}
\frac{z_{1}}{z_{2}} & =\frac{-1+i \sqrt{3}}{-1-i \sqrt{3}}=\frac{(-1+i \sqrt{3})(-1+i \sqrt{3})}{(-1-i \sqrt{3})(-1+i \sqrt{3})} \\
& =\frac{1-i \sqrt{3}-i \sqrt{3}-3}{1+3} \\
& =\frac{-2-2 i \sqrt{3}}{4} \\
& =\frac{-1}{2}-i \frac{\sqrt{3}}{2}
\end{aligned}
$$

Or
$\left|z_{1}\right|=2$ and $\left|z_{2}\right|=2$
$\operatorname{Arnz}_{1}=120^{\circ}$ and $\operatorname{Arg} z_{2}=-120^{\circ}$
$\frac{z_{1}}{z_{2}}=\frac{2}{2}\left[\cos \left(120^{\circ}-{ }^{-} 120^{\circ}\right)+\mathrm{i} \sin \left(120^{\circ}-120^{\circ}\right)\right.$
$=\cos 24^{\circ}+\mathrm{i} \sin 240^{\circ}$
$=\frac{-1}{2}-i \frac{\sqrt{3}}{2}$
(ii) Represent $\frac{z_{1}}{z_{2}}$ on an Argand diagram.

(iii) Find $\left|\frac{z_{1}}{z_{2}}\right|$
$\left|\frac{z_{1}}{z_{2}}\right|=\sqrt{\left(-\frac{1}{2}\right)^{2}+}\left(-\frac{\sqrt{3}}{2}\right)^{2}=1$
OR
$\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}=\frac{2}{2}=1$
11. In the diagram below, the curve $y=6-x^{2}$ meets the line $y=2$ at A and B and the x axis at A and D.

Find
(a) coordinates of A, B, C, and D

Solution

At point A and B
$6-x^{2}=2$
$x^{2}=4$
$x= \pm 2$
$A(-2,2)$ and $B(2,2)$
At point C and D
$6-x^{2}=0$
$x^{2}=6$
$x= \pm \sqrt{6}$
$C(-\sqrt{6}, 0)$ and $D(\sqrt{6}, 0)$
(b) area of the shaded region, correct to one decimal place.

Solution
Area of CABD
$=\int_{-\sqrt{6}}^{\sqrt{6}}\left(6-x^{2}\right) d x-\int_{-2}^{2}\left(6-x^{2}\right) d x$
$=\left[6 x-\frac{x^{2}}{3}\right]_{-\sqrt{6}}^{\sqrt{6}}-\left[6 x-\frac{x^{2}}{3}\right]_{-2}^{2}$
$=8.9$ sq. units (1d.p)
12. (a) Find the angle between the line
$\mathrm{x}=\frac{y-1}{2}=\frac{z-2}{3}$ and $\frac{x}{2}=\frac{y+1}{3}=\frac{z+2}{4}$
Let v_{1} and v_{2} be the vectors parallel to the lines respectively

$$
\begin{aligned}
\Rightarrow & v_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \text { and } v_{1}=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right) \\
& \left|v_{1}\right|=\sqrt{1+4+9}=\sqrt{14} \\
& \left|v_{2}\right|=\sqrt{4+9+16}=\sqrt{29} \\
& v_{1} \cdot v_{2}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=20 \\
& \operatorname{Cos} \theta=\frac{v_{1} \cdot v_{2}}{\left|v_{1}\right|\left|v_{2}\right|}=\frac{20}{\sqrt{14} \cdot \sqrt{29}}=0.9889
\end{aligned}
$$

$$
\begin{aligned}
\theta & =\cos ^{-1} 0.9889 \\
& =8.53^{0}
\end{aligned}
$$

(b) Find in vector form the equation of the line of intersection of two planes
$2 x+3 y-z=4$ and $x-y+2 z=5$.

Solution

$2 x+3 y-z=4$ \qquad
$x-y+2 z=5$
Eqn. (i) -2 Eqn. (ii)
$5 y-5 z=-6$
$y=z-\frac{6}{5}$
Substituting y into equation 2
$x=5+z-\frac{6}{5}-2 z$
$=\frac{19}{5}-z$
$r=\left(\begin{array}{c}\frac{19}{5} \\ \frac{-6}{5} \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$
OR: Eliminating z and making x the subject
$r=\left(\begin{array}{c}\frac{13}{5} \\ 0 \\ \frac{6}{5}\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$
OR: Eliminating z and making y the subject
$r=\left(\begin{array}{c}0 \\ \frac{13}{5} \\ \frac{10}{5}\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$
13. (a) Find the equation of the tangent to parabola $y^{2}=\frac{x}{16}$ at $\left(t^{2}, \frac{t}{4}\right)$.

Solution

For point $\left(t^{2}, \frac{1}{t}\right), \mathrm{x}=t^{2}$ and $\mathrm{y}=\frac{t}{4}$
$\frac{d x}{d t}=2 t$ and $\frac{d y}{d x}=\frac{1}{4}$
$\frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}=\frac{1}{4} \cdot \frac{1}{2 t}=\frac{1}{8 t}$
$\frac{y-\frac{t}{4}}{x-t^{2}}=\frac{1}{8 t}$
$8 t y-4 t^{2}=x-t^{2}$
$8 t y=x+t^{2}$
$x-8 t y+t^{2}=0$
(b) If the tangent to the parabola in (a)
above at points $\mathrm{P}\left(p^{2}, \frac{1}{p}\right)$ and $\mathrm{Q}\left(q^{2}, \frac{1}{q}\right)$ meet on the line $\mathrm{y}=2$.
(i) show that $p+q=16$

Solution

Substituting for $t=p$
$8 p y=x+p^{2}$
Also $8 q y=x+q^{2}$

When $y=2$
$16 p=x+p^{2}$ \qquad
And
$16 q=x+q^{2}$ \qquad
Subtracting (ii)from (i)
$16(p-q)=(p-q)(p+q)$
Dividing by $(p-q)$
$(p+q)=16$
(ii) deduce that the midpoint of PQ lies on the line $y=2$

Solution

The midpoint of $\mathrm{PQ}=\mathrm{M}\left(\frac{p^{2}+q^{2}}{2} ; \frac{p+q}{8}\right)$
Hence $\mathrm{y}=\frac{p+q}{8}$
But $p+q=16$
$\Rightarrow y=\frac{16}{8}=2$
14. (a) Solve $3 \sin x+4 \operatorname{cox}=2$ for $-180^{\circ} \leq x \leq 180^{\circ}$.

Solution

$R \sin (x+\alpha)=3 \sin x+4 \cos x$
$R \cos \alpha \sin x+R \sin \alpha \cos x=3 \sin x+4 \cos x$
$R \cos \alpha=3$
$R \sin \alpha=4$
$R^{2}=3^{2}+4^{2}$
$R=5$
$\tan \alpha=\left(\frac{4}{3}\right) \Rightarrow \alpha=53.13^{\circ}$
$5 \sin \left(x+53.13^{\circ}\right)=2$
$x+53.13^{0}=\sin ^{-1}(0.4)=23.58^{0}, 156.42^{0}$
$x=-29.55^{\circ}, 103.29^{\circ}$
OR
$\operatorname{Rcos}(x-\beta)=3 \sin x+4 \cos x$
$R \cos \beta \cos x+R \sin \beta \sin x=3 \sin x+4 \cos x$
$R \cos \beta=4$
$R \sin \beta=3$
$R^{2}=3^{2}+4^{2}$
$R=5$
$\tan \beta=\left(\frac{3}{4}\right) \Rightarrow \beta=36.87^{\circ}$
$5 \cos \left(x+36.87^{\circ}\right)=2$
$x+36.87^{0}=\cos ^{-1}(0.4)= \pm 66.24^{0}$
$x=-29.55^{\circ}, 103.29^{0}$
OR
$3\left(\frac{2 t}{1+t^{2}}\right)+4\left(\frac{1-t^{2}}{1+t^{2}}\right)=2$
$6 t+4-4 t^{2}=2+2 t^{2}$
$6 t^{2}-6 \mathrm{t}-2=0$
$3 \mathrm{t}^{2}-3 \mathrm{t}-1=0$
$t=\frac{3 \pm \sqrt{9+12}}{6}$
$=1.2638$ or -0.2638
$\tan \left(\frac{x}{2}\right)=1.2638$
$\mathrm{x}=2 \tan ^{-1} 1.2638=103.290$
$\tan \left(\frac{x}{2}\right)=-0.2638$
$x=2 \tan ^{-1}-0.2638=-29.55^{0}$
(b) Show that in any triangle $A B C$

$$
\frac{a^{2}-b^{2}}{c^{2}}=\frac{\sin (A-B)}{\sin (A+B)}
$$

Solution

$$
\begin{aligned}
\frac{a^{2}-b^{2}}{c^{2}} & =\frac{(2 R \sin A)^{2}-(2 R \sin B)^{2}}{(2 R \sin C)^{2}} \\
& =\frac{\sin ^{2} A-\sin ^{2} B}{\sin ^{2} C} \\
& =\frac{(\sin A+\sin B)(\sin A-\sin B)}{(\sin C)(\sin C)} \\
& =\frac{\left(2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}\right)\left(2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}\right)}{\sin (A+B) \sin (A+B)} \\
& =\frac{\left(2 \sin \frac{A+B}{2} \cos \frac{A+B}{2}\right)\left(2 \sin \frac{A-B}{2} \cos \frac{A-B}{2}\right)}{\sin (A+B) \sin (A+B)} \\
& =\frac{[\sin (A+B)][\sin (A-B)]}{[\sin (A+B)][\sin (A+B)]} \\
& =\frac{\sin (A-B)}{\sin (A+B)}
\end{aligned}
$$

15. (a) Differentiate the following with respect to x.
(i) $(x+1)^{\frac{1}{2}}(x+2)^{2}$

Solution

$$
\begin{aligned}
& \text { Let } y=(x+1)^{\frac{1}{2}}(x+2)^{2} \\
& \ln y=\frac{1}{2} \ln (x+1)+2 \ln (x+2) \\
& \frac{d y}{d x} \frac{1}{y}=\frac{1}{2(x+1)}+\frac{2}{(x+2)} \\
& \frac{d y}{d x}=\frac{(x+2)+4(x+1)}{2(x+1)(x+2)} \cdot(x+1)^{\frac{1}{2}}(x+2)^{2} \\
& \frac{d y}{d x}=\frac{(5 x+6)(x+2)}{2(x+1)^{\frac{1}{2}}}
\end{aligned}
$$

OR

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{2}(x+1)^{-1 / 2}(\mathrm{x}+2)^{2}+2(\mathrm{x}+1)^{1 / 2}(\mathrm{x}+2) \\
& =\frac{(x+2)^{2}+4(x+1)(x+2)}{2(x+1)^{\frac{1}{2}}} \\
& =\frac{(x+2)(x+2+4+4 x)}{2(x+1)^{\frac{1}{2}}} \\
& =\frac{(5 x+6)(x+2)}{2(x+1)^{\frac{1}{2}}}
\end{aligned}
$$

(ii) $\frac{2 x^{2}+3 x}{(x-4)^{2}}$

Solution

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(4 x+3)(x-4)^{2}-2\left(2 x^{2}+3 x\right)(x-4)}{(x-4)^{4}} \\
& =\frac{(4 x+3)(x-4)-2\left(\left(2 x^{2}+3 x\right)\right.}{(x-4)^{3}}
\end{aligned}
$$

OR

$$
\ln y=\ln \left(2 x^{2}+3 x\right)-2 \ln (x-4)
$$

$$
\begin{aligned}
& \frac{1}{y} \frac{d y}{d x}=\frac{4 x+3}{2 x^{2}+3 x}-\frac{2}{(x-4)} \\
& \begin{aligned}
\frac{d y}{d x} & =\frac{(4 x+3)(x-4)}{2\left(2 x^{2}+3 x\right)} \cdot \frac{2 x^{2}+3 x}{(x-4)^{2}} \\
& =\frac{(4 x+3)(x-4)-2\left(\left(2 x^{2}+3 x\right)\right.}{(x-4)^{3}}
\end{aligned}
\end{aligned}
$$

(b) The base radius of a right circular cone increases and the volume changes by 2%. If the height of the cone remains constant, find the percentage increase in the circumference of the base.

Solution

$$
\begin{aligned}
& \frac{\Delta V}{V}=2 \%, \mathrm{~V}=\frac{1}{3} \pi r^{2} h \\
& \Delta V=2 \% V=2 \% \times \frac{1}{3} \pi r^{2} h \\
& \frac{d V}{d r}=\frac{2}{3} \pi r h
\end{aligned}
$$

$$
\frac{\Delta V}{\Delta r}=\frac{d V}{d r}
$$

$$
\Delta r=\Delta V \cdot \frac{d r}{d V}=\frac{2 \% x \frac{1}{3} \pi r^{2} h}{\frac{2}{3} \pi r h}=1 \% r
$$

$$
c=2 \pi r
$$

$$
\frac{d c}{d r}=2 \pi
$$

$$
\frac{\Delta c}{\Delta r}=\frac{d c}{d r}
$$

$$
\Delta c=\frac{d c}{d r} \cdot \Delta r=\frac{2 \pi \mathrm{x} 1 \% \mathrm{r}}{2 \pi r}=1 \%
$$

16. (a) Solve the differential $\frac{d y}{d x}=\frac{\sin ^{2} x}{y^{2}}$, given that $\mathrm{y}=1$ when $\mathrm{x}=0$.

Solution

$y^{2} d y=\sin ^{2} x d x$
$\int y^{2} d y=\int \frac{1}{2}(1-\cos 2 x) d x$
$\frac{y^{3}}{3}=\frac{x}{2}-\frac{1}{4} \sin 2 x+c$
Substituting $\mathrm{y}=1$ and $\mathrm{x}=0$
$\frac{1}{3}=\frac{0}{2}-\frac{1}{4} \sin 0+c=>\mathrm{c}=\frac{1}{3}$
Hence
$\frac{y^{3}}{3}=\frac{x}{2}-\frac{1}{4} \sin 2 x+\frac{1}{3}$
$4 y^{3}=6 x-3 \sin 2 x+4$
(b) It is observed that the rate at which a body cools is proportional to the amount by which its temperature exceeds that of its surroundings. A body at $78^{\circ} \mathrm{Cis}$ placed in a room at $20^{\circ} \mathrm{C}$ and after 5 minutes the body has cooled to $65^{\circ} \mathrm{C}$. what will be its temperature after further 5 minutes?

Solution

$\frac{d \theta}{d t}=-k t$
$\int \frac{d \theta}{\theta}=-\int k d t$
$\operatorname{In} \theta=-k t+c$
At $t=0, \theta=78-20=58$
$\mathrm{c}=\ln 58$
At $t=5, \theta=65-20=45$
$\ln 45=-5 k+\ln 58$
$5 \mathrm{k}=\operatorname{In} \frac{58}{45}$
$\mathrm{k}=\frac{1}{5} \operatorname{In} \frac{58}{45}$
At $t=10$,
$\operatorname{In} \theta=-\frac{1}{5} \operatorname{In} \frac{58}{45} \times 10+\operatorname{In} 58$
$\theta=34.90$
The temperature will be $=20+34.9^{\circ}$

$$
=54.9^{0}
$$

Thank you
Dr. Bbosa Science

